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Recently a quantum portrait of black holes was suggested according to which a macroscopic black hole
is a Bose–Einstein condensate of soft gravitons stuck at the critical point of a quantum phase transition. We
explain why quantum criticality and instability are the key for an efficient generation of entanglement and
consequently of the scrambling of information. By studying a simple Bose–Einstein prototype, we show
that the scrambling time, which is set by the quantum break time of the system, goes as log N for N the
number of quantum constituents or equivalently the black hole entropy.
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I. INTRODUCTION

The present state of affairs in black hole (BH) physics is
somewhat paradoxical. On one side, it is widely believed
that the final state of the black hole evaporation process is a
pure state, while on the other side, the standard Hawking
model of evaporation does not account for the purification
mechanism. Obviously the missing ingredient is a micro-
scopic quantum model of the black hole beyond its pure
geometrical definition.
In the present paper, we shall focus on a specific micro-

scopic description, put forward in Refs. [1–5] (for different
aspects of this portrait, see Ref. [6]). In this picture, black
holes of arbitrarily large size R are treated as self-sustained
bound states of a large number of long wavelength (∼R)
gravitons. From the quantum physics point of view, such
a bound state represents a Bose–Einstein (BE) condensate
stuck at the critical point of a quantum phase transition.
This quantum criticality is the key to the understanding
of the mysterious properties of black holes that emerge
in the naive semiclassical treatment.
In this respect, our approach sharply differs from

previous attempts, such as D-brane models for extremal
black holes [7], models based on Matrix theory [8], and
fuzzballs [9]. These approaches heavily rely on a particular
UV completion of gravity at short distances, such as string
or Planck (Lp) length scales. Our key postulate is funda-
mentally different. We state that physics of macroscopic
black holes of size R ≫ LP must be largely insensitive

to the properties of UV completion at Planck distances
and must be governed solely by the quantum physics of
long wavelength gravitons with their quantum interaction
strength being fully determined by the graviton-graviton
interaction vertices of Einstein theory. All the seemingly
mysterious properties of the black holes must originate
from collective quantum phenomena of these constituent
soft gravitons. To put it shortly, in our picture large black
holes are not governed by UV physics but rather by the
quantum collective effects of IR physics.
These collective effects render the entire macroscopic

system extremely sensitive to quantum effects. A funda-
mental aspect is the appearance of a large number of almost
gapless collective modes (Bogolyubov modes), which can
be thought of as the quantum holographic degrees of
freedom. They are responsible for the instability of the con-
densate, for its quantum depletion, as well as for a large
(near) degeneracy of the quantum states. These phenomena
provide the underlying quantum-mechanical dynamics for
black hole evaporation, entropy, and holography.
An accompanying property of the quantum phase transi-

tion is a very efficient generation of entanglement. A sharp
rise of one-particle ground-state entanglement was already
confirmed by numerical studies of a prototype model [5].
In this paper, we shall discuss how the instability of the

BE condensate is the key for understanding the efficient
generation of entanglement and information scrambling
by a black hole in a logarithmic time,

tscrambling=R ∝ log N: (1)

Noticing that in our treatment N measures the number of
constituents, this result is in full agreement with the semi-
classical prediction originally made in Refs. [10,11].
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Let us briefly review some of the key ingredients of
the black hole quantum portrait. In the picture of
Ref. [2], we track the formation of a black hole as bringing
the graviton condensate to the critical point of a quantum
phase transition. At this point the BE condensate is nearly
self-sustained with mass M and size R related to the total
number N of constituents as M ¼ ffiffiffiffi

N
p

L−1
P ; R ¼ ffiffiffiffi

N
p

LP.
However, the condensate is unstable both with respect to
collapse as well as to quantum depletion. The two effects
balance each other in such a way that although the conden-
sate slowly collapses and loses its gravitons, it stays at the
quantum critical point. This process can be parametrized as
a self-similar decrease of N,

dN
dt

¼ − 1ffiffiffiffi
N

p
LP

: (2)

Note that this instability survives in the semiclassical limit
(LP → 0, N → ∞,

ffiffiffiffi
N

p
LP ¼ fixed), which corresponds to

the Gross–Pitaevskii limit of the graviton condensate.
One of the most important outputs of the black hole

N-quantum portrait is to allow us to identify important
quantum corrections that are not resolvable within the
standard semiclassical approximation. In the semiclassical
picture, one works with the notion of the classical metric.
Irrespectively of whether the metric is derived from the
loop-corrected effective action, it is an intrinsically
classical entity, and its quantum constituents are not
resolved. The only nonperturbative quantum corrections
that one can visualize in this limit for a black hole of action
S are of the form e−

S
ℏ. These sorts of corrections take into

the account only the total black hole action and are blind to
any form of microscopic constituency. Such corrections, for
instance, can measure the transition amplitudes between
black hole and thermal topologies [12,13].
On the other hand, there exist more important quantum

corrections that scale as ℏ=S, but they are unaccountable in
the semiclassical treatment. The key problem lies in unveil-
ing their microscopic meaning as well as in understanding
under what conditions these quantum corrections can effec-
tively lead to order-one effects for macroscopic black holes.
In the quantum N portrait, these corrections naturally
appear as 1=N corrections, since the occupation number
of gravitons measures the black hole action (as well as
the entropy),

N ¼ S
ℏ
: (3)

Thus, the quantity 1=N is a measure of quantum effects that
are much more important than the e−N-type effects captured
by the semiclassical analysis. In particular, it was shown
that 1=N corrections account for the deviations from ther-
mality of black hole radiation [1] as well as for the quantum
hair of black holes [4]. The existence of these corrections

was also confirmed for the string holes [14].1 These 1=N
corrections are the key for abolishing the black hole
“information paradox,” since over the black hole half-life-
time, they give order-one effect for arbitrarily large black
holes N ≫ 1 [3].
A Bose–Einstein condensate represents a very natural

setup for identifying the physical meaning of 1=N correc-
tions. In a nutshell, for BE condensates the small quantum
deviations from the mean-field Gross–Pitaevskii (GP)
description are 1=N corrections, with 1=N replacing the
role of the Planck constant ℏ. Moreover, as we will discuss
in this paper, instabilities of the GP equation can naturally
lead to fast enhancement of these quantum corrections.
More concretely, around instabilities of the GP equation,
the quantum break time [i.e., the time needed to depart
significantly (Oð1Þ) from the mean field approximation]
scales with N as log N. Nicely enough, the BE portrait
of black holes implies instabilities of the GP equation.
The root of these instabilities lies in the mean-field instability
of the condensate at the quantum critical point due to the
attractive nature of the interaction. As we will show in this
paper, the quantum break time for BE condensates fits nat-
urally with the notion of scrambling time for black holes.

II. SCRAMBLING AND QUANTUM BREAK TIME

The notion of black holes as scramblers was first intro-
duced in Ref. [10], where it was realized that perturbed
black holes should thermalize in a time t ≥ R log SBH
for SBH the black hole entropy and R the black hole radius.
In Ref. [11] it was then suggested that black holes may sat-
urate this bound, a property that has become known as fast
scrambling. The associated time scale is now known as
scrambling time.2

The concept of scrambling is intimately related to entan-
glement of subsystems. Consider a quantum mechanical
system for which the Hilbert space is a direct product
H ¼ HA ⊗ HB in a state described by the density matrix
ρ. The conventional measure of entanglement between the
subsystems is the Von Neumann entropy of the reduced
density matrix:

SA ¼ tr
A
ðρA log ρAÞ ρA ¼ tr

B
ρ: (4)

A system is called a scrambler if it dynamically thermalizes
in the sense that, if prepared in an atypical state, it evolves
toward typicality. That is, even for an initial state that has

1The similarly large corrections are also indicated in a different
treatment in which one prescribes a wave function to the horizon
[15], This approach differs from ours since the metric is still
treated semiclassically and its quantum constituents are not
resolved. Nevertheless, the largeness of the corrections is in a
qualitative agreement.

2For several attempts to understand the physics of scrambling,
see Refs. [16–19].
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little or no entanglement between subsystems, the time
evolution is such that the reduced density matrices are
finally close to thermal density matrices. The scrambling
time is simply the characteristic time scale associated to this
process. It can be described as the time it takes for a
perturbed system, one that is described by a product state,
to evolve back into a strongly entangled state. It can also be
interpreted as the time necessary to distribute any informa-
tion entering the system among all its constituents.
The quantum meaning of the scrambling time becomes

more transparent if we rewrite it as

tscrambling ∼ R log

�
S
ℏ

�
; (5)

with S now denoting the action of the black hole. This is the
typical expression for the quantum break time, provided the
system is near an instability, where quantum break time
denotes the time scale for the breakdown of the classical
(mean-field) description. Hence, we will identify a quan-
tum break time scaling logarithmically with the number
of constituents as a necessary property of a system to
behave as a fast scrambler.

A. Logarithmic quantum break time

In the context of quantum chaos, it has long been known
that, under certain conditions, the classical description
breaks down much more quickly than the naively expected
polynomial quantum break time. Specifically, in the vicin-
ity of an instability for the classical description, i.e., pos-
itive local Lyapunov exponent λ, the quantum break time
usually goes as

tbreak ∼ λ−1 log
S
ℏ
: (6)

This exactly resembles the logarithmic scaling of the
scrambling time. In fact, the black hole scrambling time
coincides with the typical quantum break time if the micro-
scopic description of the black hole contains an instability
characterized by a Lyapunov exponent λ ∼ 1=R. The black
hole quantum portrait contains such an instability that
survives in the semiclassical limit (LP ¼ 0, N ¼ ∞, withffiffiffiffi
N

p
LP fixed) and is described by Eq. (2). The characteristic

time scale is given by R ¼ ffiffiffiffi
N

p
LP, which classically

becomes the black hole radius. Hence, we expect the
Lyapunov exponent to be set by 1=R. This is precisely
the way we will identify scrambling in the BE portrait
of black holes.
For the convenience of the interested reader, in the

Appendix we reproduce a general argument for logarithmic
quantum break time at an instability. In the next section, we
show specifically for Bose–Einstein condensate systems
that they exhibit quantum breaking in the scrambling time.

We will also comment on the instability there. In Sec. V, we
perform a numerical analysis that confirms this reasoning.

B. Chaos and thermalization

The relation between scrambling and quantum break
time is even stronger if the classical limit of the relevant
system not only contains a local instability but also exhibits
classical chaos. For such systems it has been claimed—and
checked to some extent—that the time scale of thermaliza-
tion is of the same order as tbreak [20]. By taking a pure
quantum state, it was shown that the time evolution not
only stretches and folds the quasiprobability distribution
but also smooths it out. Of course the quantum state stays
pure, but it is thermalized in the sense of being smeared out
over the accessible classical phase space volume. This
would presumably imply scrambling as defined above.
Although at this point we cannot prove that this is indeed
how scrambling actually takes place in the graviton con-
densates of the BH portrait, we do take it as further evi-
dence that the quantum break time is intimately related
with scrambling time.

III. QUANTUM BREAK TIME IN BE
CONDENSATES

A. Prototype models

It has been pointed out [1–3] that many of the seemingly
mysterious properties of black holes can be resolved when
considering them as Bose–Einstein condensates of long
wavelength gravitons that interact with a critical coupling
strength. Indeed, it has been realized that a vast amount of
those properties can already be explored in much simpler
systems. These systems share the crucial property that they
contain bifurcation or quantum critical points.
Within this work we will follow that route and further

explore models of attractive cold bosons both in one and
three spatial dimensions. We will show that they exhibit
a logarithmic quantum break time, again intimately related
to the existence of instabilities and quantum critical or
bifurcation points.
The explicit models under consideration in dþ 1 dimen-

sions are described by the Hamiltonian

H ¼
Z
V
ddx

�
ℏ2

2m
ð∇φ†Þð∇φÞ − g

2
ðφ†φÞ2

�
: (7)

Here, φ carries the dimension length−d=2, while the
coupling constant g carries dimension energy × lengthd.
The integral is taken over the volume of a d-dimensional
torus V.
Expanding φ into mean field and quantum fluctuations

φ ¼ φmf þ δφ and the subsequent minimization of the
energy functional leads, at zeroth order, to the GP equation
for stationary solutions:
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iℏ∂tφmf ¼
�
ℏ2

2m
Δþ gjφmf j2

�
φmf ¼ μφmf : (8)

The chemical potential μ appears as a Lagrange multiplier
that imposes a constraint on the particle number
N,

R
V d

dxφ†φ ¼ N.
An intuitive understanding of the physics of these

Bose–Einstein condensates may be gained by considering
the behavior of the energy when rescaling the characteristic
size of the condensate R,

E ∼
N
R2

− gN
N
Rd ; (9)

where the coefficients of both terms naturally depend on
the shape of the condensate. As illustrated in Fig. 1, the
behavior depends strongly on the dimension under consid-
eration. For d ¼ 1, the energy is always bounded from
below. The (stable) ground state solution is given by a
homogeneous condensate for gN < 1 and a localized sol-
iton for gN > 1. A quantum phase transition is observed
[21] at gN ¼ 1. On the other hand, for d ≥ 3, there is a
classically stable homogeneous solution for gN < 1, while
the condensate is unstable for gN > 1.

B. Quantum breaking in Bose condensates

We will now apply the notion of quantum breaking to a
Bose–Einstein condensate system of N identical particles.
In general, we want to study k-particle subsets (although k
particles do not form a proper subspace, this technicality
will not disturb us much) and use the conventional
k-particle subdensity matrices,

ρðkÞmn ¼ N tr

�
ρ

�Y
l

ða†l Þml

��Y
l

anll

��
; (10)

where m and n label k-particle states, al is the annihilation
operator for one boson in the l orbital, and nl is the

occupation number in state n of orbital l, which satisfiesP
nl ¼ k. The normalization N is chosen so that

tr ρð1Þ ¼ 1. We would identify a Bose gas as a fast scram-
bler, if its time evolution would create a large entropy in
each ρk for k ≪ N on a timescale that scales logarithmi-
cally with N.
More precisely, we do not expect generic atomic

Bose–Einstein condensates—as available in the labora-
tory—to be scramblers in the sense of the previous para-
graph. We do, however, identify the scrambling time
scale to be the relevant thermalization scale for the quantum
time evolution of the system in the following restricted way.
If we do not insist on the thermalization of all subdensity
matrices, but restrict our attention to ρð1Þ, then the time in
which a state with pure ρð1Þ develops a large von Neumann
entropy in ρð1Þ is exactly the quantum break time. This is
because a pure ρð1Þ represents a condensatelike state with
all bosons in one orbital. This state can be completely
described by a classical field representing the wave func-
tion of the relevant orbital. Therefore, as soon as ρð1Þ devel-
ops a large entropy, the gas can no longer be expected to
have a classical description.
The one-particle density matrix may be diagonalized,

ρð1Þ ¼
X
i

λijΦiihΦij; (11)

with eigenvectors jΦii, λi and eigenvalues ρð1ÞðΨÞ.
A true BE condensate state jΨBEi is characterized by

possessing one eigenvalue λmax ¼ Oð1Þ with the sum of
all other eigenvalues suppressed as 1=N. If a many-body
ground state is of this type, we will say that the system
is a BE condensate.
In the limit N → ∞, the corresponding reduced one-

particle density matrix ρð1Þ defines a pure state jΦGPi in
the one-particle Hilbert space, which is the eigenvector
corresponding to the unique maximal eigenvalue. The
BE many-body state corresponds to having all the N con-
stituents in the same state jΦGPi. The wave function
ΦGPðx; tÞ of this one-particle state is the Gross–
Pitaevskii wave function, and its evolution is described
by the Gross–Pitaevskii equation (8).
For finiteN and finite gN, the Gross–Pitaevskii equation is

never exact. In fact, any exact BE condensate state will, by
quantummechanical time evolution, deplete. This is reflected
by the fact that the other eigenvalues of ρð1Þ grow. Inwhat fol-
lows, we are interested in tracking precisely this growth for
some concrete initial conditions, as this allows us to quantify
how quickly the Gross–Pitaevskii description breaks down.
Under these conditions the quantum break time tb

appears as the time in which the difference between the
exact many-body evolution and the mean-field time evolu-
tion surpasses a threshold value. Note that the scaling of tb
with N is independent of the choice of threshold value,
therefore rendering it effectively arbitrary for our purposes.

L

E

FIG. 1 (color online). Energy as a function of the condensate
width for gN ≪ 1 (solid) and gN ≫ 1 (dashed) for a condensate
in one (black) and three (red) spatial dimensions.

DVALI et al. PHYSICAL REVIEW D 88, 124041 (2013)

124041-4



Before going into more concrete details, let us briefly
discuss the physical meaning of this time scale. Let us
denote by ρð1ÞðtÞ the exact many-body evolution of the

reduced density matrix, whereas by ρð1ÞGPðtÞ we label the
mean-field GP time evolution for the same initial condi-

tions at t ¼ 0. Since ρð1ÞGPðtÞ is a pure state, we can use
as a measure of the difference with respect to ρð1ÞðtÞ the
entanglement entropy Sðρð1ÞðtÞÞ. We will define tb as the
time needed to reach a certain threshold entropy. This time
will generically depend both on the initial condition as well
as on the number N of constituents.
The potential growth of the entanglement with time

means that the one-particle density matrix is losing quan-
tum coherence. On the other hand, and from the point of
view of the many-body wave function, this loss of quantum
coherence is reflected in the form of quantum depletion,
i.e., in the growth of the number of constituents that are
not in the condensate state. Note, that since at the time
tb the number of constituents away from the condensate
is significant, this time also sets the limit of applicability
of the Bogolyubov approximation.
For regular quantum systems, we can expect the time tb

to depend on N as some power [22]. However, as we will
show, some attractive BE condensates exhibit a quantum
breaking time scaling with N as tb ∼ log N, i.e., they gen-
erate entanglement in a time depending on the effective
Planck constant as logð1=ℏÞ.
In this sense BE condensates—under those conditions—

effectively behave as fast scramblers. Hence, our task will
be, on one side, to identify the above conditions and, on the
other side, to relate those fast scrambler BE condensates
with the sort of BE condensates we have put forward as
microscopic portraits of black holes.

IV. SCRAMBLING AND QUANTUMNESS
IN BE CONDENSATES

Anecessary condition for having a quantum break time tb
scaling like log N for some initial many-body stateΨ0 is the
exponential growth with time of small fluctuations δΨðtÞ
where Ψ ¼ Ψ0 þ δΨ. In linear approximation the equation
controlling δΨ is the Bogolyubov–De Gennes equation. As
discussed above, a significant departure from themean-field
approximation as well as generation of entanglement for the
reducedone-particle densitymatrix requires a growth in time
of the depleted, i.e., of the noncondensed, particles. Nicely
enough, the equations controlling the growth of depleted
particles are the same as the ones controlling the small fluc-
tuations of the Gross–Pitaevskii equation, and therefore we
can translate the problem of finding a time tb scaling like
log N into the simpler problem of the stability of the
Gross–Pitaevskii equation. For a detailed discussion and
the related technicalities, see Ref. [23].
We can understand the short break time more concretely

if we think about the difference between the exact evolution

and the mean-field evolution as the addition of a small
perturbation to the exact Hamiltonian. Since an unstable
system is exponentially sensitive to perturbations of
the Hamiltonian, then the time for the evolution of states
todiffer substantially isveryshort.The instability is controlled
by the Lyapunov exponent λ, while the preexponential factor
will dependon thesizeof theperturbation.Thequantumbreak
time is the time when this becomes important, so we can
naturally expect it to scale like tb ∼ λ−1 log N.

V. NUMERICAL ANALYSIS

A. Quantum break time of one-dimensional
condensates

In this section we will verify the logarithmic quantum
break time numerically for the ð1þ 1Þ-d Bose condensate.
The theory (7) in 1þ 1 dimensions undergoes a quantum

phase transition for gN ¼ 1. When surpassing the critical
coupling, the homogeneous state becomes dynamically
unstable.
As we expect the black hole to lie at such a point of

instability, due to its collapse going in hand with Hawking
evaporation, we will model the behavior of the black hole
by considering the homogeneous state past the point of
quantum phase transition.
We consider gN > 1 and prepare as the initial condition

a perfect condensate in the homogeneous one-particle
orbital. The linear stability analysis [simply expanding
the classical Hamiltonian (7) around the background] at
once indicates an instability: the energy of the first
Bogolyubov mode becomes imaginary; its magnitude cor-
responds to λ, the Lyapunov coefficient for the unstable
direction.
Note that this setup may be interpreted as preparing the

system in a supercooled phase or, as the result of a quench
across the phase transition, suddenly increasing the cou-
pling from gN ¼ 0 to gN > 1 [24]. The system finds itself
in a classically instable configuration, and quantum fluctu-
ations ensure that a rapid depletion of the condensate and
simultaneous entanglement generation take place.
Would we evolve the same initial state for gN < 1, very

little entanglement would be generated (because it overlaps
with very few energy eigenstates there), and the relevant
time scale of evolution would not scale logarithmically
in N (as can be checked by studying the spectrum).
Decomposition of φ in terms of annihilation and creation

operators,

φ̂ ¼ 1ffiffiffiffiffiffi
Lb

p
X∞
k¼−∞

âkeikx; (12)

leads to the more convenient form for Eq. (7)3:

3For improved readability, we have now set ℏ ¼ 2m ¼ V ¼ 1.
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Ĥ ¼
X∞
k¼−∞

k2â†kâk − g
4

X∞
k;l;m¼−∞

â†kâ
†
l âmþkâl−m: (13)

Bogolyubov diagonalization around the homogeneous
background φhom ¼ ffiffiffiffi

N
p

yields for the energy of the first
Bogolyubov mode [3,5,21]

ϵ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gN

p
: (14)

Parametrizing the effective coupling as gN ¼ 1þ δ, we
obtain ϵ1 ¼ i

ffiffiffi
δ

p
. Applying the above argument, we there-

fore expect the system to break from themean field on a time
scale tbreak ∼ ℑðϵ1Þ−1 log N ∼

ffiffiffi
δ

p −1 log N. The argument
of the logarithm is proportional to N because the action of
the mean field solution scales as S ∼ N for fixed gN.
Within this setup, the departure from classical evolution

is expected to go in hand with the generation of large entan-
glement. This allows us to identify the quantum break time
directly with the scrambling time.
Since we are interested in finite N effects in a regime

where we expect semiclassical methods to fail, we will
use a method not relying on any kind of perturbation theory.
Wewill diagonalize theHamiltonian (13) explicitly. Then, in
order to time evolve the homogeneous Hartree state

jφhomi ¼ ðâ†0ÞN j0i; (15)

wewill project jφhomi onto energy eigenstates and apply the
time evolution operator UðtÞ ¼ expðiHtÞ on the state.
Finally, we project the time evolved state onto a k-particle
subspace and compute the von Neumann entropy

S1 ¼ −tr ρ1 log ρ1

ðρ1Þij ¼ hφhomjâ†i âjjφhomi (16)

as a function of time.
To make this task computationally feasible, wewill make

use of several properties of the system [21]. Since the
Hamiltonian is translationally invariant and number con-
serving, we can restrict ourselves to fixed total momentum
and fixed total particle number. In our case, only the total
momentum zero sector is relevant, since this contains the
homogeneous state. Furthermore, from the Bogolyubov
analysis, we see that the modes with k > 2 have a fairly
large gap for gN not much bigger than 1. Therefore, we
can truncate the momentum modes l we take into account
to l ¼ −1, 0, 1.
In Fig. 2 we plot S1 as functions of time for different

values of N. To see the break time, we evaluate the time
when S1 is higher than some threshold value Sth. We plot
this time as a function of particle numberN in Fig. 3, where
the solid line is the result of fitting a logarithm to the data
points. This clearly shows a logarithmic break time.
A clearer understanding for the observed behavior

emerges if we look at the density of states. In Fig. 4 we

1 2 3 4
t

0.2

0.4

0.6

0.8

1.0

S1

FIG. 2 (color online). One-particle entanglement entropy as a
function of time for N ¼ 16, 32, 64, 128, and 256.

50 100 150 200 250
N

2.5

3.0

3.5

4.0
tscr

FIG. 3 (color online). Quantum break time as a function of N.

FIG. 4 (color online). Density of states as a function of gN and
E=N for N ¼ 1500.
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show a plot of the density of states in the zero-momentum
sector for given energy and coupling. It can be clearly
observed that there is a large density of states for low ener-
gies near the phase transition, which is due to the light
Bogolyubov mode appearing at the quantum critical point.
Furthermore, we clearly see a band of a high density of
states for large couplings. The state we time evolve in
the numerics overlaps only with the modes in this band.
We have checked that the density of states in this band
varies logarithmically withN; i.e., the gapΔ between states
in this band will typically go as

Δ ∼ 1=ðλ log NÞ: (17)

Given that the time scale for the time evolution will be set
by this gap, we naturally see the logarithmic break time
emerging.

B. Three-dimensional condensates
and connection with black hole

In the previous section, we have studied a Bose conden-
sate in one spatial dimension as a prototype model. In that
case it was viable to perform numerical simulations of the
quantum time evolution. For an attractive Bose condensate,
one dimension is special, however, insofar as the classical
GP system has a well-defined lowest energy configuration
after the phase transition—the bright soliton. In higher
dimensions, however, there is no classical solution in the
would-be solitonic phase. Instead, when increasing the
effective coupling gN past 1, the stable lowest energy
solution of the Gross–Pitaevskii equation and another
(unstable) solution disappear together in a saddle node bifur-
cation [25] (see a sketch of the phase diagram in Fig. 54).
Thus, while wewillfully prepared an unstable initial state for
the ð1þ 1Þ-d bosons, when a perfectly stable ground state
was available, in (3þ 1) dimensions it is inevitable to enter
the instability when going past the bifurcation point.
It is precisely this instability that we believe to be respon-

sible for the fast scrambling of information in black holes.
There, the relevant coupling controlling the mean-field

approximation is gN with g ¼ L2
P
l2 for l the wavelength of

the constituent gravitons. In the weak coupling regime
gN < 1, the condensate cannot be self-sustained, and we
should therefore imagine some external trapping potential
that sets the wavelength of the constituent gravitons. The
many-body wave function is a stretched condensate in
the corresponding trap. At the critical point gN ¼ 1, the
system of gravitons becomes self-sustained in the sense that
the quantum pressure compensates the gravitational

attraction. However, although at this point we can satisfy
the virial condition of self-sustainability, the system is
not stable in the mean-field approximation and will tend
to collapse—reducing its size and consequently decreasing
the typical wavelength of the constituent gravitons. As we
have elaborated, this mean field picture dramatically
changes once we take appropriately into account 1=N
quantum effects. Based on our prototypes, we expect the
quantum evolution to break from mean field in a time
OðR log NÞ. This is reflected in the generation of large
entanglement entropy for the corresponding one-particle
density matrix as a function of gN.
The evolution of black holes is different from that of lab-

oratory condensates because of Hawking evaporation.
While collapse usually puts a condensate off the critical
point, this is prevented by the decrease of the number of
gravitons N. As the condition of instability persists along
the collapse, we also expect larger-k-density matrices to be
efficiently scrambled.

VI. SUMMARY AND OUTLOOK

The purpose of this paper is to stress that the properties
of unstable Bose–Einstein condensates are crucial in under-
standing the efficient generation of quantum entanglement
and scrambling.
The idea of black holes as maximal scramblers is a very

interesting hypothesis. Its verification requires a micro-
scopic quantum theory, and the goal of this paper is to
set some ideas in this direction.
The very conservative assumption of our work lies in

modeling black holes as many-body quantum systems
governed by weakly coupled IR gravity. The semiclassical

gN

FIG. 5. Phase diagram for the three-dimensional condensate.
For small gN, two solutions exist; one is stable, while the other
one is unstable. At the critical point, both solutions disappear.

4This can also be understood intuitively from Fig. 1 and
Eq. (9). The two solutions for small gN correspond to the maxi-
mum of the energy functional and the infinitely stretched conden-
sate. For large gN, no stable points exist. This analysis assumes
the presence of a trapping potential. As we will argue below, this
is in close analogy to the black hole.
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one-particle collective behavior appears as a consequence
of the many-body system being in a BE condensate state.
Quantum fluctuations relative to this state are measured by
1=N with N being the number of graviton constituents (and,
equivalently, the BH action in Planck units). Some special
features of BHs, as, for instance, fast scrambling, are
understood in this frame as the reflection of a logarithmic
quantum break time.
These observations provide the clue for solving some

recalcitrant BH paradoxes. In particular, the assumption
of purity of the final evaporation state seems to lead to
strong departures from semiclassicality at least in Page’s
time [26], meaning that a breakdown of semiclassicality
takes place after this time irrespective of the size of the
black hole. This is very puzzling, since naively one expects
the semiclassical approximation to be valid for large macro-
scopic black holes. The approach to these sorts of puzzles
that we can extract from the present work lies in identifying
the root of this breakdown of semiclassicality in the exist-
ence of a logarithmic quantum break time. Because BHs are
unstable BE condensates, the quantum evolution takes over
much sooner than what would be naively expected.
Furthermore, we consider the properties of quantum

criticality and quantum instability as crucial for fast scram-
bling. We take the ensuing logarithmic quantum break time
as a very encouraging sign. However, we would refrain
from making strong statements about implications of addi-
tional black hole properties, such as, for example, their age
or the embedding spacetime. To address such questions, the
prototype model must be refined, which is the subject of
future work.
As a marginal comment, let us just note that the quantum

time coordinate λt, with λ the Lyapunov exponent, is the
natural candidate for the Rindler time. This leads to a
potential connection between the physics of the time coor-
dinate inside the black hole and the entanglement flow for
the reduced density matrix.
Finally, it would be very interesting to study some of the

phenomena discussed in this work, in particular the appear-
ance of logarithmic quantum break time, for realistic Bose–
Einstein condensates in the laboratory. This would give an
exciting prospect of simulating some aspects of quantum
black hole physics in the labs.
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APPENDIX: INSTABILITY AND
QUANTUM BREAK TIME

The question of how long a mean-field (i.e., classical)
trajectory faithfully reproduces the quantum evolution of
a dynamical system was studied a very long time ago
[22]. Only much later, however, was it noticed that, under
certain circumstances, the quantum evolution can deviate
from mean field in subpolynomial time. Good arguments
have been given [28] that where the classical phase space
of a system exhibits a dynamical instability, i.e., a
Lyapunov exponent λ > 1, the quantum dynamics will
deviate from mean field after a time that goes like

FIG. 6. Phase space (x, p) evolution of the quantum mechanical
Husimi function starting from an instability (top row). Classical
Liouville evolution of the same initial function (bottom row).
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tbreak ¼ λ−1 logðS=ℏÞ; (A1)

where S is the typical action.

1. Local instability argument

The general argument (following Ref. [28]) that leads to
the logarithmic break time can be summarized as follows:
Assume that the classical phase space of the system contains
a region with a local Lyapunov exponent λ > 0. For the sake
of the argument, let us represent every pure quantum state
jψi as a Glauber Q or Husimi quasiprobability distribution5

on phase space

Qψ ðαÞ ¼
1

π
jhαjψij2; (A2)

where the jαi form an overcomplete basis of coherent
states. As one would expect for a real probability distribu-
tion, the Q distribution moves along with the classical tra-
jectories. There are, however, intrinsically quantum terms
that contain additional derivatives and act diffusively on
phase space.
Imagine that we initially prepare a close analog to

classical state—a coherent state—and localize it in the
unstable region of phase space. TheQ distribution, initially
well localized, will be stretched in the unstable direction.
However, because Hamiltonian flows are volume preserv-
ing, there must also be a “stable” direction with a local
Lyapunov exponent−λ. TheQ distribution is exponentially
compressed in the stable direction. When its width gets
smaller than a given phase space distance (that involves

ℏ), the diffusive quantum terms become important. From
that point on, the quantum time evolution departs even from
the physics of a classical phase space ensemble. The time
scale for the departure naturally goes like

tbreak ¼ λ−1 logð1=ℏÞ: (A3)

It can be argued that the dimensionless ratio in the exponent
should be S=ℏ with S being the typical action [22]. The
quantum break time tbreak is also referred to as Ehrenfest
time in the literature on quantum chaos.
The quick break time has been explicitly verified

numerically, e.g., in tractable two level systems that are
well motivated experimentally [29].

2. Quantum break time for a wave packet

To illustrate the arguments of the previous section, we
show the phase space evolution of the simplest possible
system with an instability, a nonrelativistic particle of mass
m in the potential

VðxÞ ¼ −αx2 þ βx4: (A4)

Around x ¼ 0, there is an instability in phase space with
positive local Lyapunov exponent λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2α=m
p

. We evolve
a minimum uncertainty wave packet centered around
x ¼ 0, p ¼ 0. Three snapshots of the Husimi function at
different instances of time are shown in Fig. 6, top row.
The bottom row shows the classical Liouville time evolu-
tion of the same initial functional shape. Evidently, the con-
traction of the Husimi function in the stable direction is
limited compared to the classical evolution. As explained
above, this is due to quantum diffusive terms and generi-
cally limits the applicability of the classical approximation
to the quantum break time.
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