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It can be easily shown that bound orbits around a static source can only exist in four dimensions for any

force driven by the Laplace equation. This is true not only for Maxwell’s electromagnetism and Newton’s

gravity, but for Einstein’s theory of gravitation as well. In contrast to Maxwell’s electrodynamics and

Newton’s gravity, general relativity has a natural and remarkable generalization in higher dimensions in

Lovelock gravity. However, it is not Laplace driven and hence admits bound orbits around a static black

hole in all even D ¼ 2N þ 2 dimensions, where N is the degree of the Lovelock polynomial action. This

is as general a result as Bertrand’s theorem of classical mechanics, in which the existence of closed orbits

uniquely singles out the inverse square law for a long-range central force.
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The existence of bound orbits requires a repulsive cen-
trifugal force that is able to counterbalance the attractive
central force at two radii—giving rise to turning points
of the orbit—whatever the source may be (electricity or
gravity). This means that the effective potential—which is
the sum of the repulsive and attractive parts—should have a
minimum. It also indicates the existence of a stable circular
orbit; that is, the existence of bound orbits is equivalent to
the existence of a stable circular orbit. We know that the
centrifugal potential always goes as 1=r2, while the attrac-
tive force obeying Gauss’s law of flux conservation (or
equivalently the Laplace equation) goes as 1=rnþ1, where
n ¼ d� 2 with d the dimension of space. It then readily
follows that the condition for a minimum of the effective
potential is n < 2. Bound orbits could thus occur only in
three space dimensions. This is true for any long-range
Laplace-driven force, including both the electric and gravi-
tational forces. In spatial dimensions >3, no bound orbits
can occur, implying the total absence of structures, such as
atoms and planetary systems. This means that there would
be no life as well. Is this why the Universewe live in is four-
dimensional? [1]

The conditions for a minimum of the effective potential
VðrÞ are V 0ðrÞ ¼ 0, V 00ðrÞ> 0, where a prime denotes a
derivative with respect to r. For a central attractive force,
the effective potential is given by

V ¼ �M

rn
þ l2

r2
: (1)

It would be at a minimum whenever

nð2� nÞ> 0; (2)

which clearly demands n ¼ d� 2< 2, that is, the spatial
dimension cannot be anything other than three. This would
be true for any force that obeys Gauss’s law or the Laplace
equation. Thus bound orbits can only exist in three-
dimensional space.
Unlike Maxwell’s electrodynamics, Newtonian gravity

has a relativistic generalization in Einstein’s general rela-
tivity (GR). It turns out that the question of the existence of
bound orbits does not depend on whether Newtonian or
Einstein gravity is used, i.e., no bound orbits exist in GR
for any spacetime dimension D> 4. This is because the
potential of a static source in Einstein’s theory is also
Laplace driven.
For Einstein’s theory, we write the effective potential as

V2 ¼ fðrÞ
�
l2

r2
þ 1

�
(3)

for a radially symmetric static metric,

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�2

D�2; (4)

where d�2
D�2 is the metric on a (D� 2)-sphere, given by

ðd�D�2Þ2 ¼ d�21 þ sin 2ð�1Þd�22 þ sin 2ð�1Þsin 2ð�2Þd�23
þ _cþ

�YD�2

j¼1

sin 2ð�jÞd�2D�1

�
: (5)

This form of the metric is dictated by the requirement that a
radially falling photon experiences no acceleration—the
velocity of light remains constant in vacuum [2]. Now the
conditions for a minimum of the effective potential give

l2

r2
¼ rf0

2f� rf0
(6)

and
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rff00 � 2rf02 þ 3ff0 > 0: (7)

For a D-dimensional solution of the Einstein vacuum
equation describing static black hole, Rab ¼ 0 [3], we have

fðrÞ ¼ 1�M=rn; (8)

where n ¼ D� 3 so that the potential satisfies the Laplace
equation. Then we have

l2

r2
¼ nM

2rn � ðnþ 2ÞM ; (9)

which gives the existence threshold for a circular orbit,

rex > rph ¼
�
nþ 2

2
M

�
1=n

; (10)

where rph is the radius of the photon’s circular orbit. This

marks the existence threshold as no circular orbit can exist
inside the photon’s circular orbit. The stability threshold is
given by

rst ¼
�
nþ 2

2� n
M

�
1=n

: (11)

Clearly, n ¼ D� 3< 2, that is, the spacetime dimen-
sion can only be four. Thus for GR as well bound orbits can
only exist in four dimensions. So far as the existence of
bound orbits is concerned both Newtonian gravity and GR
are on the same footing because they are both Laplace
driven. However, in the latter orbits have a minimum radius
for an inner turning point, which is defined by the radius of
the photon’s circular orbit.

Further, GR has a natural generalization in higher
dimensions known as Lovelock gravity (introduced by
David Lovelock [4]), which includes GR in the linear
order. The Lovelock action in Dð� 4Þ-dimensional space-
time is given by

I ¼ 1

2�2
D

Z
dDx

ffiffiffiffiffiffiffi�g
p X½D=2�

p¼0

�ðpÞLðpÞ;

LðpÞ :¼ 1

2p
�
�1����p�1����p
�1����p�1����p

R�1�1

�1�1 � � �R�p�p

�p�p ;

(12)

where N ¼ ½ðD� 1Þ=2� and �D :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
8	GD

p
. We assume

�2
D > 0 without any loss of generality, �ðpÞ is an arbitrary

constant with dimension ðlengthÞ2ðp�1Þ, and LðpÞ is the

Euler density of a 2p-dimensional manifold. The � symbol
denotes a totally antisymmetric product of Kronecker del-
tas, normalized to take the values 0 and�1 [4], defined by

�
�1����p
�1����p

:¼ p!�
�1

½�1
� � ���p

�p�: (13)

�ð0Þ is related to the cosmological constant � by �ð0Þ ¼
�2�. Lovelock theories are distinct among the larger class
of general higher-curvature theories, as their action is a
homogeneous polynomial in the Riemann curvature, yet
they have the remarkable unique property that the equation
of motion for the field remains second order. If the poly-
nomial degree is N, N ¼ 1 corresponds to GR, N ¼ 2 to

Gauss-Bonnet, and so on. This means that Lovelock grav-
ity is a general class that includes GR in the first order. For
a given N, D � 2N þ 1, and hence it is truly a higher-
dimensional generalization. In GR, gravity is kinematic in
three dimensions and it becomes dynamic in four dimen-
sions. Could this be a general gravitational property in
higher dimensions, i.e., kinematic in odd and dynamic in
even dimensions? This is precisely what has recently been
established for pure Lovelock gravity [5]. By pure we
mean that the action contains only one Nth-order polyno-
mial in the action (12), i.e., there is no summation over p as
in case of Einstein-Lovelock gravity. Therefore, it is free of
all terms p < N, including the Einstein-Hilbert linear term
R. Further, it is possible to define an Nth-order analogue of
the Riemann curvature with the property that the trace of its
Bianchi derivative vanishes identically and that it yields a
second-rank symmetric divergence-free tensor that is the
same as the one that comes from the variation of the
corresponding Nth-order Lovelock action [6]. Now gravity
is kinematic in all odd (D ¼ 2N þ 1) dimensions because

RðNÞ
ab ¼ 0 implies RðNÞ

abcd ¼ 0. That is, the Lovelock vacuum
is Lovelock flat in 2N þ 1 dimensions; however, it will not
be Riemann flat [5]. Thus pure Lovelock gravity is always
kinematic in odd (D ¼ 2N þ 1) dimensions and becomes
dynamic in even (D ¼ 2N þ 2) dimensions. This is a
universal gravitational feature which was established for
the first time in Ref. [5].
It has been proposed and strongly articulated [7] that the

proper gravitational equation in higher dimensions is the
pure Lovelock equation,

GðNÞ
ab ¼ ��gab þ �NTab; (14)

where GðNÞ
ab is defined as [6]

GðNÞ
ab ¼ NðRðNÞ

ab � 1=2RðNÞgabÞ: (15)

Here RðNÞ
ab and RðNÞ are defined through the Lovelock

curvature polynomial RðNÞ
abcd as

RðNÞ
abcd¼FðNÞ

abcd�
N�1

NðD�1ÞðD�2ÞF
ðNÞðgacgbd�gadgbcÞ;

FðNÞ
abcd¼Qab

mnRcdmn; (16)

where

Qab
cd ¼ �aba1b1...aNbN

cdc1d1...cNdN
Ra1b1

c1d1 . . .RaN�1bN�1

cN�1dN�1 ;

Qabcd
;d ¼ 0; (17)

and

RðNÞ ¼ D� 2N

NðD� 2ÞF
ðNÞ: (18)

Note that RðNÞ ¼ RðNÞ
ab g

ab ¼ 0 in 2N dimensions for an

arbitrary metric gab.
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Note that the Einstein-Lovelock vacuum equation
would be X

N

�NG
ðNÞ
ab ¼ ��gab; (19)

which was solved forN ¼ 2, describing an Einstein-Gauss-
Bonnet static black hole [8]. This was followed by a general
Einstein-Lovelock solution for any N [9]. The ultimate
equation to be solved is an algebraicNth-degree polynomial,
which cannot in general be solved for N > 4. However, for
pure Lovelock gravity there is no such difficulty [10] andwe
have the general solution for D ¼ 2N þ 2 given by

fðrÞ ¼ 1�
�
M

r

�
1=N

: (20)

Here n ¼ 1=N, which would always satisfy the required
condition n < 2 for the existence of bound orbits. Note
that here the governing equation for the potential is not the
Laplace equation. Thus bound orbits would always exist (as
shown in Fig. 1) for all even 2N þ 2 dimensions in pure
Lovelock gravity. This question is however not pertinent for
odd 2N þ 1 dimensions, as gravity is kinematic there. We
have set � ¼ 0 as it has no relevance in the region where
bound orbits are being sought. This is indeed a very signifi-
cant distinguishing feature of pure Lovelock gravity that is
shared by neither Einstein and evenEinstein-Lovelock grav-
ity, nor by any other known modifications of GR.

For the pure Lovelock case, let us for transparency and
clarity give the relevant expressions explicitly: they read

V2 ¼
�
1�

�
M

r

�
1=N

��
l2

r2
þ 1

�
; (21)

and

l2

r2
¼ M1=N

ð2Nr1=N � ð2N þ 1ÞM1=NÞ ; (22)

which gives the existence threshold

rex > rph ¼
�
2N þ 1

2N

�
N
M: (23)

For the stability threshold we have

ðV2Þ00 ¼ 2M1=Nðð2N � 1Þr1=N � ð2N þ 1ÞM1=NÞ
Nrð2Nþ1Þ=Nð2Nr1=N � ð2N þ 1ÞM1=NÞ ; (24)

and it is given by

rst ¼
�
2N þ 1

2N � 1

�
N
M: (25)

For N ¼ 1 we have the familiar limits rph ¼ 3=2M and

rst ¼ 3M.
Let us first note that Lovelock gravity is a purely higher-

dimensional generalization of GR as it necessarily requires
D � 2N þ 1, while all other modifications generally refer
to four dimensions. If we consider flux conservation as an
abiding physical principle for any classical theory, Gauss’s
law or the Laplace equation are natural consequences.
Since pure Lovelock gravity is not Laplace driven, it
cannot obey the conventional Gauss’s law. Gauss’s law is
taken over to GR through the Komar integral, which de-
fines the mass of a static black hole. Then the pertinent
question that arises is, could we define the Komar integral
with appropriate modifications for a pure Lovelock black
hole? It turns out that it is possible to naturally extend the
Komar integral to pure Lovelock gravity [11]. It could also
be defined for an Einstein-Lovelock system, but this re-
quires the addition of appropriate boundary terms, while
for pure Lovelock gravity no such additional terms are
required. This is yet another distinguishing feature of
pure Lovelock gravity.
Finally, we have shown in all generality that so long as a

force is Laplace driven, bound orbits can only exist only in
four dimensions. However, they do always exist for pure
Lovelock gravity in all even (D ¼ 2N þ 2) dimensions, as
the force in this case not Laplace driven. This is an inter-
esting distinction between Einstein gravity (with all its
known generalizations) and pure Lovelock gravity.
Lovelock gravity stands out from all other GR general-
izations because it has the remarkable unique feature that it
preserves the second-order character of the equation of
motion. It is therefore not an effective generalization like
other higher-derivative theories. It is a valid and true
fundamental higher-dimensional theory. Also, pure
Lovelock gravity provides another universal gravitational
property: it dynamically distinguishes odd and even di-
mensions. It is therefore clear that so long as the equation
of motion retains its second-order character, the require-
ment of the existence of bound orbits uniquely singles out
pure Lovelock gravity, which however includes Einstein
gravity for N ¼ 1. This is in fact as general a result as
Bertrand’s theorem of classical mechanics, which by de-
manding the existence of closed orbits uniquely singles out
the inverse square law for a long-range central force. We
could thus say the following.

FIG. 1 (color online). Shape of the potential in Einstein and
Gauss-Bonnet theories.
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Unlike many other gravitational theories, pure
Lovelock gravity has a second-order equation of
motion and admits bound orbits in all even (D¼2Nþ2)
dimensions. Since pure Lovelock gravity is dynamic only
in even dimensions, bound orbits only exist in even
dimensions.
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