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Doubly special relativity provides an intriguing scenario for studying possible modifications of special
relativity. To the leading order of quantum corrections, the scenario is characterized simply by several free
parameters in boost generators, dispersion relation and momentum addition law. In this scenario, we work
out finite-boost transformations in 3þ 1 dimensions. Constraints on parameters are obtained from com-
patibility analysis, in agreement with other studies. Combining two successive noncollinear boosts, we also
obtain the Wigner rotation angle in this scenario. Our analysis is restricted mainly to the case of the com-
mutative addition law.
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I. INTRODUCTION

Einstein’s special relativity (SR) is a cornerstone of
modern physics. Embedded in one of its basic principles,
it has a single fundamental constant, i.e., an observer-
independent velocity scale c (the speed of light). By
introducing another fundamental constant, Lp, Amelino-
Camelia explored a natural extension of SR one decade
ago [1], now widely known as doubly special relativity
(DSR). The constant Lp is an observer-independent length
scale, which may be regarded as the Planck length
Lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
, where ℏ is the Planck constant, and G

is the gravitational constant.
Although it is difficult to establish the full Lp depend-

ence of DSR hitherto, one can still parameterize DSR
explicitly to the first order of Lp. This involves five
model-dependent parameters in the generators of boost
transformation, two parameters in the dispersion relation,
and five in the addition law of energy-momentum. Such
a reduced DSR scenario is sensible, because higher-order
corrections are suppressed at sub-Planckian energies. As a
concrete playground for studying possible modifications of
SR, subcases of this scenario have been extensively studied
in the literature [2,3], especially in 1þ 1 dimensions [4–6].
However, its 3þ 1 dimensional version has been relatively
less explored until recently [7,8].
In this paper, we take a closer look at DSR in 3þ 1 dimen-

sions, focusing on transformations of energy and momen-
tum under finite boosts. This is done with the exponential
parameterization of boost, ofwhich the ideawill be recapped
in Sec. II for Einstein’s SR. Prepared with the deformed
Poincaré algebra in Sec. III A, we derive in Sec. III B the
transformation rule of energy and momentum between iner-
tial reference frames. This result is cross-checked with a

related method in Sec. III C and extended to a boost along
any direction in Sec. III D. Using the obtained transforma-
tion rule, in Sec. IV, we prove that 12 parameters in the
reduced DSR scenario are not independent: they are subject
to nine constraints if the dispersion relation and the momen-
tum addition law are observer-independent. The same con-
straints were previously found by Refs. [7,8] using different
methods. In Sec. V, our result is applied to the Wigner rota-
tion with two successive boosts in different directions. To
our knowledge, this is the first time the Wigner rotation
has been studied in DSR. We finally make some comments
in Sec. VI. In Appendix A, we present the lengthy expres-
sion for energy and momentum after two perpendicular
boosts. In Appendix B, the deformed Poincaré algebra is
rewritten in terms of redefined energy-momentum variables.
Then, in Appendix C, we relate our investigation to the
κ-Poincaré algebra at the linear order of (the inverse of)
the deformed parameter.
In Ref. [9], requiring the classical additivity of energy, it

was elucidated that there are two types of DSR deforma-
tions: classical Poincaré algebra in nonlinear disguise
(which has a commutative composition law of energy-
momentum) and the κ-Poincaré algebra (with a noncommu-
tative composition law). The present paper focuses on the
former case. In particular, we assume that in the two-body
system each particle’s energy-momentum transforms inde-
pendently under a finite boost.
Words for strong readers: To make the paper self-

contained and clear in notation, we will present some trivial
details in Sec. II. Section IV is simply a complementary
analysis compared with results obtained by other authors.
Strong readers are strongly recommended to skip them and
go directly to Secs. III and V, which are the main parts of
this paper and contain our new results.
Throughout this paper, we will work in the natural units

ℏ ¼ c ¼ 1 for simplicity. In the discussion of DSR, all
equalities should be understood to hold at OðLpÞ, while
OðL2

pÞ and higher-order terms are neglected.
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II. FINITE BOOSTS IN EINSTEIN’S
SPECIAL RELATIVITY

To set up the convention of notations and to illustrate our
method, in this section, we will briefly review how to per-
form a finite-boost transformation in SR.
Recall that in SR, the generators of rotations Ri and

boosts Bi can be put in differential forms,

Ri ¼ −iX
j;k

ϵijkpj
∂

∂pk
; (1)

Bi ¼ ipi
∂
∂Eþ iE

∂
∂pi

; (2)

where the indices i, j, k stand for the spatial directions x,
y, z. As is well known, energy E and momentum pi are
generators of translations. Together with Ri and Bi, they
form the Poincaré algebra, from which we will use the
following commutators:

½Bi; E� ¼ ipi; ½Bi; pj� ¼ iEδij: (3)

Now consider two inertial reference frames, j0i and
jξxi, associated with two different observers. They are
related by a finite boost along the x direction with
rapidity ξx:

jξxi ¼ eiξxBx j0i: (4)

Suppose a particle has energy Eð0Þ and momentum p⃗ð0Þ
in the reference frame j0i. In frame jξxi, the particle’s
energy and momentum become EðξxÞ and p⃗ðξxÞ, respec-
tively. For brevity, we denote p⃗ ¼ ðpx; py; pzÞ and
p⃗2 ¼ p2

x þ p2
y þ p2

z . From relation (4) and

EðξxÞjξxi ¼ eiξxBxEð0Þj0i;
p⃗ðξxÞjξxi ¼ eiξxBx p⃗ð0Þj0i; (5)

it is straightforward to demonstrate

EðξxÞ ¼ eiξxBxEð0Þe−iξxBx

¼ Eð0Þ þ iξx½Bx; Eð0Þ� þ
1

2!
ðiξxÞ2½Bx; ½Bx; Eð0Þ��

þ 1

3!
ðiξxÞ3½Bx; ½Bx; ½Bx; Eð0Þ��� þ � � �

¼
�
1 − 1

2!
ðiξxÞ2 þ

1

4!
ðiξxÞ4 þ � � �

�
Eð0Þ

þ
�
iξx − 1

3!
ðiξxÞ3 þ � � �

�
ipxð0Þ

¼ Eð0Þ coshðξxÞ − pxð0Þ sinhðξxÞ; (6)

pxðξxÞ ¼ eiξxBxpxð0Þe−iξxBx

¼ pxð0Þ þ iξx½Bx;pxð0Þ� þ
1

2!
ðiξxÞ2½Bx; ½Bx;pxð0Þ��

þ 1

3!
ðiξxÞ3½Bx; ½Bx; ½Bx;pxð0Þ��� þ � � �

¼
�
1− 1

2!
ðiξxÞ2 þ

1

4!
ðiξxÞ4 þ � � �

�
pxð0Þ

þ
�
iξx − 1

3!
ðiξxÞ3 þ � � �

�
iEð0Þ

¼ pxð0Þ coshðξxÞ−Eð0Þ sinhðξxÞ: (7)

In the above, we have utilized

½Bx; E� ¼ ipx;

½Bx; ½Bx; E�� ¼ −E;
½Bx; ½Bx; ½Bx; E��� ¼ −ipx;

½Bx; ½Bx; ½Bx; ½Bx; E���� ¼ E; (8)

½Bx; px� ¼ iE;

½Bx; ½Bx; px�� ¼ −px;

½Bx; ½Bx; ½Bx; px��� ¼ −iE;
½Bx; ½Bx; ½Bx; ½Bx; px���� ¼ px; (9)

which come from the commutators in Eq. (3). Likewise,
it is easy to check ½Bx; py� ¼ 0, ½Bx; pz� ¼ 0, and
consequently

pyðξxÞ ¼ pyð0Þ; pzðξxÞ ¼ pzð0Þ: (10)

Hence, we get the transformation rule of energy and
momentum under a finite boost.
One can plug these expressions into the dispersion rela-

tion to show

E2ðξxÞ − p⃗2ðξxÞ ¼ E2ð0Þ − p⃗2ð0Þ ¼ m2: (11)

This confirms that the dispersion relation is indeed observer
independent.

III. FINITE BOOSTS IN DOUBLY
SPECIAL RELATIVITY

A. Deformed Poincaré algebra

In DSR, the rotational invariance is commonly assumed
to be intact, with its generator taking the conventional form
in Eq. (1). To the leading order of Lp, the generator of boost
is deformed as [7,8]
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Bi ¼ iðpi þ λ1LpEpiÞ
∂
∂Eþ iðEþ λ2LpE2 þ λ3Lpp⃗2Þ ∂

∂pi

þ iλ4Lppi

X
j

pj
∂
∂pj

þ iλ5LpE
X
j;k

ϵijkpj
∂

∂pk
: (12)

Here the deformation terms are fixed by dimensional analy-
sis, but the dimensionless parameters λ1, λ2, λ3, λ4, λ5 are
left unspecified.
In accordance with Eqs. (1) and (12), the Poincaré

algebra is deformed by OðLpÞ terms. This is apparent in
commutators involving Bi:

½Bi; E� ¼ iðpi þ λ1LpEpiÞ;
½Bi; pj� ¼ iδijðEþ λ2LpE2 þ λ3Lpp⃗2Þ þ iλ4Lppipj

− iλ5LpE
X
k

ϵijkpk; (13)

½Bi; Bj� ¼ −i½1þ ðλ1 þ 2λ2 þ 2λ3 − λ4ÞLpE�
X
k

ϵijkRk

− 2iλ5LpE
X
k

ϵijkBk;

½Ri; Bj� ¼ i
X
k

ϵijkBk − iλ5LpE
X
k

ϵijkRk: (14)

Other commutators do not contain Bi, and thus remain the
same as in SR:

½Ri; E� ¼ 0; ½Ri; pj� ¼ i
X
k

ϵijkpk;

½Ri; Rj� ¼ i
X
k

ϵijkRk:
(15)

The above commutators are calculated by brute force. They
will be utilized in the present and later sections.

B. Boost transformation

A key point in Sec. II is parameterizing the finite boost
exponentially; see Eq. (4), for instance. The exponential
parameterization is well established and widely accepted
in SR, since the Poincaré algebra is Lie algebra. As will
be clear in the next subsection, the exponential parameter-
ization method is also valid for DSR. Following the
method, we are able to obtain expressions of energy
EðξxÞ and momentum p⃗ðξxÞ in DSR as below.
Consider again a boost in the x direction. Then, accord-

ing to Eq. (13), we find, to OðLpÞ,

½Bx;E�¼ ipxþ iλ1LpEpx;

½Bx; ½Bx;E��¼−E−ðλ1þλ2ÞLpE2−λ3Lpp⃗2

−ðλ1þλ4ÞLpp2
x;

½Bx; ½Bx; ½Bx;E���¼−½Bx;E�
−2ið2λ1þλ2þλ3þλ4ÞLpEpx;

½Bx; ½Bx; ½Bx; ½Bx;E����¼−½Bx; ½Bx;E��
þ2ð2λ1þλ2þλ3þλ4ÞLp½E2þp2

x�;
(16)

½Bx;px�¼ iEþ iλ2LpE2þ iλ3Lpp⃗2

þ iλ4Lpp2
x;

½Bx; ½Bx;px��¼−px−ðλ1þ2λ2þ2λ3þ2λ4Þ
×LpEpx;

½Bx; ½Bx; ½Bx;px���¼−½Bx;px�− iðλ1þ2λ2þ2λ3þ2λ4Þ
×Lp½E2þp2

x�;
½Bx; ½Bx; ½Bx; ½Bx;px����¼pxþ5ðλ1þ2λ2þ2λ3þ2λ4Þ

×LpEpx: (17)

Unlike in Sec. II, here the results are not periodic. So we
should make an effort to work out general terms for the two
sequences of commutators. Fortunately, for longer commu-
tators, we are able to demonstrate generally

½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4nþ1 brackets

; E�� � � �� − ½Bx; E�

¼ 2

3
ið16n − 1Þð2λ1 þ λ2 þ λ3 þ λ4ÞLpEpx;

½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4nþ2brackets

; E�� � � �� − ½Bx; ½Bx; E��

¼ −
2

3
ð16n − 1Þð2λ1 þ λ2 þ λ3 þ λ4ÞLp½E2 þ p2

x�; (18)

½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4nþ3 brackets

; E�� � � �� − ½Bx; ½Bx; ½Bx; E���

¼ − 8

3
ið16n − 1Þð2λ1 þ λ2 þ λ3 þ λ4ÞLpEpx;

½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4nþ4 brackets

; E�� � � �� − ½Bx; ½Bx; ½Bx; ½Bx; E����

¼ 8

3
ð16n − 1Þð2λ1 þ λ2 þ λ3 þ λ4ÞLp½E2 þ p2

x�; (19)
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½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4nþ1 brackets

; px�� � � �� − ½Bx; px�

¼ 1

3
ið16n − 1Þðλ1 þ 2λ2 þ 2λ3 þ 2λ4ÞLp½E2 þ p2

x�;
½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

4nþ2 brackets

; px�� � � �� − ½Bx; ½Bx; px��

¼ −
4

3
ð16n − 1Þðλ1 þ 2λ2 þ 2λ3 þ 2λ4ÞLpEpx; (20)

½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4nþ3 brackets

; px�� � � �� − ½Bx; ½Bx; ½Bx; px���

¼ − 4

3
ið16n − 1Þðλ1 þ 2λ2 þ 2λ3 þ 2λ4ÞLp½E2 þ p2

x�;
½Bx; ½Bx � � � ; ½Bx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

4n brackets

; px�� � � �� − px

¼ 1

3
ð16n − 1Þðλ1 þ 2λ2 þ 2λ3 þ 2λ4ÞLpEpx (21)

with n ≥ 1.

The other useful commutators are periodic:

½Bx; py� ¼ iλ4Lppxpy − iλ5LpEpz;

½Bx; ½Bx; py�� ¼ −λ4LpEpy þ λ5Lppxpz;

½Bx; ½Bx; ½Bx; py��� ¼ −iλ4Lppxpy þ iλ5LpEpz;

½Bx; ½Bx; ½Bx; ½Bx; py���� ¼ λ4LpEpy − λ5Lppxpz; (22)

½Bx; pz� ¼ iλ4Lppxpz þ iλ5LpEpy;

½Bx; ½Bx; pz�� ¼ −λ4LpEpz − λ5Lppxpy;

½Bx; ½Bx; ½Bx; pz��� ¼ −iλ4Lppxpz − iλ5LpEpy;

½Bx; ½Bx; ½Bx; ½Bx; pz���� ¼ λ4LpEpz þ λ5Lppxpy: (23)

With the above expressions in hand, after tedious but
straightforward computation parallel to that in Sec. II,
one can prove that

EðξxÞ ¼ Eð0Þ coshðξxÞ − pxð0Þ sinhðξxÞ − λ1LpEð0Þpxð0Þ sinhðξxÞ
þ ½ðλ1 þ λ2ÞLpE2ð0Þ þ λ3Lpp⃗2ð0Þ þ ðλ1 þ λ4ÞLpp2

xð0Þ�½coshðξxÞ − 1�

þ 2

3
ð2λ1 þ λ2 þ λ3 þ λ4ÞLpEð0Þpxð0Þ sinhðξxÞ½1 − coshðξxÞ�

þ 1

3
ð2λ1 þ λ2 þ λ3 þ λ4ÞLp½E2ð0Þ þ p2

xð0Þ�½coshðξxÞ − 1�2; (24)

pxðξxÞ ¼ pxð0Þ coshðξxÞ − Eð0Þ sinhðξxÞ
− ½λ2LpE2ð0Þ þ λ3Lpp⃗2ð0Þ þ λ4Lpp2

xð0Þ� sinhðξxÞ

þ 1

3
ðλ1 þ 2λ2 þ 2λ3 þ 2λ4ÞLpEð0Þpxð0Þ½2 coshðξxÞ þ 1�½coshðξxÞ − 1�

þ 1

3
ðλ1 þ 2λ2 þ 2λ3 þ 2λ4ÞLp½E2ð0Þ þ p2

xð0Þ� sinhðξxÞ½1 − coshðξxÞ�; (25)

pyðξxÞ ¼ pyð0Þ − ½λ4Lppxð0Þpyð0Þ − λ5LpEð0Þpzð0Þ� sinhðξxÞ
þ ½λ4LpEð0Þpyð0Þ − λ5Lppxð0Þpzð0Þ�½coshðξxÞ − 1�; (26)

pzðξxÞ ¼ pzð0Þ − ½λ4Lppxð0Þpzð0Þ þ λ5LpEð0Þpyð0Þ� sinhðξxÞ
þ ½λ4LpEð0Þpzð0Þ þ λ5Lppxð0Þpyð0Þ�½coshðξxÞ − 1�: (27)
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This is the expression of energy and momentum after a
finite boost in DSR. It is one of the central results of this
paper. We get it by extending the exponential parameteriza-
tion of boost from SR to DSR. In the coming subsection,
the same expression will be rederived by solving a system
of differential equations directly.

C. Cross-check

Finite-boost transformations have previously been stud-
ied for other subcases of DSR in the literature. In Ref. [1],
the finite-boost transformation was studied in 1þ 1 dimen-
sions at OðLpÞ. Based on the κ-Poincaré Hopf algebra,
Ref. [10] investigated the finite-boost transformation in
3þ 1 dimensions. Both of them solve a system of differ-
ential equations to gain the expression of finite boosts.
Although their method is apparently different from the
exponential parameterization method, the start point is
exactly the same.
To see this, we take the differential equation of E as an

example. Let us differentiate EðξxÞ ¼ eiξxBxEð0Þe−iξxBx

with respect to ξx; then it results in dE=dξx ¼ i½Bx; E�.
The commutator ½Bx; E� is always given in a specific model.
Hence, indeed the exponential parameterization naturally
leads to differential equations of energy and momentum.
In this subsection, we adopt the method of Refs. [1,10] to

double-check our result in Sec. III B. For this purpose, we
write down a system of differential equations correspond-
ing to the scenario we considered:

dE
dξx

¼ i½Bx; E� ¼ −px − λ1LpEpx;

dpx

dξx
¼ i½Bx; px� ¼ −E − λ2LpE2 − λ3Lpp⃗2 − λ4Lpp2

x;

dpy

dξx
¼ i½Bx; py� ¼ −λ4Lppxpy þ λ5LpEpz;

dpz

dξx
¼ i½Bx; pz� ¼ −λ4Lppxpz − λ5LpEpy: (28)

It is trivial to plug Eqs. (23–27) into these equations and
confirm that they are well satisfied. Alternatively, one may
solve the equations honestly, recasting them as

d2px

dξ2x
¼ px − ðλ1 þ 2λ2 þ 2λ3 þ 2λ4ÞLppx

dpx

dξx
;

dE
dξx

¼ −px − λ1LpEpx;

d
dξx

ðp2
y þ p2

zÞ ¼ −2λ4Lppxðp2
y þ p2

zÞ;
d
dξx

�
py

pz

�
¼ λ5LpE

�
1þ

�
py

pz

�
2
�
: (29)

This system of equations can be solved order by order. We
expect that the solution reproduces Eqs. (6), (7), (10) in the

zeroth order, i.e., in the limit Lp → 0. In the first order of
Lp, there are five integration constants. These constants can
be determined by initial conditions of E, p⃗ and the second
line of Eq. (28) at ξx ¼ 0 [10]. We have solved the equa-
tions in this way, and arrived at a solution exactly the same
as that in Eqs. (24–27).

D. Boost in any direction

So far, we have assumed the boost is along the x direc-
tion. This does not lose much generality. Since the direction
of momentum p⃗ is not restricted to a coordinate axis, one is
free to choose the x axis as the direction of boost, meeting
our assumption. From the obtained results, we can get the
boost rule along the y direction by alternating indices
ðx; y; zÞ → ðy; z; xÞ, and the boost along the z direction
by ðx; y; zÞ → ðz; x; yÞ.
As a preparation for Sec. V, it is nevertheless useful to

consider an arbitrary boost in the x-y plane with rapidity ξ.
In this plane, the boost direction makes a polar angle ϕwith
respect to the x axis, and then the two reference frames are
related by

jξiϕ ¼ eiϕRzð−ϕ;ξÞeiξBxð−ϕÞe−iϕRzð0Þj0i; (30)

leading to the transformation rules of energy and
momentum:

Eð−ϕ; ξ;ϕÞ ¼ eiϕRzð−ϕ;ξÞeiξBxð−ϕÞe−iϕRzð0Þ

× Eð0ÞeiϕRzð0Þe−iξBxð−ϕÞe−iϕRzð−ϕ;ξÞ;
p⃗ð−ϕ; ξ;ϕÞ ¼ eiϕRzð−ϕ;ξÞeiξBxð−ϕÞe−iϕRzð0Þ

× p⃗ð0ÞeiϕRzð0Þe−iξBxð−ϕÞe−iϕRzð−ϕ;ξÞ: (31)

In the above exponents, the parameters highlighted in
the brackets tell us what kind of operator each one acts
on. For example, Bxð−ϕÞ should act on Eð−ϕÞ and
p⃗ð−ϕÞ rather than Eð0Þ or p⃗ð0Þ, though Bxð−ϕÞ is in-
dependent of ϕ, namely ∂ϕBxð−ϕÞ ¼ 0. More details
will appear in Sec. V.
The transformation rule stated in Eq. (31) is enough for

our later discussion. The rule can be further generalized to
any direction beyond the x-y plane similarly by rotating the
arbitrary direction of the boost to the x direction.

IV. COMPATIBILITY ANALYSIS

A. Dispersion relation

The dispersion relation plays an important role in SR.
When generalized to DSR, it contains a pair of free
parameters in the OðLpÞ terms,

m2 ¼ E2 − p⃗2 þ α1LpE3 þ α2LpEp⃗2; (32)
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where the parameters α1, α2 can be constrained by
data, confronting DSR directly with observations and
experiments.
In the spirit of the relativity principle, the dispersion

relation is expected to be invariant in different inertial refer-
ence frames. If the deformed boost [Eq. (12)] is compatible
with dispersion relation [Eq. (32)], then EðξxÞ and p⃗ðξxÞ
should satisfy Eq. (31) for arbitrary values of ξx. That is
to say,

E2ðξxÞ − p⃗2ðξxÞ þ α1LpE3ðξxÞ þ α2LpEðξxÞp⃗2ðξxÞ
¼ E2ð0Þ − p⃗2ð0Þ þ α1LpE3ð0Þ þ α2LpEð0Þp⃗2ð0Þ: (33)

Putting Eqs. (23–27) into this equation, we find that
α1, α2 can be expressed by parameters in the boost
generator,

α1 ¼ − 2

3
ðλ1 − λ2 þ 2λ3 þ 2λ4Þ;

α2 ¼ 2ðλ3 þ λ4Þ: (34)

The same constraints have been derived by Ref. [7] in a
Hamiltonian formalism.

B. Addition law of energy-momentum

As argued in a footnote of Ref. [11], the addition law of
energy-momentum becomes nonlinear in DSR because
there is a special energy-momentum scale, just as the non-
linear addition law of velocity stems from a special velocity
scale c in SR. The addition law of two energies/momenta in
DSR has been studied by Refs. [6,8] up to OðLpÞ. In 3þ 1
dimensions, it takes the nonlinear form

Ea⊕Eb ¼ Ea þ Eb þ β1LpEaEb þ β2Lpp⃗a · p⃗b;

p⃗a⊕p⃗b ¼ p⃗a þ p⃗b þ γ1LpEap⃗b þ γ2LpEbp⃗a

þ γ3Lpp⃗a × p⃗b: (35)

Supposing the law is universal in all inertial reference
frames, we have

ðEa⊕EbÞðξxÞ ¼ EaðξxÞ⊕EbðξxÞ;
ðp⃗a⊕p⃗bÞðξxÞ ¼ p⃗aðξxÞ⊕p⃗bðξxÞ; (36)

where the notation

ðEa⊕EbÞðξxÞ ¼ ðEað0Þ⊕Ebð0ÞÞ coshðξxÞ
− ðpaxð0Þ⊕pbxð0ÞÞ sinhðξxÞ þOðLpÞ

(37)

as a result of Eq. (24), and similarly for ðp⃗a⊕p⃗bÞðξxÞ.

Equation (36) provides a compatibility condition for the
boost [Eq. (12)] and the energy-momentum addition law
[Eq. (35)]. Ignoring OðL2

pÞ and higher-order terms, they
should hold for arbitrary values ofEð0Þ and p⃗ð0Þ. Along this
line, we find the following relations between parameters:

β1 ¼ 2ðλ1 þ λ2 þ 2λ3Þ;
γ1 ¼ γ2 ¼ λ4 ¼ λ1 þ 2λ2 þ 2λ3;

β2 ¼ −2λ3; γ3 ¼ 0; λ5 ¼ 0. (38)

This result is in agreement with Ref. [8]. Note that here
we have implicitly assumed that each particle’s energy-
momentum transforms independently under a finite boost,
obeying the same transformation rule of the total energy-
momentum.
We can see that the compatibility not only fixes all

parameters in the addition law of energy-momentum, but
also places limits on λ4 and λ5 in the boost generator. In
contrast, Ref. [8] gains constraints on λ4 and λ5 “in order
to reproduce the Lorentz algebra”1 and other relations
through infinitesimal boost transformations in DSR.
More comparisons between our result and Ref. [8] will
be presented in Sec. VI.
Combining Eqs. (34) and (38) together, it is not hard to

reobtain the golden rule proposed on a physical ground in
Ref. [6]:

α1 þ α2 þ β1 þ β2 − γ1 − γ2 ¼ 0. (39)

V. WIGNER ROTATION

In SR, two parallel boosts are equivalent to one boost
along the same direction. However, the composition of
two boosts in different directions differs from a single
boost. Instead, it is equivalent to the composition of a boost
and a rotation [12–14]. Such a rotation is known as the
Wigner rotation.
It is natural to ask if the Wigner rotation receives correc-

tions in DSR. To our knowledge, there has been no prior
work on the Wigner rotation in DSR. As a preliminary
exploration, in this section we consider two mutually
perpendicular boosts in the x-y plane, first along the x
direction and second along the y direction. We focus on
the situation where λ4 and λ5 are restricted by

λ4 ¼ λ1 þ 2λ2 þ 2λ3; λ5 ¼ 0. (40)

A full investigation of more general situations will be
done in a different scheme and reported elsewhere.

1See the first paragraph of Sec. III C in Ref. [8].
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After two successive boosts, the energy and momentum
transform as

Eðξx; ξyÞ ¼ eiξyByðξxÞeiξxBxð0ÞEð0Þe−iξxBxð0Þe−iξyByðξxÞ;

p⃗ðξx; ξyÞ ¼ eiξyByðξxÞeiξxBxð0Þp⃗ð0Þe−iξxBxð0Þe−iξyByðξxÞ: (41)

Again, in the above exponents, the parameters highlighted
in the brackets remind us what kind of operator each one
acts on. In this convention,

Eðξx;ξyÞ¼eiξyByðξxÞEðξxÞe−iξyByðξxÞ

¼EðξxÞcoshðξyÞ−pyðξxÞsinhðξyÞþOðLpÞ
≠EðξyÞcoshðξxÞ−pxðξyÞsinhðξxÞþOðLpÞ: (42)

The inequality in the last line means Eðξx; ξyÞ ≠ Eðξy; ξxÞ
in both SR and DSR. It is easy to check this by applying
the transformation rule of a single boost along the x and y
directions in turn.
As we are interested in Wigner rotation, let us pause to

explain the transformation rule of energy and momentum
under rotations with respect to the z axis. From Eq. 15,
one can read directly

½Rz; px� ¼ ipy; ½Rz; ½Rz; px�� ¼ px;

½Rz; py� ¼ −ipx; ½Rz; ½Rz; py�� ¼ py;

½Rz; pz� ¼ 0; ½Rz; E� ¼ 0. (43)

Since the rotational invariance is unchanged, DSR does
not lead to any corrections to the commutators above.
As a result, after a finite rotation of angle θ with respect
to the z axis, the energy and momentum transform as
follows:

EðθÞ ¼ eiθRzEð0Þe−iθRz ¼ Eð0Þ;
pxðθÞ ¼ eiθRzpxð0Þe−iθRz ¼ pxð0Þ cosðθÞ − pyð0Þ sinðθÞ;
pyðθÞ ¼ eiθRzpyð0Þe−iθRz ¼ pyð0Þ cosðθÞ þ pxð0Þ sinðθÞ;
pzðθÞ ¼ eiθRzpzð0Þe−iθRz ¼ pzð0Þ: (44)

We proceed to study the Wigner rotation arising from
two perpendicular boosts in DSR. It is tedious to write
down the lengthy expressions of Eðξx; ξyÞ and p⃗ðξx; ξyÞ,
which are relegated to Appendix A. However, with a
few lines of computer programming, we find to OðLpÞ
that

eiθRzEðξx; ξyÞe−iθRz ¼ Eð−ϕ; ξ;ϕÞ;
eiθRzp⃗ðξx; ξyÞe−iθRz ¼ p⃗ð−ϕ; ξ;ϕÞ; (45)

as long as the equalities in Eq. (40) hold.2 Here
Eð−ϕ; ξ;ϕÞ, p⃗ð−ϕ; ξ;ϕÞ and Eðξx; ξyÞ, p⃗ðξx; ξyÞ are
defined by Eqs. (31) and (41), with ξ, ϕ, θ given by

coshðξÞ ¼ coshðξxÞ coshðξyÞ;

sinðϕÞ ¼ sinhðξyÞ
sinhðξÞ ; tanðϕÞ ¼ tanhðξyÞ

sinhðξxÞ
;

sinðθÞ ¼ − sinhðξxÞ sinhðξyÞ
1þ coshðξÞ ;

cosðθÞ ¼ coshðξxÞ þ coshðξyÞ
1þ coshðξÞ : (46)

Recall that the right-hand side of Eq. (45) is the energy-
momentum boosted along the direction at an angle θ
with the x axis in the x-y plane. On the left-hand side,
the energy-momentum is transformed under two
perpendicular boosts and then a rotation. Hence, we have
succeeded in proving the Wigner rotation in DSR to the
first order of Lp. The angle θ is nothing else but the
Wigner rotation angle. One can compare this result with
Ref. [12] to see that DSR does not introduce corrections
to the Wigner rotation, at least in the situation we
considered.
The equalities in Eq. (45) have a simple interpretation:

two successive perpendicular boosts are not equivalent to a
single boost in DSR, but to a boost combined with a rota-
tion. Reversing the logic, any boost in the x-y plane can be
decomposed into two mutually perpendicular boosts fol-
lowed by a rotation.
Here we would like to highlight Eq. (40). In the previous

section, we derived them as a part of the compatibility con-
dition [Eq. (38)] for the transformation rule and the addition
law of energy-momentum. In the current section, we
encounter them as a necessary condition for recovering
Wigner rotation in DSR. In the next section, we will make
more comments on them.

VI. COMMENTS

It is interesting to go back and look at the commutators
in Eq. (14), whose OðLpÞ terms disappear once Eq. (40)
applies. In this perspective, Eq. (40) can be regarded as
a restriction on deformations of the Poincaré algebra. If
the deformed Poincaré algebra were not restricted in

2One may suspect that Eq. (45) continues to hold without im-
posing the conditions of Eq. (40) by appropriately tuning the re-
lations in Eq. (46). To explore this, we have calculated
eiθRzpzðξx; ξyÞe−iθRz − pzð−ϕ; ξ;ϕÞ. Its full expression is too
lengthy to print out, but we find it is of OðLpÞ and, besides other
terms, the coefficient of p2

yð0Þ in this expression is
λ5Lp cos ϕ sin ϕð1 − cosh ξÞ. It indicates that no matter how
we modify Eq. (46), Eq. (45) cannot hold unless the conditions
in Eq. (40) are imposed.
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this way, the boost transformation would be incompatible
with the addition law of energy-momentum in Sec. IV B,
and we would fail to recover the Wigner rotation in
Sec. V. To be exact, in Ref. [8], Eq. (40) is not derived
from the compatibility condition, but put forward as
a condition to reproduce the Lorentz algebra from Eq. (14).
Still, it is unclear how to prove Eq. (45) directly from

Eq. (14) after switching off the OðLpÞ terms. To this
end, we introduce new variables E, P⃗ through

E ¼ E þ δ1LpE2 þ δ2LpP⃗
2;

P⃗ ¼ P⃗ þ δ3LpEP⃗: (47)

Substituting them into Eqs. (13–15), we find that E, Pi, Ri,
Bi can form the conventional Poincaré algebra at OðLpÞ if

δ1 ¼ λ1 þ λ2 þ 2λ3; δ2 ¼ −λ3; δ3 ¼ λ4; (48)

and Eq. (40) hold. Some details are given in Appendix B.
That is to say, restricted by Eq. (40), the deformed
Poincaré algebra in Sec. III A is equivalent to the undeformed
Poincaré algebra in terms of new variables. In this form, the
variables E, P⃗ behave like the standard SR energy-momenta.
Given that the Wigner rotation is well established in SR, it is
thus not hard to understand that Eq. (40) is a condition to
recreate the Wigner rotation in DSR.
When imposing Eq. (36) in Sec. IV B, just like Ref. [15],

we have implicitly assumed that under a finite boost,
the set of momenta of different particles transform inde-
pendently. Naturally, this leads to γ1 − γ2 ¼ γ3 ¼ 0 in

the compatibility condition [Eq. (38)], a special case called
a commutative composition of momenta in Ref. [8]. It is
worthwhile for future research to abandon this implicit
assumption and extend our results to the noncommutative
case.
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APPENDIX A: ENERGY-MOMENTUM AFTER
TWO PERPENDICULAR BOOSTS

In this Appendix, we will show the transformation rule of
energy and momentum under two mutually perpendicular
boosts in DSR. For concreteness, in this paper we consider
boosts in the x-y plane, first along the x direction and then
along the y direction.
In Sec. III B, we have presented the transformation rule

of energy and momentum under a finite boost in the x direc-
tion; see expressions (23–27). From them, the boost rule
along the y direction can be obtained by alternating indices
ðx; y; zÞ → ðy; z; xÞ. Then, in accordance with the definition
[Eq. (41)], straightforward computations give the expres-
sion of energy and momentum after two boosts:

Eðξx; ξyÞ ¼ Eð0Þ cosh ξx cosh ξy − pxð0Þ cosh ξy sinh ξx − pyð0Þ sinh ξy

þ Lp

�
cosh ξy

�
ðE2ð0Þðλ1 þ λ2Þ þ p⃗2ð0Þλ3 þ p2

xð0Þðλ1 þ λ4ÞÞðcosh ξx − 1Þ

þ 1

3
ðE2ð0Þ þ p2

xð0ÞÞð2λ1 þ λ2 þ λ3 þ λ4Þðcosh ξx − 1Þ2 − Eð0Þpxð0Þλ1 sinh ξx

− 2

3
Eð0Þpxð0Þð2λ1 þ λ2 þ λ3 þ λ4Þðcosh ξx − 1Þ sinh ξx

�

þ 1

3
ð2λ1 þ λ2 þ λ3 þ λ4Þðcosh ξy − 1Þ2ðp2

yð0Þ þ ðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ2Þ
þ ðcosh ξy − 1Þ½p2

yð0Þðλ1 þ λ4Þ þ ðλ1 þ λ2ÞðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ2
þ λ3ðp2

yð0Þ þ p2
zð0Þ þ ðpxð0Þ cosh ξx − Eð0Þ sinh ξxÞ2Þ�

þ ðpxð0Þpzð0Þλ5 − Eð0Þpyð0Þλ4Þðcosh ξx − 1Þ sinh ξy þ pxð0Þpyð0Þλ4 sinh ξx sinh ξy

− Eð0Þpzð0Þλ5 sinh ξx sinh ξy − pyð0Þλ1ðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ sinh ξy

− 2

3
pyð0Þð2λ1 þ λ2 þ λ3 þ λ4Þðcosh ξy − 1ÞðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ sinh ξy

�
;
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pxðξx; ξyÞ ¼ pxð0Þ cosh ξx − Eð0Þ sinh ξx

þ Lp

�
1

3
Eð0Þpxð0Þ½λ1 þ 2ðλ2 þ λ3 þ λ4Þ�ðcosh ξx − 1Þð1þ 2 cosh ξxÞ

þ pyð0Þpzð0Þλ5ðcosh ξy − 1Þ − E2ð0Þλ2 sinh ξx − p⃗2ð0Þλ3 sinh ξx − p2
xð0Þλ4 sinh ξx

− 1

3
ðE2ð0Þ þ p2

xð0ÞÞ½λ1 þ 2ðλ2 þ λ3 þ λ4Þ�ðcosh ξx − 1Þ sinh ξx

þ λ4ðcosh ξy − 1Þðpxð0Þ cosh ξx − Eð0Þ sinh ξxÞðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ
− pyð0Þλ4ðpxð0Þ cosh ξx − Eð0Þ sinh ξxÞ sinh ξy

− pzð0Þλ5ðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ sinh ξy

�
;

pyðξx; ξyÞ ¼ pyð0Þ cosh ξy þ ð−Eð0Þ cosh ξx þ pxð0Þ sinh ξxÞ sinh ξy

þ Lp

�
ðpxð0Þpzð0Þλ5 − Eð0Þpyð0Þλ4Þð1 − cosh ξxÞ cosh ξy

− pxð0Þpyð0Þλ4 cosh ξy sinh ξx þ Eð0Þpzð0Þλ5 cosh ξy sinh ξx

þ 1

3
pyð0Þ½λ1 þ 2ðλ2 þ λ3 þ λ4Þ�ðcosh ξy − 1Þð1þ 2 cosh ξyÞ

× ðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ

þ
�
−ðE2ð0Þðλ1 þ λ2Þ þ p⃗2ð0Þλ3 þ p2

xð0Þðλ1 þ λ4ÞÞðcosh ξx − 1Þ

− 1

3
ðE2ð0Þ þ p2

xð0ÞÞð2λ1 þ λ2 þ λ3 þ λ4Þðcosh ξx − 1Þ2 þ Eð0Þpxð0Þλ1 sinh ξx

þ 2

3
Eð0Þpxð0Þð2λ1 þ λ2 þ λ3 þ λ4Þðcosh ξx − 1Þ sinh ξx

�
sinh ξy

þ 1

3
½λ1 þ 2ðλ2 þ λ3 þ λ4Þ�ð1 − cosh ξyÞðp2

yð0Þ þ ðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ2Þ
× sinh ξy þ ½−p2

yð0Þλ4 − λ2ðEð0Þ cosh ξx − pxð0Þ sinh ξxÞ2

− λ3ðp2
yð0Þ þ p2

zð0Þ þ ðpxð0Þ cosh ξx − Eð0Þ sinh ξxÞ2Þ� sinh ξy

�
;

pzðξx; ξyÞ ¼ pzð0Þ þ Lpf−Eð0Þpzð0Þλ4 − pxð0Þpyð0Þλ5
þ ð−2Eð0Þpyð0Þλ5 þ ðEð0Þpyð0Þλ5 − pxð0Þpzð0Þλ4Þ cosh ξyÞ sinh ξx

− pyð0Þpzð0Þλ4 sinh ξy þ Eð0Þpxð0Þλ5ðcosh2ξx þ sinh2ξxÞ sinh ξy

− cosh ξx½ðpxð0Þpyð0Þλ5 − Eð0Þpzð0Þλ4Þ cosh ξy

þ λ5ð−2pxð0Þpyð0Þ þ ðE2ð0Þ þ p2
xð0ÞÞ sinh ξx sinh ξyÞ�g:

In principle, these results may also be gained by applying the Baker-Campbell-Hausdorff (BCH) formula to Eq. (41). But
our method in this paper is more convenient to be implemented in computer programs. We hope the BCH formula will be
useful for an all-order calculation.
In Sec. V, we further rotate the above results with respect to the z axis and get the Wigner rotation atOðLpÞ when certain

conditions are satisfied. Switching off the OðLpÞ terms, we can recover the familiar SR results.
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APPENDIX B: DEFORMED POINCARÉ ALGEBRA IN AUXILIARY VARIABLES

In terms of E, Pi introduced by Eq. (47), we can put the deformed Poincaré algebra [Eqs. (13–15)] in the form

ð1þ 2δ1LpEÞ½Bi; E� þ
X
j

2δ2LpPj½Bi;Pj� ¼ iPi½1þ ðλ1 þ δ3ÞLpE�;

ð1þ δ3LpEÞ½Bi;Pj� þ δ3LpPj½Bi; E� ¼ iδij½E þ ðλ2 þ δ1ÞLpE2 þ ðλ3 þ δ2ÞLpP⃗
2�

þ iλ4LpPiPj − iλ5LpE
X
k

ϵijkPk; (B1)

½Bi; Bj� ¼ −i½1þ ðλ1 þ 2λ2 þ 2λ3 − λ4ÞLpE�
X
k

ϵijkRk − 2iλ5LpE
X
k

ϵijkBk;

½Ri; Bj� ¼ i
X
k

ϵijkBk − iλ5LpE
X
k

ϵijkRk; (B2)

ð1þ 2δ1LpEÞ½Ri; E� þ
X
j

2δ2LpPj½Ri;Pj� ¼ 0;

ð1þ δ3LpEÞ½Ri;Pj� þ δ3LpPj½Ri; E� ¼ i
X
k

ϵijkPkð1þ δ3LpEÞ;

½Ri; Rj� ¼ i
X
k

ϵijkRk: (B3)

If one requires that E, Pi, Ri, Bi form the conventional
Poincaré algebra, then the above relations atOðLpÞ become
a series of restrictions [Eqs. (40) and (48)]. In this case, the
deformation can be interpreted with classical Poincaré sym-
metries in nonlinear disguise, as pointed out very early
by Ref. [9].

APPENDIX C: CONNECTION
TO κ-DEFORMATION OF
POINCARÉ ALGEBRA

In Ref. [9], it was shown that under quite plausible
assumptions there are only two choices for the addition
law of energy-momentum: either one chooses a classical
one (symmetric) or the one provided by κ-deformation.
The former case corresponds to the commutative addition
law with γ1 − γ2 ¼ γ3 ¼ 0 in Eq. (35). The latter refers to
the quantum deformation of Poincaré algebra with a fun-
damental mass parameter κ, related to the noncommutative
composition law.
The κ-deformed Poincaré algebra was introduced in

1991 in the so-called standard basis [16–18]; further, this
deformation was rewritten in the bicrossproduct basis
[19–21]. In the bicrossproduct basis, other commutation
relations of Poincaré algebra remain undeformed except
for [9,10,21]

½Bi; pj� ¼
i
2
δij

�
κ

�
1 − e−2E

κ

�
þ p⃗2

κ

�
− i
κ
pipj: (C1)

Relation (C1) is highly nonlinear in parameter κ. To con-
nect it with our investigation in this paper, for E=κ ≪ 1 we
keep the deformation terms linear in 1=κ,

½Bi; pj� ¼ iδij

�
E − E2

κ
þ p⃗2

2κ

�
− i
κ
pipj: (C2)

Since our attention is paid to deformations of OðLpÞ, it is
enough in this brief discussion to study Eq. (C2).
Identifying Eqs. (13–15) with the κ-deformed Poincaré

algebra to the first order of 1=κ, we get the condition

λ1 ¼ 0; λ2 ¼ λ4 ¼ − 1

Lpκ
; λ3 ¼

1

2Lpκ
(C3)

together with Eq. (40). It is easy to check that the condition
is self-consistent. This indicates that Eq. (40) is also a
necessary (but not sufficient) condition for reproducing
κ-deformed Poincaré algebra at the linear order of 1=κ.
Another way to see this point is through transformation

(47). If E, Pi, Ri, Bi satisfy the κ-deformed Poincaré
algebra at the linear order of 1=κ, then relations
(B1–B3) at OðLpÞ yield
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δ1 ¼ λ1 þ λ2 þ 2λ3; δ2 ¼
1

2Lpκ
− λ3;

δ3 ¼
1

Lpκ
þ λ4;

(C4)

and again Eq. (40).

Our results in this section imply that to the first order of
deformation parameters (Lp and 1=κ), the two types of
DSR deformations mentioned in Ref. [9] cannot be distin-
guished in the one-particle system. We note that condition
(40) has been given in Ref. [8] for both the commutative
and noncommutative cases.
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