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We compute the Yang-Mills vacuum wave functional in three dimensions at weak coupling with Oðe2Þ
precision. We use two different methods to solve the functional Schrödinger equation. One of them

generalizes to Oðe2Þ the method followed by Hatfield at OðeÞ [Phys. Lett. B 147, 435 (1984)]. The other

uses the weak coupling version of the gauge invariant formulation of the Schrödinger equation and the

ground state wave functional followed by Karabali, Nair, and Yelnikov [Nucl. Phys. B824, 387 (2010)].

We compare both results and discuss the differences between them.
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I. INTRODUCTION

The determination of the ground-state (or vacuum) wave

functional of QCD,�½ ~A�, is tantamount to solving QCD, as
any observable (for instance the static potential or the
spectrum of the theory) can then be obtained by the com-
putation of the expectation value of the appropriate opera-
tor. Even if the exact solution is not known, properly chosen
trial functionsmay give valuable information of the vacuum
using variational methods (see for instance [1]).

We are still far from obtaining the exact ground-state
wave functional of QCD. Even obtaining approximated
expressions is very complicated. This is also true in the
weak coupling limit. One reason is due to the requirement
that the wave functional, in addition to satisfying the
Schrödinger equation, has to be gauge invariant. This con-
straint is imposed by the Gauss law. Therefore, one cannot
use standard quantum mechanics perturbation theory in a
straightforward manner. A procedure to overcome this
problem was devised in the case of SU(2), and to OðeÞ in
the weak coupling expansion, in Ref. [2]. An alternative
procedure has also been considered in Ref. [3] and worked
out to the same order in e.

In this paper we are interested in the three-dimensional
version of QCD without light fermions (i.e., Yang-Mills
theory or gluodynamics). The method outlined by Hatfield
[2] can also be applied to the three-dimensional case and
a general group SU(N) without major modifications.
We do so in Sec. II and obtain the OðeÞ expression for a
general group SU(N) in three dimensions. The result
agrees with the expression obtained by transforming the
four-dimensional result of Ref. [2] to the expected three-
dimensional counterpart. The solutions obtained with this
method satisfy the Schrödinger equation by construction
but not necessarily the Gauss law, though it can be explic-
itly shown that it does atOðeÞ. We then compute theOðe2Þ
wave functional in what is a completely new result. Again,
this result satisfies the Schrödinger equation by construc-
tion but, at this order, it is not possible to explicitly check
the Gauss law, due to the complexity of the resulting
expressions. The resulting wave functional is explicitly

real (as expected for the ground-state functional) and we

name it�GL½ ~A�, where GL stands for the explicit use of the
Gauss law.
The fact that gauge invariance cannot be guaranteed in

general is one important drawback of the previous method.
The reason is that the Gauss law is only implemented
partially for some terms in some intermediate expressions.
Moreover, even this partial implementation of the Gauss
law is difficult to automatize, as at each order it has to be
tailored somewhat.
One solution to the previous problem would be to re-

formulate the Schrödinger equation in terms of gauge
invariant variables. One such formulation was originally
worked out in Refs. [4–8] (for some introductory notes
see [9]) and, more recently, in Ref. [10], where a modified
approximation scheme was devised. The authors use a
change of field variables, which become complex, to sim-
plify the problem. Even though the original motivation of
those works was to understand the strong coupling limit
(the opposite limit we are considering in this paper) and
confinement in three dimensions, it is not difficult to see
that the approximation scheme worked out in Ref. [10]
could be easily reformulated to provide with a systematic
expansion of the weak coupling limit. We do so in Sec. III
of this paper and compute the ground-state wave functional
to Oðe2Þ. The vacuum wave functional is a function of
the gauge invariant variables Ja, which we then transform

to the original gauge variables ~Aa
. The resulting expression

is gauge invariant by construction and also satisfies the
Schrödinger equation by construction. We name it

�GI½ ~A� � �GI½Jð ~AÞ�, where GI stands for the use of gauge
invariant degree of freedom. However, the explicit expres-
sion has the very unpleasant feature of having a nontrivial
imaginary term.
We have then obtained two different expressions for the

wave functionals:�GL½ ~A� and�GI½ ~A�, which actually look
completely different. We compare them in Sec. IV. AtOðeÞ
it is possible to show, after several manipulations and using
the symmetries of the integrals, that they are equal (so at
this order both of them are real and gauge invariant). Such
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brute force approach happens to be unfeasible atOðe2Þ due
to the complexity of the expressions. We need an organiz-
ing principle for the comparison. The approach we follow

is to rewrite �GL½ ~A� in terms of the gauge invariant vari-
able Ja and a gauge dependent field �a. All �a dependent

terms should vanish if�GL½ ~A� is going to satisfy the Gauss
law and we explicitly show that this happens. This means

that both �GL½ ~A� and �GI½ ~A� are gauge invariant. We
would then say that both should be equal, since both satisfy
the Schrödinger equation. We actually find (after a rather
lengthy computation) that both are almost but not com-
pletely equal. The difference is proportional to a bilinear
real term. This is puzzling but there is a reason behind

it: �GL½ ~A� and �GI½ ~A� satisfy ‘‘different’’ Schrödinger

equations. �GL½ ~A� was obtained using the unregulated

Schrödinger equation, whereas �GI½ ~A� was obtained after
the Schrödinger equation in terms of Ja variables was
regularized. In this last case, regularization produces an
extra term in the Schrödinger equation, producing in turn
an extra term in the wave functional. Irrespectively of the

above this comparison allows to rewrite �GI½ ~A� in an
explicitly real form. This is by far nontrivial, as the initial
�GI½J� was explicitly complex and dependent on complex
variables. In particular there is a delicate cancellation
between terms such that, after transforming this expression
back to real variables, the wave function becomes real
(actually in our comparison we work the other way around

and transform �GL½ ~A�, which is real, in terms of the
complex variables). This is an important test of several
parts of the computation done in Ref. [10].

We believe that the weak coupling reformulation of the
approach followed in Ref. [10] can be helpful to understand
the meaning of the partial resummations performed in the
approximation scheme used in this reference, though we do
not explore this issue in this paper. OurOðeÞ orOðe2Þwave
functional can also be used to test different trial functionals
in the literature that claim to have the proper weak and
strong coupling limit. Typically they reproduce the leading
order weak coupling expansion but not the OðeÞ correc-
tions. This is certainly the case with covariantization ap-
proaches where the exponent of the wave functional is
approximated by a bilinear term in the B fields (see for
instance [11,12]). Therefore, our results can hint to how
those trial functions could be improved to correctly incor-
porate corrections in the weak coupling limit.

II. DETERMINATION OF �GL½ ~A�
The Yang-Mills Lagrangian reads

L ¼ � 1

4
G��;aGa

��; (1)

where

Ga
�� ¼ @�A

a
� � @�A

a
� þ efabcAb

�A
c
�; (2)

eG�� ¼ ½D�;D��, D� ¼ @� þ eA�, A� ¼ �iTaAa
�,

G�� ¼ �iTaG��
a , Ta are the SU(N) generators, and

½Ta; Tb� ¼ ifabcTc.
Wewill work in the Hamiltonian formalism and partially

fix the gauge to A0 ¼ 0. Therefore, we work with the
~A ¼ ðA1; A2Þ components only and

~D ¼ ~rþ e ~A; (3)

Ba ¼ 1

2
�jkð@jAk � @kAj þ e½Aj; Ak�Þa

¼ ~r� ~Aa þ e

2
fabc ~Ab � ~Ac; (4)

where ~A� ~B � �ijAiBj,
~ri � @i ¼ @=@xi [for simplicity,

we use the metric ��� ¼ diagð�1;þ1;þ1Þ, so there is no

sign difference between upper and lower spatial indices],
and B ¼ �iTaBa.
In Ref. [2] the wave functional was computed toOðeÞ at

weak coupling. It is possible to generalize the method used
in this reference. We do so here and compute the ground
state wave function to Oðe2Þ. The ground state wave func-
tional has to satisfy the Schrödinger equation:1;2

1

2

Z
x

�
� �

� ~Aað ~xÞ �
�

� ~Aað ~xÞ þ Bað ~xÞBað ~xÞ
�
�GL½ ~A�

¼ E�GL½ ~A�; (5)

and the Gauss law constraint

ð ~D � ~EÞa�GL½ ~A�¼ i

�
~r� �

� ~Aa

þefabc ~Ab � �

� ~Ac

�
�GL½ ~A�¼0:

(6)

Because we are talking of the ground state we expect the
wave function to be real and have zero nodes. Therefore, it

can be written as the exponential of a functional F½ ~A� that
does not diverge for finite ~A:

�GL½ ~A� ¼ e�FGL½ ~A� ¼ e�Fð0Þ
GL

½ ~A��eFð1Þ
GL

½ ~A��e2Fð2Þ
GL

½ ~A�þOðe3Þ; (7)

and satisfies the Gauss law�
~r � �

� ~Aa

þ efabc ~Ab � �

� ~Ac

�
FGL½ ~A� ¼ 0: (8)

A. Order e0

Fð0Þ
GL can be obtained in several ways. It is equivalent to

solving the Schrödinger equation of the free theory with

1In the following we use the notation (d ¼ 2):
R
x �

R
ddx,R

6k �
R

d2k
ð2�Þd , �ð ~kÞ � ð2�Þd�ðdÞð ~kÞ, and so on.

2Note that the ground state energy can be normalized to zero
by moving it to the left-hand side of the equation and absorbing
it in the B2 term as a counterterm.
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the free Gauss law, in other words,N2 � 1 replicas of QED
without light fermions. In order to solve these equations, it
is convenient to rewrite them in momentum space using

~Að ~xÞ ¼
Z
6k
ei

~k� ~x ~Að ~kÞ; �

� ~Aað ~xÞ ¼
Z
6k
e�i ~k� ~x �

� ~Aað ~kÞ :

(9)

We then have for the free-field Schrödinger equation

1

2

Z
6k

�
� �

� ~Aað ~kÞ �
�

� ~Aað� ~kÞ þ ð ~k� ~Aað ~kÞÞð ~k� ~Aað� ~kÞÞ
�

��ð0Þ
GL½ ~A� ¼ Eð0Þ�ð0Þ

GL½ ~A�; (10)

giving the following equation for the leading order term of
the wave functional exponent:

Z
6k
�Fð0Þ

GL½ ~A�
� ~Aað ~kÞ ��F

ð0Þ
GL½ ~A�

� ~Aað� ~kÞ¼
Z
6k
ð ~k� ~Aað ~kÞÞð ~k� ~Aað� ~kÞÞ: (11)

The free-field Gauss law reads

~k � �F
ð0Þ
GL½ ~A�

� ~Aað ~kÞ ¼ 0: (12)

Equation (11) suggests Fð0Þ
GL to be quadratic in ~A:

Fð0Þ
GL½ ~A� ¼

Z
6k
Aa
i ð ~kÞAa

j ð� ~kÞgijð ~kÞ: (13)

The tensor structure of gijð ~kÞ can be fixed by the free-field

Gauss law, Eq. (12), which implies that gijð ~kÞ only depends
on the transverse component of the momentum. Therefore

gijð ~kÞ ¼ gð ~kÞP ijðk̂Þ; (14)

where P ij ¼ �ij � kikj= ~k
2
is the projector to the trans-

verse component. We can now solve Eq. (11) and deter-

mine gð ~kÞ. As the equation is quadratic there are two
solutions, of which we take the one that leads to a normal-
izable wave functional, which is

Fð0Þ
GL½ ~A� ¼

1

2

Z
6k
1

Ek

ð ~k� ~Aað ~kÞÞð ~k� ~Aað� ~kÞÞ; (15)

where Ek � j ~kj. A detailed explanation of this derivation
can be found in Sec. 10.2 (see also Sec. 11.2) of [13]. One
can see that, even in the free-field case, the implementation
of the Gauss law is not trivial.

B. Order e

At OðeÞ the Schrödinger equation splits into two equa-

tions (organized by powers of ~A):

Z
6k
�Fð0Þ

GL½ ~A�
� ~Aað� ~kÞ �

�Fð1Þ
GL½ ~A�

� ~Aað ~kÞ

¼ i

2
fabc

Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

�
ð ~k1� ~Aað ~k1ÞÞð ~Abð ~k2Þ� ~Acð ~k3ÞÞ;

(16)

Z
6k

�2Fð1Þ
GL½ ~A�

� ~Aað� ~kÞ� ~Aað ~kÞ ¼ 0; (17)

and the Gauss law constraint reads3

~k � �F
ð1Þ
GL½ ~A�

� ~Aað ~kÞ

¼ �ifabc
Z
6p1; 6p2

~Abð ~p1Þ � �F
ð0Þ
GL½ ~A�

� ~Aað ~p2Þ
�ð ~p1 � ~p2 þ ~kÞ

¼ �ifabc
Z
6p
1

j ~pj ð ~p� ~Abð� ~k� ~pÞÞð ~p� ~Acð ~pÞÞ: (18)

Using Eq. (15) the left-hand-side of Eq. (16) can be
rewritten as follows:

Z
6p
1

j ~pj ð ~p� ~Aað ~pÞÞ
�
~p� �Fð1Þ

GL½ ~A�
� ~Aað ~pÞ

�

¼
Z
6p
1

j ~pj
�
~p2

�
~Aað ~pÞ � �F

ð1Þ
GL½ ~A�

� ~Aað ~pÞ
�

� ð ~p � ~Aað ~pÞÞ
�
~p � �F

ð1Þ
GL½ ~A�

� ~Aað ~pÞ
��
; (19)

where the second term of the right-hand side is known
because of the Gauss law.

We are now in the position to obtain Fð1Þ. We profit from
the fact that the kernel can be taken to be completely
symmetric4 under the interchange of any two fields

Ai;ai;xi , Aj;aj;xj . Therefore, the density of
R
6p j ~pjð ~Aað ~pÞ �

�Fð1Þ
GL

½ ~A�
� ~Aað ~pÞ Þ can be related with the density of Fð1Þ

GL½ ~A�. More

specifically, if for a functional F½ ~Aa1ð ~k1Þ; . . . ; ~Aanð ~knÞ� of n
fields we have

Z
6p
j ~pj

�
~Aað ~pÞ � �F½

~A�
� ~Aað ~pÞ

�

¼
Z
6k1;...;6kn

D½ ~Aa1ð ~k1Þ; . . . ; ~Aanð ~knÞ�; (20)

3Note that in d ¼ 2: ~Acð� ~k� ~pÞ � ð ~p� ð ~p� ~Abð ~pÞÞÞ ¼
�ð ~p� ~Abð ~pÞÞð ~p� ~Acð� ~k� ~pÞÞ. Other useful relations are

ð ~k � ~AÞð ~k� ~BÞ � ð ~k� ~AÞð ~k � ~BÞ ¼ ~k2ð ~A� ~BÞ and �ij�kl ¼
�ik�jl � �il�jk.

4Any term antisymmetric in any of the two indices will vanish
when multiplied by the gauge fields. This means that the kernel
is not completely determined, as such terms can always be
added.
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then

F½ ~A� ¼
Z
6k1;...;6kn

1

j ~k1j þ � � � þ j ~knj
D½ ~Aa1ð ~k1Þ; . . . ; ~Aanð ~knÞ�:

(21)

With this we finally obtain

Fð1Þ
GL½ ~A� ¼ ifabc

Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

�

�
�

1

2ðP3
i j ~kijÞ

ð ~k1 � ~Aað ~k1ÞÞð ~Abð ~k2Þ � ~Acð ~k3ÞÞ

� 1

ðP3
i j ~kijÞj ~k1jj ~k3j

ð ~k1 � ~Aað ~k1ÞÞ

� ð ~k3 � ~Abð ~k2ÞÞð ~k3 � ~Acð ~k3ÞÞ
�
; (22)

which is the three-dimensional version of Hatfield’s result
(except for a different sign convention for e).

C. Order e2

At Oðe2Þ the Schrödinger equation leads to the follow-
ing equality:

1

2

Z
x

�
�2Fð2Þ

GL

ð�Aa
i Þ2

� �Fð1Þ
GL

ð�Aa
i Þ

�Fð1Þ
GL

ð�Aa
i Þ
� 2

�Fð0Þ
GL

ð�Aa
i Þ

�Fð2Þ
GL

ð�Aa
i Þ

þ 1

4
fabcfadeð ~Ab � ~AcÞð ~Ad � ~AeÞ

�
¼ 0: (23)

At this order Fð2Þ
GL can have contributions with four, two, and

zero fields (there are no contributions with three or one field):

Fð2Þ
GL ¼ Fð2;4Þ

GL þ Fð2;2Þ
GL þ Fð2;0Þ

GL . There is no need to compute

Fð2;0Þ
GL , as it just changes the normalization of the state, which

wedonot fix, or alternatively can be absorbed in a redefinition
of theground-state energy.Then, Eq. (23) can be split into two
terms with two and four fields respectively:

1

2

Z
x

�
� �Fð1Þ

GL

ð�Aa
i Þ

�Fð1Þ
GL

ð�Aa
i Þ
� 2

�Fð0Þ
GL

ð�Aa
i Þ

�Fð2;4Þ
GL

ð�Aa
i Þ

þ 1

4
fabcfadeð ~Ab � ~AcÞð ~Ad � ~AeÞ

�
¼ 0; (24)

and

1

2

Z
x

�
�2Fð2;4Þ

GL

ð�Aa
i Þ2

� 2
�Fð0Þ

GL

ð�Aa
i Þ

�Fð2;2Þ
GL

ð�Aa
i Þ
�
¼ 0: (25)

Fð0Þ
GL and Fð1Þ

GL have already been determined [see Eqs. (15)

and (22)] and can be inserted into Eqs. (24) and (25), but
we still have to implement the Gauss law, which at this
order reads

~k � �F
ð2;4Þ
GL

� ~Aað ~kÞ¼�ifabc
Z
6p1; 6p2

~Abð ~p1Þ � �Fð1Þ
GL

�Aa
i ð ~p2Þ�ð ~p1� ~p2þ ~kÞ;

(26)

~k � �F
ð2;2Þ
GL

� ~Aað ~kÞ ¼ 0: (27)

One first solves Eq. (24) and determines Fð2;4Þ
GL . Afterwards

Fð2;2Þ
GL is fixed by Eq. (25). In order to obtain Fð2;4Þ

GL the

procedure is similar to the one used for Fð1Þ
GL. The depen-

dence on Fð2;4Þ
GL is encoded in the 2nd term of Eq. (24),

which we rewrite in the following way:

Z
6p
1

j ~pj ð ~p� ~Aað ~pÞÞ
�
~p� �Fð2;4Þ

GL ½ ~A�
� ~Aað ~pÞ

�

¼
Z
6p
1

j ~pj
�
~p2

�
~Aað ~pÞ � �F

ð2;4Þ
GL ½ ~A�

� ~Aað ~pÞ
�

� ð ~p � ~Aað ~pÞÞ
�
~p � �F

ð2;4Þ
GL ½ ~A�

� ~Aað ~pÞ
��
: (28)

Once again the second term on the right-hand side is

given by the Gauss law, which allows us to isolate Fð2;4Þ
GL .

As above we use the fact that the kernel can be taken to
be completely symmetric under the interchange of fields

Ai;ai;xi , which lets us relate the density of
R
6p j ~pjð ~Aað ~pÞ �

�Fð2;4Þ
GL

½ ~A�
� ~Aað ~pÞ Þ with the density of Fð2;4Þ

GL ½ ~A� and we finally

obtain

Fð2;4Þ
GL ¼�1

2

Z
6p;6k1;6k2;6q1;6q2

1P
2
i ðj ~kijþj ~qijÞ

�
�Fð1Þ

GL

�Aa
i ð ~pÞ

�
½ ~k1; ~k2�

�
�Fð1Þ

GL

�Aa
i ð� ~pÞ

�
½ ~q1; ~q2�� ifb1b2c

Z
6p;6k1;6k2;6q1;6q2

�ð ~q1þ ~q2� ~pÞP
i
ðj ~kijþj ~qijÞj ~q1j

�ð ~q1 � ~Ab1ð ~q1ÞÞ
�
~Ab2ð ~q2Þ � �Fð1Þ

GL

� ~Acð ~pÞ½
~k1; ~k2�

�
þ1

8
fa1a2cfb1b2c

Z
6k1;6k2;6q1;6q2

�ðP
i
ð ~kiþ ~qiÞÞ

P
i
ðj ~kijþj ~qijÞ

ð ~Aa1ð ~k1Þ

� ~Aa2ð ~k2ÞÞð ~Ab1ð ~q1Þ� ~Ab2ð ~q2ÞÞ; (29)

which explicitly reads

SEBASTIAN KRUG AND ANTONIO PINEDA PHYSICAL REVIEW D 88, 125001 (2013)

125001-4



Fð2;4Þ
GL ¼ fabcfcde

Z
6k1;6k2;6q1;6q2

�

�X
i

ð ~kiþ ~qiÞ
�

1

j ~k1jþ j ~k2jþ j ~q1jþ j ~q2j
�

1

2ðj ~k1jþ j ~k2jþ j ~k1þ ~k2jÞðj ~q1jþ j ~q2jþ j ~q1þ ~q2jÞ

�
�
ð ~Adð ~q1Þ� ~Aeð ~q2ÞÞ

�
�1

4
j ~k1þ ~k2j2 ~Aað ~k1Þ� ~Abð ~k2Þþ j ~k1þ ~k2j

j ~k2j
ð ~k1þ ~k2Þ� ~Aað ~k1Þð ~k2 � ~Abð ~k2ÞÞ

þð ~k1þ ~k2Þ � ~k2
j ~k1jj ~k2j

ð ~k1 � ~Aað ~k1ÞÞð ~k2� ~Abð ~k2ÞÞþð ~k1� ~Aað ~k1ÞÞð ~k1þ ~k2Þ � ~Abð ~k2Þ
�

þð ~k1� ~Aað ~k1ÞÞð ~q1� ~Adð ~q1ÞÞð ~Abð ~k2Þ � ~Aeð ~q2ÞÞþ 1

j ~k1jj ~k2j
�
2 ~k2 � ~Aeð ~q2Þ� ~q1 � ~k2

j ~q1jj ~k2j
~q2 � ~Aeð ~q2Þ

�

�ð ~k1 � ~Aað ~k1ÞÞð ~k2� ~Abð ~k2ÞÞð ~q1� ~Adð ~q1ÞÞþ 1

j ~k1j
ð ~k1 � ~Aað ~k1ÞÞð ~k1þ ~k2Þ� ~Abð ~k2Þ

�
�

1

j ~q2j ð ~q1þ ~q2Þ� ~Adð ~q1Þð ~q2 � ~Aeð ~q2ÞÞþ 2

j ~q1þ ~q2j ð ~q1�
~Adð ~q1ÞÞð ~q1þ ~q2Þ � ~Aeð ~q2Þ

�

� 2ð ~q1þ ~q2Þ � ~q1
j ~k1þ ~k2jj ~k1jj ~q1jj ~q2j

ð ~k1 � ~Aað ~k1ÞÞð ~k1þ ~k2Þ� ~Abð ~k2Þð ~q1� ~Adð ~q1ÞÞð ~q2 � ~Aeð ~q2ÞÞ

þ 2 ~k1� ~k2

j ~k1jj ~k2jj ~q1þ ~q2jj ~q2j
ð ~k1 � ~Aað ~k1ÞÞð ~k2� ~Abð ~k2ÞÞð ~q2� ~Adð ~q1ÞÞð ~q2� ~Aeð ~q2ÞÞ

þ 2

j ~q1þ ~q2jj ~q2j ð
~k1� ~Aað ~k1ÞÞð ~k1þ ~k2Þ� ~Abð ~k2Þð ~q2� ~Adð ~q1ÞÞð ~q2� ~Aeð ~q2ÞÞ

� 1

j ~k2jj ~q2j
ð ~k2� ~Aað ~k1ÞÞð ~k2� ~Abð ~k2ÞÞð ~q2� ~Adð ~q1ÞÞð ~q2� ~Aeð ~q2ÞÞ

�
þ1

8
ð ~Aað ~k1Þ� ~Abð ~k2ÞÞð ~Adð ~q1Þ� ~Aeð ~q2ÞÞ

þ 1

j ~k1jðj ~q1jþ j ~q2jþ j ~q1þ ~q2jÞ
ð ~k1 � ~Aað ~k1ÞÞ

�
1

2
ð ~k1þ ~k2Þ� ~Abð ~k2Þð ~Adð ~q1Þ� ~Aeð ~q2ÞÞ�ð ~q1� ~Adð ~q1Þð ~Abð ~k2Þ� ~Aeð ~q2ÞÞ

� 1

j ~q1þ ~q2jj ~q2j ð
~k1þ ~k2Þ� ~Abð ~k2Þð ~q1þ ~q2Þ� ~Adð ~q1Þð ~q2 � ~Aeð ~q2ÞÞþ 1

j ~q1jj ~q2j ð ~q2�
~Abð ~k2ÞÞð ~q1 � ~Adð ~q1ÞÞ

�ð ~q2� ~Aeð ~q2ÞÞ� 1

j ~q1þ ~q2jj ~q2j ð
~k1þ ~k2Þ � ~Abð ~k2Þð ~q2� ~Adð ~q1ÞÞð ~q2� ~Aeð ~q2ÞÞ

��
: (30)

Proceeding analogously for Fð2;2Þ
GL we obtain

Fð2;2Þ
GL ¼ 1

2

Z
6p;6k1;6k2

1P
2
i j ~kij

�ð ~pþ ~k1 þ ~k2Þ

�
�

�2Fð2;4Þ
GL

�Aa
i ð ~pÞ�Aa

i ð� ~pÞ
�
½ ~k1; ~k2�: (31)

A direct computation of this object turns out to be ex-
tremely cumbersome. We will need to wait until Sec. IV,
where we will be able to relate Fð2;2Þ

GL with a known term of
Fð2;2Þ
GI . Its explicit expression in terms of the ~A fields can be

found in Eq. (84).
We have thus obtained the wave functional to Oðe2Þ by

extending the method first devised in Ref. [2] to the next

order. The different contributions to �GL½ ~A� are summa-
rized in Eqs. (15), (22), (30), and (84). This result satisfies
the Schrödinger equation by construction. It is also explic-
itly real. On the other hand, we cannot claim (a priori) that
the Gauss law is satisfied, as it has only been used in some
intermediate computations. At OðeÞ it is possible to

directly check that the Gauss law is satisfied. A direct
check at Oðe2Þ turns out to be extremely difficult to
obtain, due to the complexity of the expressions involved.
In Sec. IV we will devise a method to test the gauge
invariance of the expression obtained in this section.
Finally, we want to stress that the computation we have
performed in this section has been carried out without any
regularization. The final result happens to be finite but
formal manipulations have been performed on potentially
divergent expressions. We will come back to this issue in
Sec. IV.

III. DETERMINATION OF �GI½ ~A�
In the previous section we have been able to compute the

ground-state wave functional at weak coupling at Oðe2Þ.
However, it is difficult to automatize the method. First,
regularization issues have been completely skipped in the
previous computation and, second, the Gauss law is im-
plemented in a partial, and somewhat ad hoc, manner. This
last problem could be overcome by reformulating the
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Schrödinger equation in terms of gauge invariant variables.
One such formulation was originally worked out in
Refs. [4–8].5 Here we mainly follow Ref. [10], where a
modified approximation scheme was devised. Even though
the original motivation of those works was to understand
the strong coupling limit, it is not difficult to see that the
approximation scheme worked out in Ref. [10] could be
reformulated to provide with a systematic expansion of
the weak coupling limit. We do so here and compute the
ground-state wave functional to Oðe2Þ. The only relevant
information for us will be the change of field variables
used. The initial new field variables will be complex:

A :¼ 1

2
ðA1 þ iA2Þ; �A :¼ 1

2
ðA1 � iA2Þ: (32)

Therefore, it is also convenient to change the space
and momentum components to complex variables in the
following way (note that k and z are defined with different
signs):

z¼ x1 � ix2; �z¼ x1 þ ix2; k¼ 1

2
ðk1 þ ik2Þ;

�k¼ 1

2
ðk1 � ik2Þ; ~k � ~x¼ �k �zþkz; @¼ 1

2
ð@1 þ i@2Þ;

�@¼ 1

2
ð@1 � i@2Þ; @ �@¼ 1

4
~r2
: (33)

A and �A are still gauge-dependent degrees of freedom.
These were replaced by gauge invariant fields, named J,
in Refs. [4–8]. We will then use the following change of
variables: ðA1; A2Þ ! ðA; �AÞ ! ðJðA; �AÞ; �AðA; �AÞÞ, where
the relation between both variables is the following:

�Aa ¼ �Aa;

Ja ¼ 2iðMyÞacAc þ 2

e
ðð@MyÞMy�1Þa

¼ � 1
�@
~r� ~Aa þOðeÞ; (34)

whereMy is an invertible matrix, which is a function of �A,
defined implicitly by the equation

�A ¼ 1

e
My�1 �@My; (35)

which inverted yields [for a more compact expression see
Eq. (5) of [6]]

MðxÞ ¼ 1� e
4

~r2
ð �@AÞ þ e2

4

~r2
�@A

4

~r2
�@AþOðe3Þ; (36)

MyðxÞ ¼ 1þ e
4

~r2
ð@ �AÞ þ e2

4

~r2
@

�
4

~r2
@ �A

�
�AþOðe3Þ:

(37)

These equalities naturally lead to consider the following
Green functions:

�GðzÞ � 1
�@z
�ð2Þð~zÞ ¼ �i

Z d2k

ð2�Þ2 e
i ~k ~z 1

�k
¼ 1

�

�z

z�zþ �2
;

(38)

GðzÞ � 1

@z
�ð2Þð~zÞ ¼ �i

Z d2k

ð2�Þ2 e
i ~k ~z 1

k
¼ 1

�

z

z�zþ �2
:

(39)

Also, a useful relation reads

1
�@

��
1
�@
�Aa

�
�Ab

�
¼ � 1

�@

�
�Aa 1

�@
�Ab

�
þ

�
1
�@
�Aa

��
1
�@
�Ab

�
; (40)

which can easily be checked in momentum space. We also
need (TF ¼ 1=2)

ðMyÞac ¼ 1

TF

Tr½TaMyTcMy�1�: (41)

The Gauss law operator can be written in a compact form
in terms of �A and J:

Iað ~xÞ ¼ ð ~D � ~EÞað ~xÞ

¼ i
Z
y

�
Dab

x

�Jcð ~yÞ
�Abð ~xÞ þ

�Dab
x

�Jcð ~yÞ
� �Abð ~xÞ

�
�

� �Jcð ~yÞ
þ i �Dab

x

�

� �Abð ~xÞ : (42)

Not surprisingly the dependence on J drops out, since it is
possible to prove that

Dab
x

�Jcð ~yÞ
�Ab

i ð ~xÞ
þ �Dab

x

�Jcð ~yÞ
� �Ab

i ð ~xÞ
¼ 0; (43)

where we have used the following properties (keep in mind
that M�1

ac ¼ Mca):

�Jcð ~yÞ
�Abð ~xÞ ¼ 2iMy

cbð ~yÞ�ð ~y� ~xÞ; (44)

�Jcð ~yÞ
� �Abð ~xÞ ¼ 2

�
i
�My

cdð ~yÞ
� �Abð ~xÞ Adð ~yÞ

þ 1

e

�

� �Abð ~xÞ ðð@M
yð ~yÞÞMy�1ð ~yÞÞc

�
; (45)

�My
cdð ~yÞ

� �Abð ~xÞ ¼ e

�
1
�D

�
de

yx
ð�febhÞMy�1

hc ð ~xÞ

¼ e

�
1
�D

�
eb

yx
fedhM

y�1
hc ð ~yÞ; (46)

5In those references the regularization of the Schrödinger
equation was also addressed, dealing then with the other poten-
tial problem of the computation of Sec. II.
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�
1
�D

�
de

yx
¼ �Gðy� xÞ½My�1ð ~yÞMyð ~xÞ�de: (47)

Therefore we obtain

Iað ~xÞ ¼ i �Dab
x

�

� �Abð ~xÞ (48)

for the Gauss law operator.
In Ref. [8] it was shown that it was possible to write the

Hamiltonian as a pure function of J up to terms propor-
tional to the Gauss law, which vanish when applied to
physical (gauge-invariant) states. If we drop those terms
the Hamiltonian reads6

H ¼ 2

�

Z
w;z

1

ðz� wÞ2
�

�Jað ~wÞ
�

�Jað~zÞ
þ 1

2

Z
z
: �@Jað ~zÞ �@Jað~zÞ:þ ie

Z
w;z

fabc
JcðwÞ

�ðz� wÞ
� �

�Jað ~wÞ
�

�Jbð~zÞ þ
e2CA

2�

Z
Jað~zÞ �

�Jað~zÞ ; (49)

which we split into H ¼ Hð0Þ þHI, where H
ð0Þ is the first

line and HI the second. It is important to note that the last
term in Eq. (49) only appears after regularization of a
divergent integral.

We can now obtain the vacuum wave functional in
powers of e. We write

�GI½J� ¼ exp ð�FGI½J�Þ; (50)

where (following the notation of [10])

�2FGI½J� ¼
Z

fð2Þa1a2ð ~x1; ~x2ÞJa1ð ~x1ÞJa2ð ~x2Þ

þ e

2
fð3Þa1a2a3ð ~x1; ~x2; ~x3ÞJa1ð ~x1ÞJa2ð ~x2ÞJa3ð ~x3Þ

þ e2

4
fð4Þa1a2a3a4ð ~x1; ~x2; ~x3; ~x4ÞJa1ð ~x1ÞJa2ð ~x2Þ

� Ja3ð ~x3ÞJa4ð ~x4Þ þ � � � (51)

and the kernels fð2Þa1a2ð ~x1; ~x2Þ, fð3Þa1a2a3ð ~x1; ~x2; ~x3Þ, etc., have
the expansions

fð2Þa1a2ð ~x1; ~x2Þ ¼ fð2Þ0 a1a2
ð ~x1; ~x2Þ

þ e2fð2Þ2a1a2
ð ~x1; ~x2Þ þ � � �

fð3Þa1a2a3ð ~x1; ~x2; ~x3Þ ¼ fð3Þ0 a1a2a3
ð ~x1; ~x2; ~x3Þ

þ e2fð3Þ2a1a2a3
ð ~x1; ~x2; ~x3Þ þ � � �

fð4Þa1a2a3a4ð ~x1; ~x2; ~x3; ~x4Þ ¼ fð4Þ0 a1a2a3a4
ð ~x1; ~x2; ~x3; ~x4Þ þ � � � :

(52)

Acting with the Hamiltonian of Eq. (49) onto this ex-
pansion of the rs of J’s we obtain recursion relations for the
kernels. These read

2
e2CA

2�
fð2Þa1a2ð ~x1; ~x2Þþ4

Z
x;y
fð2Þa1að ~x1; ~xÞð ��0Þabð ~x; ~yÞfð2Þba2

ð ~y; ~x2Þ

þVabþe2
�
6
Z
x;y
fð4Þa1a2ab

ð ~x1; ~x2; ~x; ~yÞð ��0Þabð ~x; ~yÞ

þ3
Z
x;y
fð3Þa1ab

ð ~x1; ~x; ~yÞð ��1Þaba2ð ~x; ~y; ~x2Þ
�
¼0 (53)

for the term with two J’s, while for the terms with p � 3
J’s the recursion relation is

e2CA

2�
pfðpÞa1���ap þ

Xp
n¼2

nðpþ 2� nÞfðnÞa1���an�1að ��0Þabfðp�nþ2Þ
ban���ap

þ Xp�1

n¼2

nðpþ 1� nÞfðnÞa1���an�1að ��1Þabapfðp�nþ1Þ
ban���ap�1

þ e2
�ðpþ 1Þðpþ 2Þ

2
fðpþ2Þ
a1���apabð ��0Þab

þpðpþ 1Þ
2

fðpþ1Þ
a1���ap�1ab

ð ��1Þabap
�
¼ 0: (54)

In these equations, we have used the abbreviations (follow-
ing [10])

ð ��0Þabð ~x; ~yÞ ¼ �ab@y �Gð ~x; ~yÞ;
ð ��1Þabcð ~x; ~y; ~zÞ ¼ � i

2
fabc½�ð~z� ~yÞ þ �ð~z� ~xÞ� �Gð ~x; ~yÞ;

Vabð ~x; ~yÞ ¼ �ab

Z
z

�@z�ð ~z� ~xÞ �@z�ð~z� ~yÞ: (55)

These equations are the same as the ones in Ref. [10]
(which we have checked explicitly). Note that the splitting

into Hð0Þ and HI was different there, since the last term in

Eq. (49) was included in Hð0Þ.
If one were able to solve the set of Eqs. (53) and (54)

exactly, one would obtain the exact vacuum functional,
without any truncation. Therefore, those equations are a
perfect playground on which to try different resummation
schemes (as it was done in Ref. [10]). Here we focus on the
weak coupling expansion and solve those equations
iteratively.
At the lowest (zeroth) order in e, we have to solve

Eq. (53) for fð2Þ0 a1a2
ð ~x1; ~x2Þ with e ¼ 0. Note that this equa-

tion is quadratic in fð2Þ, thus it has two solutions. We take
the normalizable one, compatible with perturbation theory:6Note that in Ref. [8] the normalization of J is different.
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fð2Þ0 a1a2
ð ~x1; ~x2Þ ¼ �a1a2

�@2x1ffiffiffiffiffiffiffiffiffiffiffiffi
� ~r2

x1

q �ð2Þð ~x1 � ~x2Þ

()fð2Þ0 a1a2
ð ~kÞ ¼ �

�k2

Ek

�a1a2 ; (56)

where Ek ¼ j ~kj.
At higher orders it is better to work in momentum space.

We define

fð3Þa1a2a3ð ~x1; ~x2; ~x3Þ

¼
Z
6k1���6k3

exp

�
i
X3
i

~ki � ~xi
�
fð3Þa1a2a3ð ~k1; ~k2; ~k3Þ; (57)

fð4Þa1a2a3a4ð ~x1; ~x2; ~x3; ~x4Þ

¼
Z
6k1���6k4

exp

�
i
X4
i

~ki � ~xi
�
fð4Þa1a2a3a4ð ~k1; ~k2; ~k3; ~k4Þ: (58)

The recursive solution of equations (53) and (54) to order
e2 gives the following lowest order expressions for the
cubic and quartic kernels:

fð3Þ0 a1a2a3
ð ~k1; ~k2; ~k3Þ

¼ � fa1a2a3

24
ð2�Þ2�ð ~k1 þ ~k2 þ ~k3Þgð3Þð ~k1; ~k2; ~k3Þ; (59)

fð4Þ0 a1a2;b1b2
ð ~k1; ~k2; ~q1; ~q2Þ

¼ fa1a2cfb1b2c

64
ð2�Þ2�ð ~k1 þ ~k2 þ ~q1 þ ~q2Þ

� gð4Þð ~k1; ~k2; ~q1; ~q2Þ; (60)

where

gð3Þð ~k1; ~k2; ~k3Þ ¼ 16

Ek1 þ Ek2 þ Ek3

�
� �k1 �k2ð �k1 � �k2Þ

Ek1Ek2

þ cycl perm

�
; (61)

gð4Þð ~k1; ~k2; ~q1; ~q2Þ ¼ 1

Ek1 þ Ek2 þ Eq1 þ Eq2

�
gð3Þð ~k1; ~k2;� ~k1 � ~k2Þ k1 þ k2

�k1 þ �k2
gð3Þð ~q1; ~q2;� ~q1 � ~q2Þ

�
�ð2 �k1 þ �k2Þ �k1

Ek1

� ð2 �k2 þ �k1Þ �k2
Ek2

�
4

�k1 þ �k2
gð3Þð ~q1; ~q2;� ~q1 � ~q2Þ

� gð3Þð ~k1; ~k2;� ~k1 � ~k2Þ 4

�q1 þ �q2

�ð2 �q1 þ �q2Þ �q1
Eq1

� ð2 �q2 þ �q1Þ �q2
Eq2

��
: (62)

Note that the various fðnÞ are not fixed completely, since
they are multiplied by local sources. Therefore, only the
completely symmetric combination is determined, any
antisymmetric term would vanish when multiplied by the
sources, as they form a completely symmetric function.

Using the expressions for fð3Þ0 , fð4Þ0 in Eq. (53), the order

e2 term in fð2Þ is given by

fð2Þ2 a1a2
ð ~kÞ ¼ �a1a2

CA

2�

�k2

E2
k

½1þ N�; (63)

where

N ¼ Ek

�k2

�Z d2p

32�

1

�p
gð3Þð ~k; ~p;� ~p� ~kÞ

þ
Z d2p

64�

p

�p
gð4Þð ~k; ~p;� ~k;� ~pÞ

�
: (64)

It is possible to perform this integration, albeit numeri-
cally. The potentially divergent terms vanish after doing the
integration over the phase of the complex number.We obtain

N ¼ 0:025999ð8�Þ: (65)

Note that it is real. This is not trivial to predict a priori since

gð3Þ=ð4Þ are complex functions. As we will see this is a strong

check of the computation. The kernels fðnÞ, n � 5, become
nontrivial only at higher orders.

Note that the results above are nothing but Taylor ex-

pansions of the analogous set of Eqs. in Ref. [10] to the

appropriate order. In practice this means setting m ¼ 0 in

their computation and adding the first term in Eq. (63).

This last term will play a very important role in the

comparison with the results of the previous section.
Once we have an (approximated) expression for �GI½J�

we can transform it back to the original ~A variables:

�GI½Jð ~AÞ� � �GI½ ~A�. In principle, as it is a gauge invariant
quantity, it should be possible to write it in terms of the

gauge covariant quantities ~B and ~D. However, since we
work order by order in e, we do not need this. On the other
hand, rotational Oð2Þ symmetry is preserved explicitly.
We will use the following relation to transform J fields

into ~A fields (where the derivatives are in the adjoint
representation: DB ¼ @Bþ e½A; B�; and we have defined
J ¼ JaTa):

�@nJ ¼ �iMyð �Dn�1BÞMy�1; (66)

as well as Eqs. (36) and (37).
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A. Order e0

In this way at Oðe0Þ we obtain

�2Fð0Þ
GI ½ ~A� ¼ �

Z
6k
1

Ek

ð ~k� ~Aað ~kÞÞð ~k� ~Aað� ~kÞÞ; (67)

which is the expected free-field expression.

B. Order e

At OðeÞ we obtain

Fð1Þ
GI ½ ~A� ¼ ifabc

Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

��
1

2j ~k1j
ð ~k1 � ~Aað ~k1ÞÞð ~Abð ~k2Þ � ~Acð ~k3ÞÞ � 1

j ~k3j ~k21

� ~k1 � ~k2 þ i ~k1 � ~k2
ðj ~k1j þ j ~k2j þ j ~k3jÞj ~k2j

þ i

�

� ð ~k1 � ~Aað ~k1ÞÞð ~k2 � ~Abð ~k2ÞÞð ~k3 � ~Acð ~k3ÞÞ þ 1

j ~k3j ~k21
ð ~k1 � ~Aað ~k1ÞÞð ~k2 � ~Abð ~k2ÞÞð ~k3 � ~Acð ~k3ÞÞ

�
: (68)

This term stems from a combination of fð3Þ and fð2Þ terms, as we have to remember that J has an expansion in e itself. Using
the invariance of the integrals under interchange of integration variables and the fact that the delta function allows to write
one momentum in terms of the other two, it is possible, however tedious and nontrivial, to show that the imaginary term of
Eq. (68) vanishes and that the real part is equal to Eq. (22).

C. Order e2

At Oðe2Þ we obtain

�2Fð2;2Þ
GI ¼ CA

2�

Z
6k

1

j ~kj2 ð
~k� ~Aað ~kÞÞð ~k� ~Aað� ~kÞÞ½1þ N�: (69)

This term is associated with the fð2Þ2 term.
For the term with four gauge fields we obtain

�2ReFð2;4Þ
GI ¼1

4
fa1a2cfb1b2c

Z
6k1;6k2;6q1;6q2

�ð ~k1þ ~k2þ ~q1þ ~q2Þ 1

j ~k1þ ~k2j
ð ~Aa1ð ~k1Þ� ~Aa2ð ~k2ÞÞð ~Ab1ð ~q1Þ� ~Ab2ð ~q2ÞÞþfa1a2cfb1b2c

�
Z
6k1;6k2;6q1;6q2

�ð ~k1þ ~k2þ ~q1þ ~q2Þ 1

~k2
2

�
1

j ~k1þ ~k2j
� 1

j ~k1j
�
ð ~k1� ~Aa1ð ~k1Þð ~k2 � ~Aa2ð ~k2ÞÞð ~Ab1ð ~q1Þ� ~Ab2ð ~q2ÞÞ�fa1a2c

�fb1b2c
Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~k1

���
1

j ~k1þ ~k2j
� 1

j ~k3j
�

1

~k2
2 ~k4

2
ð ~k1� ~Aa1ð ~k1ÞÞð ~k3� ~Ab1ð ~k3ÞÞðð ~k2 � ~Aa2ð ~k2ÞÞð ~k4 � ~Ab2ð ~k4ÞÞ

�ð ~k2� ~Aa2ð ~k2ÞÞð ~k4� ~Ab2ð ~k4ÞÞÞþ 1

j ~k2jð ~k3þ ~k4Þ2 ~k23
ð ~k1� ~Aa1ð ~k1ÞÞð ~k2� ~Aa2ð ~k2ÞÞðð ~k3 � ~Ab1ð ~k3ÞÞð ~k3þ ~k4Þ � ~Ab2ð ~k4Þ

�ð ~k3� ~Ab1ð ~k3ÞÞð ~k3þ ~k4Þ� ~Ab2ð ~k4ÞÞ
�
þfa1a2cfb1b2c

Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

� ~k1� ~k2

ðj ~k1jþj ~k2jþj ~k3þ ~k4jÞj ~k1jj ~k2j
�
�

2

j ~k3þ ~k4jj ~k1j
þ 1

ð ~k3þ ~k4Þ2
�
ð ~k1� ~Aa1ð ~k1ÞÞð ~k2� ~Aa2ð ~k2ÞÞð ~Ab1ð ~k3Þ� ~Ab2ð ~k4ÞÞ

�2fa1a2cfb1b2c
Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1� ~Aa1ð ~k1ÞÞð ~k2� ~Aa2ð ~k2ÞÞð ~k3� ~Ab1ð ~k3ÞÞ 1

ðj ~k1jþj ~k2jþj ~k3þ ~k4jÞj ~k1j
�
�

1

j ~k3þ ~k4j ~k22
~k2� ~Ab2ð ~k4Þþ 1

j ~k3þ ~k4j ~k22 ~k24
ð ~k2�ð ~k3� ~k1Þð ~k4 � ~Ab2ð ~k4ÞÞþ ~k2 � ð ~k3� ~k1Þð ~k4� ~Ab2ð ~k4ÞÞÞ
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� 1

j ~k2j ~k23 ~k24
ð ~k1� ~k3ð ~k4 � ~Ab2ð ~k4ÞÞ� ~k1 � ~k3ð ~k4� ~Ab2ð ~k4ÞÞÞþ 1

j ~k2jj ~k3þ ~k4j2 ~k23
ð ~k1� ~k3ð ~k3þ ~k4Þ � ~Ab2ð ~k4Þ

� ~k1 � ~k3ð ~k3þ ~k4Þ� ~Ab2ð ~k4ÞÞÞ�fa1a2cfb1b2c
Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1� ~Aa1ð ~k1ÞÞð ~k2� ~Aa2ð ~k2ÞÞð ~k3� ~Ab1ð ~k3ÞÞ

�ð ~k4� ~Ab2ð ~k4ÞÞ 1

ðP
i
j ~kijÞðj ~k1jþj ~k2jþj ~k3þ ~k4jÞðj ~k3jþj ~k4jþj ~k1þ ~k2jÞj ~k1jj ~k3j

� ~k21 ~q21�ð ~k1� ~k2Þð ~q1� ~q2Þ
j ~k2jj ~k4jð ~k1þ ~k2Þ2

� j ~k2j
j ~k1þ ~k2j

�
2

�
2
~q1 � ~q2
~q22

þ1

�
þ4

ð ~k1� ~k2Þð ~q1� ~q2Þ
~k22 ~q

2
2

��
1�j ~k3jþj ~k4jþj ~k1þ ~k2j

j ~k1þ ~k2j
�

þ
��
2
~k1 � ~k2
~k22

þ1

��
2
~q1 � ~q2
~q22

þ1

�
�4

ð ~k1� ~k2Þð ~q1� ~q2Þ
~k22 ~q

2
2

��
1�2

j ~k3jþj ~k4jþj ~k1þ ~k2j
j ~k1þ ~k2j

��
; (70)

�2iImFð2;4Þ
GI ¼ ifa1a2cfb1b2c

Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1 � ~Aa1ð ~k1ÞÞð ~k2 � ~Aa2ð ~k2ÞÞð ~Ab1ð ~k3Þ � ~Ab2ð ~k4ÞÞ

�
�

1

ðj ~k1j þ j ~k2j þ j ~k1 þ ~k2jÞj ~k1jj ~k2j
� ~k21 þ 2 ~k1 � ~k2
j ~k1 þ ~k2jj ~k1j

�
~k21 þ ~k1 � ~k2
j ~k1 þ ~k2j2

�
� 1

~k2
2

�
1

j ~k1 þ ~k2j
� 1

j ~k1j
��

þ ifa1a2cfb1b2c
Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1 � ~Aa1ð ~k1ÞÞð ~k2 � ~Aa2ð ~k2ÞÞð ~k3 � ~Ab1ð ~k3ÞÞð ~k4 � ~Ab2ð ~k4ÞÞ

�
�

1

~k21 ~k
2
2
~k23 ~k

2
4ð ~k3 þ ~k4Þ2

�
2 ~k21 ~k

2
3j ~k1 þ ~k2j � j ~k1j ~k23ð ~k1 þ ~k2Þ2 � ~k21j ~k3jð ~k1 þ ~k2Þ2 þ ~k21j ~k2jð ~k1 þ ~k2Þ2

þ ~k21j ~k2j ~k3 � ð ~k1 þ ~k2ÞÞ þ 2
1

ðj ~k1j þ j ~k2j þ j ~k3 þ ~k4jÞj ~k1j
� ~k2 � ð2 ~k1 þ ~k2Þ
j ~k3 þ ~k4j ~k22 ~k24

�
~k1 � ~k3

j ~k2j ~k23 ~k24
þ

~k1 � ~k3
j ~k2jj ~k3 þ ~k4j2 ~k23

��

þ ifa1a2cfb1b2c
Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1 � ~Aa1ð ~k1ÞÞð ~k2 � ~Aa2ð ~k2ÞÞð ~k3 � ~Ab1ð ~k3ÞÞð ~k3 � ~Ab2ð ~k4ÞÞ

�
�

1

j ~k2jð ~k3 þ ~k4Þ2 ~k23
� 2

1

ðj ~k1j þ j ~k2j þ j ~k3 þ ~k4jÞj ~k1j
1

j ~k2jj ~k3 þ ~k4j2 ~k23
ð ~k1 � ~k3Þ

�

þ ifa1a2cfb1b2c
Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1 � ~Aa1ð ~k1ÞÞð ~k2 � ~Aa2ð ~k2ÞÞð ~k3 � ~Ab1ð ~k3ÞÞð ~k3 � ~Ab2ð ~k4ÞÞ 1

j ~k2jð ~k3 þ ~k4Þ2 ~k23
þ 2ifa1a2cfb1b2c

Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1 � ~Aa1ð ~k1ÞÞð ~k2 � ~Aa2ð ~k2ÞÞð ~k3 � ~Ab1ð ~k3ÞÞð ~k3 � ~Ab2ð ~k4ÞÞ

� 1

ðj ~k1j þ j ~k2j þ j ~k3 þ ~k4jÞj ~k1j
1

j ~k2jj ~k3 þ ~k4j2 ~k23
ð ~k1 � ~k3Þ þ 2ifa1a2cfb1b2c

�
Z
6k1;6k2;6k3;6k4

�

�X4
i¼1

~ki

�
ð ~k1 � ~Aa1ð ~k1ÞÞð ~k2 � ~Aa2ð ~k2ÞÞð ~k3 � ~Ab1ð ~k3ÞÞð ~k4 � ~Ab2ð ~k4ÞÞ

�
2
4 2ð ~k1 � ~k2Þfj ~k2jj ~k3jð ~k3 � ~k4Þ � j ~k1jj ~k4j3 þ ð ~k1 þ ~k2Þ2ð2 ~k3 � ~k4 þ ~k24Þg
ðP
i
j ~kijÞðj ~k1j þ j ~k2j þ j ~k3 þ ~k4jÞðj ~k3j þ j ~k4j þ j ~k1 þ ~k2jÞj ~k1j ~k22j ~k3j ~k24ð ~k1 þ ~k2Þ2

þ 2ð ~k1 � ~k2Þð2 ~k3 � ~k4 þ ~k24Þ
ðj ~k1j þ j ~k2j þ j ~k3 þ ~k4jÞðj ~k3j þ j ~k4j þ j ~k1 þ ~k2jÞj ~k1j ~k22j ~k3j ~k24j ~k1 þ ~k2j

þ 1

ðj ~k1j þ j ~k2j þ j ~k3 þ ~k4jÞj ~k1j

8<
: �2 ~k2 � ~k1

j ~k3 þ ~k4j ~k22 ~k24
�

~k1 � ~k3

j ~k2j ~k23 ~k24
þ

~k1 � ~k3

j ~k2jj ~k3 þ ~k4j2 ~k23

9=
;
3
5: (71)

SEBASTIAN KRUG AND ANTONIO PINEDA PHYSICAL REVIEW D 88, 125001 (2013)

125001-10



The last two equations can be rewritten in several ways,
yet, without an organizing principle, their sizes remain
more or less the same.

The resulting expression for the ground state wave func-
tional seems to have a nonvanishing imaginary term. This
is at odds with expectations, and with the result of the
previous section. The real part does not look at all as the
result obtained in the previous section either. We discuss
this puzzling situation in the next section.

IV. COMPARISON BETWEEN
BOTH APPROACHES

If we compare the expressions we have found for the
ground state wave functional in Secs. II and III, we see that
they look completely different. Evenmore so, whereas�GL

is explicitly real, �GI has, a priori, a nonvanishing imagi-
nary term. Only the Oðe0Þ expressions are trivially equal.
Starting at OðeÞ we can get agreement between both ex-
pressions after quite lengthy and nontrivial rearrangements.

At Oðe2Þ a direct comparison by brute force turns out to
be completely impossible. In order to compare expressions
we need an organizing principle to split the comparison
into pieces. The procedure we follow is to rewrite �GL in
terms of J and �A (actually we will use the variable �
defined below.7) If �GL and �GI are going to be equal,
all terms proportional to �A (or �) should vanish. Moreover,
to a given order in e the polynomial in �A is finite so only a
finite number of terms need to be compared.

In order to perform this comparison to Oðe2Þ we need
the following relations:

My � ee� ¼ 1þ e�þ e2

2
�2 þOðe3Þ; (72)

My�1 ¼ 1� e�þ e2

2
�2 þOðe3Þ; (73)

A ¼ � 1

2
My�1JMy þ 1

e
My�1@My

¼ � 1

2

�
J � e½�; J� þ e2

4
½�; ½�; J��

�
þ @�

� e

2
½�; @�� þ e2

3!
½�; ½�; @��� þOðe3Þ; (74)

�A ¼ 1

e
My�1 �@My

¼ �@�� e

2
½�; �@�� þ e2

3!
½�; ½�; �@��� þOðe3Þ; (75)

Aað ~kÞ ¼ � i

2
Jað ~kÞ þ ik�að ~kÞ þ ie

2
fabc

Z
6q
�bð ~k� ~qÞJcð ~qÞ

� ie

2
fabc

Z
6q
q�bð ~k� ~qÞ�cð ~qÞ

þ ie2

4
fbcdfdea

Z
6q

Z
6p
�bð ~k� ~q� ~pÞJcð ~qÞ�eð ~pÞ

� ie2

3!
fbcdfdea

Z
6q

Z
6p
�bð ~k� ~q� ~pÞq�cð ~qÞ�eð ~pÞ

þOðe3Þ; (76)

�Aað ~kÞ ¼ i �k�að ~kÞ � ie

2
fabc

Z
6q
�q�bð ~k� ~qÞ�cð ~qÞ

� ie2

3!
fbcdfdea

Z
6q; 6p

½k �q� �kq��bð ~k� ~q� ~pÞ

� �cð ~qÞ�eð ~pÞ þOðe3Þ; (77)

where � ¼ �i�aTa, and we define the Fourier trans-
form of � and J following the same conventions as in
Eq. (9).
For the Oðe0Þ and the OðeÞ contributions of FGL it is

possible to show that the � terms vanish and the rest agrees
with FGI in a direct fashion by just inserting the relations

(76) and (77) into Fð0Þ
GL and Fð1Þ

GL and summing coefficients

of terms with equal numbers of J’s and �’s. However, for
the Oðe2Þ contributions, even after these simplifications, a
brute force attack on the problem leads to expressions too
large and complicated to directly show the equality of both
expressions.
At this respect it is better to use some intermediate

expressions of the �GL computation that better agree
with the structure of the �GI result in terms of J.
Particularly relevant for us is Eq. (29), which relates

Fð2;4Þ
GL with ð�Fð1Þ

GLÞ=ð� ~AÞ. We can write Fð1Þ
GL½J; �� �

Fð1Þ
GL½ ~AðJ; �Þ� in terms of gð3Þ. Using

�

�Aa
i ð ~pÞ

¼
Z
q

�Abð ~qÞ
�Aa

i ð ~pÞ
�

�Abð ~qÞ þ
Z
q

� �Abð ~qÞ
�Aa

i ð ~pÞ
�

� �Abð ~qÞ
¼

Z
q1;q2

�Abð ~q1Þ
�Aa

i ð ~pÞ
�Jcð ~q2Þ
�Abð ~q1Þ

�

�Jcð ~q2Þ þ
Z
q1;q2

� �Abð ~q1Þ
�Aa

i ð ~pÞ
�
�Jcð ~q2Þ
� �Abð ~q1Þ

�

�Jcð ~q2Þ þ �ð ~q1 � ~q2Þ �

� �Abð ~q2Þ
�

¼ 1

2
ð�1i þ i�2iÞð2iÞ �

�Jað ~pÞ þ
1

2
ð�1i � i�2iÞ

�
�2i

p

�p

�

�Jað ~pÞ þ
�

� �Aað ~pÞ
�
þOðeÞ; (78)

7The field � could be interpreted as a kind of generator of complex SLðN;CÞ gauge transformations, see Ref. [8].
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we have

�Fð1Þ
GL

�Aa
i ð ~pÞ

¼ �ifaa1a2
Z
6k1;6k2

�ð ~k1 þ ~k2 þ ~pÞ
��
ð�1i þ i�2iÞ g

ð3Þð ~k1; ~k2; ~pÞ
32

þ ð�1i � i�2iÞ
�
�p

�p

gð3Þð ~k1; ~k2; ~pÞ
32

þ
�k22

2 �pj ~k2j
��

� Ja1ð ~k1ÞJa2ð ~k2Þ þ fð�1i þ i�2iÞ
�
�p2

j ~pj �
�k21

j ~k1j
�
� ð�1i � i�2iÞ

�
1

4
j ~pj þ

�k1

j ~k1j
�
�p

�p
ð �k1 þ �k2Þ þ k2

���

� Ja1ð ~k1Þ�a2ð ~k2Þ þ
�
ð�1i þ i�2iÞ2 �pk1 �k2

j ~pj � ð�1i � i�2iÞ2pk1
�k2

j ~pj
�
�a1ð ~k1Þ�a2ð ~k2Þ

�
þOðeÞ: (79)

With this we can writeFð2;4Þ
GL ½J; �� as a second order polynomial in gð3Þ. This gives us the guiding principle to try to reconstruct

gð4Þ, which is also a second order polynomial in gð3Þ. This term should be proportional to J4 and we find that indeed it is.

In Eq. (29), one can see that all terms in Fð2;4Þ
GL ½J; �� have a prefactor of 1

j ~k1jþj ~k2jþj ~q1jþj ~q2j
. As we need the gauge (�)

dependent terms to cancel with the corresponding terms fromFð0Þ
GL andF

ð1Þ
GL, that do not have this prefactor, we find a second

guiding principle, which is to rewrite the � dependent terms of Fð2;4Þ
GL ½J; �� in such a way that this prefactor drops out and

then try to find a form similar to the gauge dependent contributions of Fð0Þ
GL and F

ð1Þ
GL. To do so we extensively use the Jacobi

identity and the invariance of the integrals under interchange of integration variables, as well as the delta function. We also
use the fact that the integration kernels can be taken to be completely symmetric under the interchange of the variables of

two equal fields [for instance Ja1ð ~k1ÞJa2ð ~k2Þ]. Still the computation is very lengthy and we will give some details in a
different publication. In the end we obtain

Fð0Þ
GL¼

1

2

Z
6k

�k2

j ~kjJ
að ~kÞJað� ~kÞþe

Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

� �k3
2

j ~k3j
fabcJað ~k1Þ�bð ~k2ÞJcð ~k3Þ�efabc

Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

� �k1ðk1 �k3� �k1k3Þ
j ~k1j

�Jað ~k1Þ�bð ~k2Þ�cð ~k3Þþe2

2
fa1a2cfb1b2e

Z
6k1;6k2;6q1;6q2

�

�X2
i

ð ~kiþ ~qiÞ
��ð �k1þ �k2Þ2

j ~k1þ ~k2j
�

�k21

j ~k1j
�
Ja1ð ~k1Þ�a2ð ~k2ÞJb1ð ~q1Þ�b2ð ~q2Þ

þe2fa1a2cfb1b2c
Z
6k1;6k2;6q1;6q2

�

�X
i

ð ~kiþ ~qiÞ
�
Ja1ð ~k1Þ�a2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ

�
1

3

1

j ~k1j
�k1ðk1 �q2� �k1q2Þþ 1

j ~q1þ ~q2j

�ð �q1þ �q2Þðq2 �q1� �q2q1Þ
�
�2e2fa1a2cfb1b2c

Z
6k1;6k2;6q1;6q2

�

�X
i

ð ~kiþ ~qiÞ
�
�a1ð ~k1Þ�a2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ

�k2k1 �q2q1

j ~k1þ ~k2j
þOðe3Þ;

(80)

Fð1Þ
GL ¼ �fabc

Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

�
gð3Þð ~k1; ~k2; ~k3Þ

96
Jað ~k1ÞJbð ~k2ÞJcð ~k3Þ � fabc

Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

� �k23

j ~k3j
Jað ~k1Þ�bð ~k2ÞJcð ~k3Þ

� 2fabc
Z
6k1;6k2;6k3

�

�X3
i¼1

~ki

� �k1k2 �k3

j ~k1j
Jað ~k1Þ�bð ~k2Þ�cð ~k3Þ � efa1a2cfb1b2c

Z
6k1;6k2;6q1;6q2

�

�Xð ~ki þ ~qiÞ
�

� gð3Þð ~k1; ~k2;� ~k1 � ~k2Þ
32

Ja1ð ~k1ÞJa2ð ~k2ÞJb1ð ~q1Þ�b2ð ~q2Þ þ efa1a2cfb1b2c
Z
6k1;6k2;6q1;6q2

�

�X2
i¼1

ð ~ki þ ~qiÞ
�

� Ja1ð ~k1ÞJa2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ
�

�q2q1
�q1 þ �q2

gð3Þð ~k1; ~k2;� ~k1 � ~k2Þ
16

� �q2
ð �q1 þ �q2Þ

�k22

2j ~k2j
�

� efa1a2cfb1b2c
Z
6k1;6k2;6q1;6q2

�

�X2
i¼1

ð ~ki þ ~qiÞ
��ð �k1 þ �k2Þ2

j ~k1 þ ~k2j
�

�k21

j ~k1j
�
Ja1ð ~k1Þ�a2ð ~k2ÞJb1ð ~q1Þ�b2ð ~q2Þ

� efa1a2cfb1b2c
Z
6k1;6k2;6k3;6q

�

�X
i¼1

ð ~ki þ ~qiÞ
�
Ja1ð ~k1Þ�a2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ

� �k1

j ~k1j
ðk1 �q2 � �k1q2Þ þ 4

ð �k1 þ �k2Þ
j ~k1 þ ~k2j

q1 �q2

�

þ 4efa1a2cfb1b2c
Z
6k1;6k2;6q1;6q2

�

�X2
i

ð ~ki þ ~qiÞ
�
�a1ð ~k1Þ�a2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ k1

�k2q1 �q2
j ~q1 þ ~q2j þOðe2Þ; (81)
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Fð2;4Þ
GL ¼ � 1

512
fa1a2cfb1b2c

Z
6k1;6k2;6q1;6q2

�

�X2
i

ð ~ki þ ~qiÞ
�
gð4Þð ~k1; ~k2; ~q1; ~q2ÞJa1ð ~k1ÞJa2ð ~k2ÞJb1ð ~q1ÞJb2ð ~q2Þ

þ 1

32
fa1a2cfb1b2c

Z
6k1;6k2;6q1;6q2

�

�X2
i

ð ~ki þ ~qiÞ
�
gð3Þð ~k1; ~k2;� ~k1 � ~k2ÞJa1ð ~k1ÞJa2ð ~k2ÞJb1ð ~q1Þ�b2ð ~q2Þ

þ 1

2
fa1a2cfb1b2c

Z
6k1;6k2;6q1;6q2

�

�X2
i

ð ~ki þ ~qiÞ
��ð �k1 þ �k2Þ2

j ~k1 þ ~k2j
�

�k21

j ~k1j
�
Ja1ð ~k1Þ�a2ð ~k2ÞJb1ð ~q1Þ�b2ð ~q2Þ

� fa1a2cfb1b2c
Z
6k1;6k2;6q1;6q2

�

�X2
i

ð ~ki þ ~qiÞ
�
Ja1ð ~k1ÞJa2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ

�
q1 �q2
�q1 þ �q2

gð3Þð ~k1; ~k2;� ~k1 � ~k2Þ
16

� �q2
�q1 þ �q2

�k22

2j ~k2j
�
þ 2fa1a2cfb1b2c

Z
6p;6k1;6k2;6q1;6q2

�

�X
i

ð ~ki þ ~qiÞ
�
q1 �q2

� �k1 þ �k2

j ~k1 þ ~k2j
�

�k1

j ~k1j
�
Ja1ð ~k1Þ�a2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ

� 2fa1a2cfb1b2c
Z
6k1;6k2;6q1;6q2

�

�X
i

ð ~ki þ ~qiÞ
�
k1 �k2q1 �q2

j ~k1 þ ~k2j
�a1ð ~k1Þ�a2ð ~k2Þ�b1ð ~q1Þ�b2ð ~q2Þ þOðeÞ: (82)

We now move to Fð2;2Þ
GL , which is associated to a one-loop

computation. We have already mentioned in Sec. II that its
direct determination in terms of ~A fields is not feasible.
Again, we follow the strategy of rewriting Fð2;2Þ

GL in terms
of J and �. For this we use Eq. (82), which we plug into
Eq. (31) after having rewritten the functional derivatives in
terms of J and �A using Eq. (78). The calculation simplifies
a lot and we find

Fð2;2Þ
GL ¼ � cA

32

Z
6p;6k

1

j ~kj
�
1

�p
gð3Þð ~k; ~p;� ~k� ~pÞ

þ 1

2

p

�p
gð4Þð ~p; ~k;� ~p;� ~kÞ

�
Jað ~kÞJað� ~kÞ þOðeÞ:

(83)

This result allows us to write Fð2;2Þ
GL in terms of the gauge

fields. It reads

Fð2;2Þ
GL ¼ �N

CA

4�

Z
6k

1

j ~kj2 ð
~k� ~Aað ~kÞÞð ~k� ~Aað� ~kÞÞ; (84)

where N has been defined in Eq. (64).
We can now combine all the different contributions (in

an, again, not completely trivial computation). We obtain
the following equalities:

FGL½ ~AðJ;�Þ�¼FGI½J�þCAe
2

4�

Z
6k

�k2

j ~kj2J
að ~kÞJað� ~kÞþOðe3Þ;

(85)

or in terms of the gauge fields

FGI½Jð ~AÞ� ¼ FGL½ ~A� � CAe
2

4�

Z
6k

1

j ~kj2 ð
~k� ~Aað ~kÞÞ

� ð ~k� ~Aað� ~kÞÞ þOðe3Þ: (86)

The first equality implies that FGL½ ~A� is gauge invariant to
Oðe2Þ, the second that FGI½J� is real to Oðe2Þ. We stress

that Fð0Þ
GL, F

ð1Þ
GL, and F

ð2;4Þ
GL are real, which is not evident at all

as written in Eqs. (80)–(82).
Overall we get complete agreement except for one bi-

linear real extra term in FGI. Its origin can be traced back to
the appearance of the last term of the Schrödinger equation
in Eq. (49). In turn this term appears from an anomaly-like
computation only after the kinetic operator has been
regularized. Note that FGL was obtained without regulariz-
ing the theory, working with formal expressions. The ex-
istence of very lengthy and complicated expressions in
the intermediate steps impedes in practice the identifica-
tion of the divergences. We expect these divergences to

particularly affect Fð2;2Þ
GL , since we have functional deriva-

tives acting on the wave functional density [see Eq. (31)]
that effectively produce contractions of fields and internal
integrals over momenta. Therefore, one could miss some
contributions (and yet get a finite result) if formally ma-
nipulating the integrals as if they were finite before regu-
lating them. For the other terms of F we have a double
check, which gives us strong confidence in our result.

V. CONCLUSIONS

We have computed the Yang-Mills vacuum wave func-
tional in three dimensions at weak coupling with Oðe2Þ
precision. We have used two different methods to solve the
Schrödinger functional equation: (A)Oneof themgeneralizes
to Oðe2Þ the method followed by Hatfield at OðeÞ [2]. We

have named the result �GL½ ~A�. (B) The other uses the weak
coupling version of the gauge invariant formulation of the
Schrödinger equation and the ground-state wave functional
followed by Karabali, Nair, and Yelnikov [10]. We have
named the result�GI½J�. Each method has its own strengths
and weaknesses, and they are to some extent complementary.
The computations performed with method (A) are rela-

tively simple and the results are explicitly real. The gen-
eralization to four dimensions of the Oðe2Þ computation
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does not present major conceptual problems. Note that this
is the order at which we expect to start to see the running of
the coupling constant in D ¼ 4. On the other hand, such
computation has two major drawbacks. First, the implemen-
tation of the Gauss law is not done in a systematic way, only
partially in some intermediate steps. Therefore, we cannot
guarantee a priori that the final result is gauge invariant. As
the results rapidly grow in size and complexity, a direct
check turns out to be unfeasible. Actually we were only able
to check the Gauss law with the help of method (B). The
major drawback, however, is that the computation has been
performed with an unregulated kinetic operator. Whereas all
computations can formally be carried out obtaining a finite
result, some terms may be missed in this way.

The computations with method (B) are somewhat more
involved. Rather lengthy expressions appear when we
rewrite the wave functional in terms of the gauge fields
~A, which, moreover, look complex. Trying to prove by
brute force that the result is real turns out to be impossible.
Actually, we only manage to prove it after a careful com-
parison with the result of method (A). Moreover, a possible
generalization to four dimensions does not look trivial. On
the other hand, method (B) is particularly appealing, as it
directly works with gauge-invariant degrees of freedom.
Therefore, the Gauss law is automatically satisfied and it is
not necessary to explicitly impose this constraint. Note also
that the set of Eqs. (53) and (54) can be solved recursively.
Therefore, it could be possible to automatize the compu-
tation and obtain the wave functionals at higher orders with
a combination of algebraic/numeric programming. Finally,
and most important, the kinetic operator had been regular-
ized. This produced nontrivial contributions.

We have compared both results. It is impossible to show
that they are equal in a direct way. The strategy we follow
helps a lot, yet it continues to be extremely complicated to
prove the equality of the two expressions. As we have
already mentioned, this comparison has allowed us on the
one hand to prove that�GL is indeed gauge invariant and on
the other hand that �GI is real. Most interestingly, the

agreement between both results is almost complete except
for one extra term that appears with method (B). This term
shows up from an anomaly-like computation once the theory
is regularized. Such a contribution does not show up in
method (A). Apparently, this is due to the fact that no
regularization was used in this computation. This result is
potentially very interesting because it is precisely this term
that produces the mass gap and a linearly rising potential in
the strong coupling limit in Ref. [8]. Therefore, it is impor-
tant to understand how (and if) such a term can be generated
in a regulated version of the Schrödinger formalism in terms
of the gauge fields, as this contribution has not been checked
with an independent method so far. However, as regulariza-
tion in the Schrödinger formalism with gauge variables is, to
a large extent, uncharted territory, this requires a dedicated
study beyond the aim of this work. We plan to address this
issue in the near future, as well as to revisit the regulariza-
tion with method (B), with the aim of resolving the discrep-
ancy between the wave functions that we have found in this
paper. In this context, it may be worth mentioning that
supersymmetric extensions of Yang-Mills theory withN �
2 do not have this term [14]. This is not completely un-
expected, as the introduction of supersymmetry improves
the ultraviolet behavior of the theory. This may lead to
convergent integrals and the disappearance of this extra
term. Finally, we expect that the inclusion of matter fields
in the theory will not produce major changes to the general
procedure.
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Note added.—In Ref. [15] a careful regularization of

both methods (A) and (B) has been carried out. Out of

this analysis new contributions have been found for both

methods bringing them into agreement.
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