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In this paper, we study the cosmological viability conditions, the phase-space dynamics, and the

cosmological evolution of fðRÞ gravity. In contrast to most previous works in the literature, which analyzed

the background dynamics of fðRÞ gravity by means of a dynamical system, we proceed by focusing on the

equivalent scalar field description of the theory, which we believe is a more intuitive way of treating

the problem. In order to study how the physical solutions evolve in fðRÞ cosmology, we explore the

cosmological dynamics of a range of fðRÞ models, including models that yield a large hierarchy of scales

and are singularity free. We present generic features of the phase-space dynamics in fðRÞ cosmology. We

study the global structure of the phase space in fðRÞ gravity by compactifying the infinite phase space into

a finite space via the Poincaré transformation. On the expansion branch of the phase space, the constraint

surface has a repeller and a de Sitter attractor, while on the contraction branch, the constraint surface has an

attractor and a de Sitter repeller. Generally, the phase currents originate from the repeller and terminate at

the corresponding attractor in each space. The trajectories between the repeller and the attractor in the

presence of matter density are different from those in the vacuum case. The phase analysis techniques

developed in this paper are very general, and can be applied to other similar dynamical systems.

DOI: 10.1103/PhysRevD.88.124036 PACS numbers: 04.50.Kd, 05.45.�a, 98.80.�k

I. INTRODUCTION

The measurements of Type Ia supernovae luminosity
distances indicate that the current Universe is undergoing
an accelerated expansion [1–5]. The simplest approach to
address this issue is to introduce the �CDM model, in
which 31.7% of the mass-energy density of the Universe
is made up of ordinary matter and dark matter, and the
rest is constituted by the cosmological constant, � [5].
The cosmological constant has large negative pressure,
and the equation of state (w � P=�) is equal to�1, where
P and � are the pressure and the energy density of the
cosmological constant, respectively. It is the large nega-
tive pressure that functions as the repulsive force field
against the regular gravity, thus driving the cosmic accel-
eration. However, the value of the observed cosmological
constant is less than the Planck scale by a factor of 120
orders of magnitude [6].

Another possibility is that the cosmic speed-up might be
caused within general relativity by a mysterious cosmic
fluid with negative pressure, which is usually called ‘‘dark
energy.’’ However, the nature of dark energy is still
unknown. Alternatively, the acceleration could be due to
purely gravitational effects, i.e., one may consider modify-
ing the current gravitational theory to produce an effective
dark energy. A natural approach is to replace the Ricci
scalar in the Einstein-Hilbert action with an arbitrary
function of the Ricci scalar,

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ Sm; (1)

where G is the Newtonian constant, and Sm is the matter
term in the action [7–10]. [See Refs. [11,12] for reviews of
fðRÞ theory.]
Any modified gravity model should fit the conventional

standard cosmology as well as explain the current cosmic
speed-up issue. Specifically, in a viable model, the
Universe should have had a matter-domination epoch in
the early Universe to enable the formation of large-scale
structures, and it should have transitioned from a matter-
domination epoch into the current dark-energy-domination
one. Moreover, in order to be able to drive the cosmic
speed-up, the effective dark energy should have suffi-
ciently large negative pressure, and the effective equation
of state should be less than �1=3.
The cosmological dynamics in modified gravity was

analyzed in Refs. [13–28]. The conditions for a viable
matter-domination epoch and late-time acceleration were
derived via an analysis in phase space in Ref. [19]. In fact,
the dynamics of fðRÞ gravity closely depends on a poten-
tial defined by V0ð�Þ � dV=d� ¼ ð2f��RÞ=3, where
� � f0 ¼ dfðRÞ=dR. In this paper, the conditions of cos-
mological viability are studied directly by considering how
this potential determines the dynamics of fðRÞ cosmology.
The currently observed value of the cosmological con-

stant presents a hierarchy problem between the cosmologi-
cal acceleration scale and the Planck scale [29,30]. An
fðRÞ model whose modification term has an R lnR form
can generate a large hierarchy between these two scales.
The model can be obtained from the arguments of the
running of the gravitational coupling. In high energy phys-
ics, the renormalized coupling parameters run with the
energy scale. Noting that the curvature scalar is a basic
quantity in gravity that describes interaction scales, and
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assuming that the (classical) gravitational coupling varies
with the curvature scale, one is led to fðRÞ gravity [31]. If
the running is defined by a quadratic beta function, which
is similar to the one in quantum chromodynamics, one
ultimately obtains an R lnR model. This model does not
have the singularity problem discussed in Ref. [32]. On the
other hand, in this model, general relativity is recovered
only for some period of curvature scale due to the loga-
rithmic running of f0 with respect to the matter density. As
a result, it is hard for the R lnR model to have a cosmo-
logical evolution consistent with the observations. This
problem becomes less severe in a modified logarithmic
model obtained by shifting the fixed point �� of the beta
function from zero to a positive value. This new model
keeps the hierarchy feature; its corresponding cosmologi-
cal evolution is more compatible with the observations
than that in the R lnR model, but is still not ideal.
The Lagrangian density of a viable fðRÞ model (e.g., the
Hu-Sawicki model) should be very close to that of the
�CDM model so as to fit the cosmological observations
in both the early and the late Universe. In this paper, we
study the phase-space dynamics and the cosmological
evolution of the R lnR model and the Hu-Sawicki model
with the following techniques: compactifying the infinite
phase space into a finite space via the Poincaré transfor-
mation; studying the vector fields on two-dimensional
slices of the constraint surface when the constraint surface
is three dimensional; and plotting typical trajectories of the
phase flows.

The paper is organized as follows. In Sec. II, we
construct the dynamical system for fðRÞ cosmology. In
Sec. III, the conditions of the cosmological viability for
fðRÞ gravity are explored. Section IV introduces the R lnR
model. In Secs. V and VI, the phase-space dynamics and
the cosmological evolution of the R lnRmodel are studied,
respectively. In Sec. VII, we explore the phase-space
dynamics of the Hu-Sawicki model. Lastly, Sec. VIII
summarizes our results.

II. THE DYNAMICAL SYSTEM IN fðRÞ
COSMOLOGY

In this section, we prepare for the dynamical analysis of
fðRÞ cosmology. The equivalent of the Einstein equation in
fðRÞ gravity reads

f0R�� � 1

2
fg�� � ðr�r� � g��hÞf0 ¼ 8�GT��; (2)

where f0 denotes the derivative of the function f with
respect to its argument R, and h is the usual notation for
the covariant D’Alembert operatorh � r�r�. Compared
to general relativity, fðRÞ gravity has one extra scalar
degree of freedom, f0. The dynamics of this degree of
freedom is determined by the trace of Eq. (2),

hf0 ¼ 1

3
ð2f� f0RÞ þ 8�G

3
T; (3)

where T is the trace of the stress-energy tensor T��.

Identifying f0 with a scalar degree of freedom by

� � df

dR
; (4)

and defining a potential Vð�Þ by

V 0ð�Þ � dV

d�
¼ 1

3
ð2f��RÞ; (5)

one can rewrite Eq. (3) as [11]

h� ¼ V 0ð�Þ þ 8�G

3
T: (6)

We consider the homogeneous Universe with the flat
Friedmann-Robertson-Walker metric,

ds2 ¼ �dt2 þ a2ðtÞdx2; (7)

where aðtÞ is the scale factor. In this case, the evolution of
the Universe is described by a four-dimensional dynamical
system of f�;�;H; ag, where

� � _�; (8)

H is the Hubble parameter, and the dot ð�Þ denotes the
derivative with respect to the coordinate time t.
Equation (3) provides the equation of motion for �,

_� ¼ �3H�� V 0ð�Þ þ 8�G

3
�m: (9)

The equation of motion for H is

_H ¼ R

6
� 2H2: (10)

The definition of the Hubble parameter implies that

_a ¼ aH: (11)

The system is constrained by the Friedman equation,

H2 þ �

�
H þ f��R

6�
� 8�G

3�
ð�m þ �rÞ ¼ 0; (12)

where �m and �r are the density of matter and the density
of radiation, respectively. Equations (8)–(12) provide a
closed description of the dynamical system f�;�;H; ag.
In order to explore whether fðRÞ gravity can account for

the cosmic speed-up, it is instructive to cast the formulation
of fðRÞ gravity into a format similar to that of general
relativity. We rewrite Eq. (2) as

G�� ¼ 8�GðT�� þ TðeffÞ
�� Þ; (13)

where
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8�GTðeffÞ
�� ¼ f� f0R

2
g�� þ ðr�r� � g��hÞf0

þ ð1� f0ÞG��: (14)

T
��
ðeffÞ is the energy-momentum tensor of the effective dark

energy. It is guaranteed to be conserved, T
��
ðeffÞ;� ¼ 0.

Equation (14) reveals the definition of the equation of state
for the effective dark energy,

weff � peff

�eff

; (15)

where

8�G�eff ¼ 3H2 � 8�Gð�m þ �rÞ

¼ f0R� f

2
� 3H _f0 þ 3H2ð1� f0Þ; (16)

8�Gpeff ¼ H2 � R=3� 8�Gpr

¼ €f0 þ 2H _f0 þ f� f0R
2

þ
�
H2 � R

3

�
ð1� f0Þ:

(17)

In order for an fðRÞ model to account for the cosmic
speed-up, weff should be less than �1=3.

III. COSMOLOGICALVIABILITY

Many fðRÞ models have been proposed to address the
current cosmic speed-up problem. It is necessary to check
whether these models agree with the observations of both
the early and the late Universe. In a viable fðRÞ theory,
there should be a matter-domination epoch in the early
Universe such that large-scale structures could be formed.
Moreover, the Universe should experience an acceleration
during late times. The conditions of cosmological viability
for fðRÞ theory were discussed via dynamical analysis in
phase space in Ref. [19]. With this approach, one could
investigate the conditions for the existence of a viable
matter-domination epoch prior to a late-time acceleration,
which can be expressed as

mðrÞ � 0þ and
dm

dr
>�1; at r � �1; (18)

where m � f00R=f0 and r � �f0R=f. Actually, r and m
are closely related to V 0ð�Þ and V00ð�Þ, respectively, with
V 0ð�Þ being defined by Eq. (5) and

V 00ð�Þ ¼ f0 � f00R
3f00

: (19)

In this section, we will revisit these cosmological viability
conditions by using the scalar field description for fðRÞ
gravity.

In the standard cosmology based on general relativity, a
matter-domination epoch (and also a radiation-domination

epoch) is ensured in the early Universe. Therefore, in order
to obtain a long matter-domination epoch in fðRÞ gravity,
one may consider how fðRÞ gravity could be reduced to
general relativity. The restoration of general relativity
implies that

fðRÞ � f0R; with � � f0 � 1; (20)

which results in r � �1, shown in Eq. (18). In the early
Universe, the matter-domination epoch should last long
enough to ensure large-scale structure formation. This
means that general relativity should be restored for a
long time. Therefore, f0 should roll down very slowly.
Combining Eqs. (8) and (9), one obtains

€� ¼ �3H _�� V0ð�Þ þ 8�G

3
�m: (21)

Consequently, when the field � evolves slowly, we have

j3H _�j � V 0ð�Þ � 8�G

3
�m: (22)

Note that �m ¼ �m0=a
3 and _a ¼ aH, where �m0 is the

matter density of the current Universe. Taking the time
derivative of V 0ð�Þ � 8�G�m=3, we arrive at

V 00 � _� � �8�G
�m0

a4
_a ¼ �8�G�mH � �3HV0;

and therefore

_� � �3H
V0

V 00 : (23)

Substituting Eq. (23) into Eq. (22) yields

j3 _�Hj � 9H2 V
0

V 00 � V 0 � 8�G

3
�m: (24)

Then we have

V 00 � 9H2 � 3 � 8�G�m: (25)

The condition expressed by Eq. (25) can be interpreted as
follows. Note that the potential Vð�Þ should have a mini-
mum so that there could be a dark-energy-domination
epoch in the late Universe. In the early Universe, the field
� evolves slowly, and stays at the quasistatic equilibrium
of V0ð�Þ � 8�G�m=3, as shown in Eq. (22). Thus, the
field � and the matter density �m are coupled. From this
coupling, the field� acquires mass. When the mass of� is
heavy [large V 00ð�Þ], it is hard to excite �. Then, the field
� stays near 1 for a long time. Consequently, general
relativity is restored for a long time and the Universe has
a long matter-domination epoch. The matter density de-
creases slowly. The field � then becomes light, and is
eventually released from the coupling to the matter density
and approaches the de Sitter minimum of the potential
Vð�Þ. Note that we only consider the case in which the
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potential Vð�Þ has a de Sitter minimum, like the case
plotted in Fig. 1. Correspondingly, the Universe transitions
from the matter-domination epoch into the dark-energy-
domination epoch.

Substituting Eq. (19) into Eq. (25), and noting that in the
general relativistic limit R � 8�G�m, one obtains

f0 � f00R: (26)

The condition for the recovery of general relativity is given
by either Eq. (25) or Eq. (26). Equation (26) is equivalent
to mðrÞ � 0þ, shown in Eq. (18). Equation (26) can be
interpreted via a comparison of the modification term and
the main term of the function fðRÞ. We write the function
fðRÞ as fðRÞ ¼ Rþ AðRÞ, where R is the main term and
AðRÞ is the modification term. If fðRÞ theory satisfies
Eq. (20) at a certain time in the early Universe, which
means that jAðRÞj � R and jA0ðRÞj � 1, there is a matter-
domination epoch at that time. However, to make this
matter domination and/or the general relativity recovery
last long enough, A0ðRÞ should also change with respect to
Rmore slowly than 1=R, namely A00ðRÞ � 1=R, as implied
in Eq. (26).

The process of the field � obtaining mass from its
coupling to the matter density is very similar to the cha-
meleon mechanism studied in the context of the Solar
System tests of fðRÞ gravity [8,33–40]. In the chameleon
mechanism, the field� is coupled to the matter densities of
the Sun and of the background, respectively. The field �
acquires a large mass from this coupling; thus, fðRÞ gravity
could in principle evade the Solar System tests.

In addition to having a long matter-domination epoch in
the early Universe, a viable fðRÞ model should also have a
stable dark-energy-domination epoch in the late Universe
to account for the cosmic acceleration. (The potential Vð�Þ
needs to have a minimum.) Generally, the parameters in

viable fðRÞ models need to take values that can make a
trade-off between the two requirements.

IV. INTRODUCTION TO THE R lnR MODEL

Next we explore the cosmological dynamics of an fðRÞ
model, in which the modification term is described by an
R lnR form. First, we briefly explain the idea of the run-
ning gravitational coupling proposed in our previous work
[31]. Then, we introduce the R lnRmodel generated by the
running.
Observations of the accelerating expansion of the

Universe indicate the presence of a tiny but nonvanishing
cosmological constant. This implies a hierarchy problem
between the (ultraviolet) Planck scale and the (infrared)
cosmological acceleration scale [29,30]. Here we look for
possible solutions to this problem in the context of effec-
tive field theory.
In high energy physics, the renormalized coupling pa-

rameters run as beta functions of the energy scale. In
gravity, the basic scale is set by the curvature of the space-
time. Assuming that the (classical) gravitational coupling
varies with the curvature scalar R, one is led to fðRÞ
gravity. We give a brief review of this approach below.
Considering that Newton’s gravitational constant runs

with the Ricci scalar R, we introduce a dimensionless
coupling �,

8�G ¼ �m�2
pl ; (27)

where mpl is the Planck mass. If the renormalization group

flow is autonomous, the running of the dimensionless
coupling � can be described by a beta function,

�
d�

d�
¼ �ð�Þ; (28)

where � � R=R0 and R0 is a positive constant parameter.
The integration of the above equation yields an � as a
function of the curvature. Then, by replacing 8�G in the
Lagrangian density of general relativityLGR ¼ R=ð16�GÞ
with �m�2

pl [refer to Eq. (27)], one obtains fðRÞ gravity
with the Lagrangian density

L fðRÞ ¼
m2

pl

2

R

�
: (29)

With these arguments, the power-law corrections to the
Einstein-Hilbert action

fðRÞ ¼ R

�
1þ �

�
R

R0

�
n
�

(30)

can be generated by an autonomous flow,

�ð�Þ ¼ n�ð�� 1Þ; (31)

with

FIG. 1 (color online). The potential Vð�Þ as in Eq. (42) for the
R lnR model with �0 ¼ R0 ¼ 1.
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� � R

fðRÞ ¼
1

1þ ��n : (32)

Combining Eqs. (28), (31), and (32), one obtains the
description of � as a function of the scale �,

� ¼ � n��n

ð1þ ��nÞ2 : (33)

At high-curvature scales, where � � 1, we have

� � � n

��n : (34)

Therefore, the separation of the orders of magnitude for the
beta function is comparable to that for curvature. In other
words, in the power-law fðRÞ models, a big gap in the beta
function corresponds to a big gap in curvature between the
Planck scale and the local environment on Earth. This is
also true for some other fðRÞ models (e.g., the Hu-Sawicki
model [8]). However, a reasonable gap in the beta function
can make a big hierarchy of curvature when the linear term
in the beta function is absent. Consider a quadratic beta
function,

� ¼ ��2; (35)

which is similar to the one in quantum chromodynamics.
This is an ad hoc choice, but it leads to a model with
interesting features. It generates a model with

fðRÞ ¼ R

�0

�
1þ �0 ln

R

R0

�
; (36)

where �0 is a dimensionless constant parameter. In this
model, the coupling constant runs as

� ¼ �0

1þ �0 ln
R
R0

: (37)

Due to the logarithmic relation between � and R, a small
change of the orders of magnitude for � can generate a
large hierarchy forR. As discussed below, this property can
be used to generate small numbers to address the hierarchy
problem, which is related to the big gap between the Planck
scale and the cosmological constant scale.

For ease of operation, one can absorb the constant �0 in
the denominator of Eq. (36) into the definition of the
Planck mass mpl, and rewrite Eq. (36) as

fðRÞ ¼ R

�
1þ �0 ln

R

R0

�
: (38)

Therefore, in this model the scalar degree of freedom is

� � f0 ¼ 1þ �0 þ �0 ln
R

R0

; (39)

and the potential is determined by

V 0ð�Þ ¼ 1

3
�e�=�0�2ð�� 2�0Þ: (40)

Then, at the de Sitter point where V 0ð�Þ ¼ 0, � is equal to
2�0. The corresponding curvature, which is usually called
the de Sitter curvature,

� � R0e
�1=�0þ1; (41)

is exponentially suppressed compared to R0. f
0 has to be

positive to avoid ghosts [41] and f00 has to be positive to
avoid the Dolgov-Kawasaki instability [42]. For the R lnR
model, given Eqs. (39) and (41), the first requirement that
f0 be positive can be satisfied as long as the Ricci scalar is
not too much smaller than the de Sitter curvature. For the
R lnR model, f00 is equal to �0=R and �0 is a positive
constant, and we only consider the positive Ricci scalar;
then, the second requirement of f00 being positive can be
easily met.
For some fðRÞ models, such as the Starobinsky model

[9], � asymptotes to a constant as the Ricci scalar goes to
infinity, and the height of the potential barrier is finite.
Therefore, the force from the matter density can easily
push the field � to the barrier of Vð�Þ, and then the
Ricci scalar becomes singular [32]. However, the R lnR
model is free of this singularity problem. Integrating
Eq. (40), we obtain the potential

Vð�Þ ¼ 1

3
�0�e

�
�0
�2ð�� 3�0Þ; (42)

which has an exponential wall, avoiding the singularity
problem. The potential is shown in Fig. 1.
For this model, with Eq. (39), the function fðRÞ

expressed by Eq. (38) can be rewritten as

fðRÞ ¼ Rð�� �0Þ: (43)

When the R lnR gravity is reduced to general relativity, �
evolves slowly. Then, from Eq. (9), which describes the
dynamics of �, one obtains

� � 2�0 þ �0WðXÞ; (44)

where X ¼ 8�G�=� and WðXÞ is the Lambert W func-
tion. The basic properties of WðXÞ with positive X are
described in the Appendix. Equations (43) and (44) show
that when general relativity is restored, we have

�0 � 1

WðXÞ � 1:

When X is much greater than 1, WðXÞ is approximately
equal to ln ðXÞ, as discussed in the Appendix. This feature,
together with Eq. (44), implies that the field � logarithmi-
cally runs depending on X, when X is much greater than 1.
Therefore, this model is reduced to general relativity only
for a certain period of curvature or matter density. The
smaller �0 is, the longer the general relativity restoration
period is. This is quite different from some other models,
such as the Hu-Sawicki model [8] and the Starobinsky
model [9], in which fðRÞ gravity goes to general relativity
once �m is above the cosmological constant scale. On the
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other hand, for the R lnR model to have a sensible
cosmic acceleration in the late Universe, the de Sitter
curvature-and hence, �0-cannot be too small [see
Eq. (41)]. Consequently, an appropriate value for �0 needs
to be chosen to reconcile the tension between the require-
ments in the early and the late Universe.

V. PHASE-SPACE DYNAMICS OF THE R lnR
MODEL

In this section, we study the cosmic dynamics of the
R lnRmodel in phase space. The cosmic dynamics of fðRÞ
gravity is described by Eqs. (8)–(12), shown in Sec. II. For
the R lnR model, the equations of motion (8)–(11) can be
rewritten as

� � _�; (45)

_� ¼ �3H�� 1

3
�e

�
�0
�2ð�� 2�0Þ þ 8�G

3
�m; (46)

_H ¼ 1

6
�e

�
�0
�2 � 2H2; (47)

_a ¼ aH: (48)

The constraint equation (12) becomes

H2 þ �

�
H � �

6�
e

�
�0
�2 � 8�G

3�
ð�m þ �rÞ ¼ 0: (49)

A. Phase-space dynamics in vacuum

For simplicity, let us first consider the dynamics in
vacuum, where both �m and �r are equal to zero. In this
case, the solutions to the constraint equation (49) are

H� ¼ 1

2

2
4��

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

�

�
2 þ 2�

3�
e

�
�0
�2

s 3
5: (50)

Since the domains of definition of f�;�;Hg span from�1
toþ1, it is hard to directly view the global structure of the
constraint surface in the space of f�;�;Hg. Instead, we use
the Poincaré compactification in the cylindrical coordinate
system to transform �, �, and H, respectively, to

�P � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	þ�2 þ �2

p ;

�P � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	þ�2 þ �2

p ;

HP � Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	þH2

p ;

(51)

where 	 is an arbitrary constant, and we set it to 12 for the
R lnR model. In this way, the constraint surface is com-
pactified into a finite space, as shown in Fig. 2. The Hubble
parameter in the upper branch of the constraint surface is
positive, corresponding to an expanding Universe, whereas
the lower branch corresponds to a contracting one. The
constraint surface is folded in the octants of ð� 	 0;
� 
 0; H 
 0Þ and ð� 	 0; � 	 0; H 	 0Þ. On the fold-
ing line, which we also call a cutting edge, the solutions of
Hþ and H� merge and become equal. This and Eq. (50)
together imply that the cutting edge can be described by

FIG. 2 (color online). The constraint surface and the phase-space flows with �m ¼ 0 for the R lnR model with �0 ¼ R0 ¼ 1. The
phase currents flow out of Point A and move to Point D. Point A is a repeller, Points B and C are saddle points, and Point D is an
attractor. Regarding the trajectories in green (light color), the parts of them between A and C are not plotted due to the difficulty in
obtaining an accurate numerical integration near the boundary. The shadings correspond to the values of HP. A color bar is not shown
because the values of HP can be seen from the z axis. (a) Constraint surface. (b) Top view.
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�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2

3
�e

�
�0
�2
�

s
: (52)

When � goes to �1, the �� approach 0� and the cutting
edge is almost closed, as shown in Fig. 2. We denote the
two ends of the cutting edge as Point B ð�P ¼ �1; �P ¼
0þ; HP ¼ 0þÞ and Point B0 ð�P ¼ �1; �P ¼ 0�; HP ¼
0�Þ, respectively. The two branches of the constraint
surface are disconnected. The reasons for this fact are
explained below.

We consider the constraint equation (50). For positive�,
we have 2� exp ð�=�0 � 2Þ=ð3�Þ> 0. Consequently, we
have Hþ > 0 and H� < 0. For negative �, the expansion
branch of the constraint surface belongs to the space of
ð�< 0; � > 0Þ, while the contraction branch belongs to
the space of ð�< 0; � < 0Þ. As shown in Fig. 2, the two
branches are close to each other around Point B and Point
B0. As implied by Eq. (52), at Point B, �P ¼ 0þ, and at
Point B0, �P ¼ 0�. Therefore, B and B0 are separated, and
then the two branches are separated as well. In summary,
the two branches of the constraint surface are discon-
nected, although they both asymptote to the point ð�P ¼
�1; �P ¼ 0; HP ¼ 0Þ when compactified.

In the vacuum evolution, the phase-space flows stay on
the constraint surface. Some typical trajectories of the
flows with HP > 0 are plotted in Fig. 2. There are four
special points on the branch with HP > 0 of the constraint
surface, as listed below.

A: ð�P ¼ 0�; �P ¼ 1; HP ¼ 1Þ;
B: ð�P ¼ �1; �P ¼ 0þ; HP ¼ 0þÞ;
C: ð�P ¼ 0þ; �P ¼ �1; HP ¼ 1Þ;

D:

0
@�P ¼ 0:5; �P ¼ 0; HP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð12�0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	þ�=ð12�0Þ

p ¼ 0:083

1
A:

At Point A, the kinetic term �P is dominant over the field

�P, _�P ¼ �2, and _�P ¼ _HP ¼ 0. All of the phase cur-
rents flow out of Point A and move to Point D. Therefore,
loosely speaking, Point A is a repeller. Point B is at one end
of the cutting edge. At Point B, the field �P is dominant

over the kinetic term �P, and _�P ¼ _�P ¼ _HP ¼ 0.
Moreover, near Point B, the currents slowly approach and
then move away from Point B. Thus, Point B is a saddle
point. Similarly, Point C is also a saddle point. At Point C,
the kinetic term �P is dominant over the field �P. When
�m is equal to zero, Eq. (6) reads

€�þ 3H _�þ V0ð�Þ ¼ 0: (53)

Therefore, on the upper branch of the constraint surface

with HP > 0, due to the friction force �3H _�, the field �
will eventually arrive and stay at the minimum of the

potential, where V0ð�Þ ¼ 0, � ¼ 2�0, � ¼ 0, and H ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð12�0Þ

p
. This minimum corresponds to Point D in

Fig. 2, which is an attractor and is also called a de Sitter

point. When the field � comes to this point, only dark
energy exists in the Universe, with normal matter diluted
away.
We project the phase diagrams onto the regular space

ð�;�;HÞ. Near the cutting edge, the directions of the flows
are described as

d�

d�

��������flow
¼ _�

_�
¼ �ð�þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �

6�
e

�
�0
�2

s
: (54)

On the other hand, with Eq. (52), the slope of the tangent to
the edge yields the same expression. To conclude, the
phase-space flows are tangential to the cutting edge and
do not enter the forbidden area enclosed by the edge. In
other words, the constraint equation forces the currents to
stay on the surface. These conclusions also apply to the
compactified space f�P;�P;HPg.
The corresponding behavior of the phase currents on the

lower branch of the constraint surface with HP < 0 can be
analyzed in a similar way. There are still four critical points
on this branch, as listed below.

A0: ð�P ¼ 0þ; �P ¼ 1; HP ¼ �1Þ;
B0: ð�P ¼ �1; �P ¼ 0�; HP ¼ 0�Þ;
C0: ð�P ¼ 0�; �P ¼ �1; HP ¼ �1Þ;
D0: ð�P ¼ 0:5; �P ¼ 0; HP ¼ �0:083Þ:

The phase flows originate from the repeller Point D0, and
terminate at the attractor Point C0. Point A0 and Point B0 are
saddle points.

B. Phase-space dynamics in the presence of matter

The constraint surface described by Eq. (49) is three
dimensional when the matter/radiation density is not zero.
For ease of visualization, we explore the vector fields of

f _�P; _�P; _HPg on the slices where HP ¼ const in the three-
dimensional space f�P;�P;HPg, with the scale factor a
being taken as an implicit variable and �r equal to zero.

Some typical slices of the vector fields f _�P; _�PgwithHP

taking different values from �1 to 1 are shown in Fig. 3.
The thinner (blue) arrows denote that _HP < 0 at the posi-
tions of the arrows, and the thicker (red) arrows are for
_HP > 0. The solid (black) line is the intersection between
the two-dimensional constraint surface of Eq. (50) and the
slice of HP ¼ const. The dashed (cyan) line is the trace of
_�P ¼ 0, and Point C is at one end of this trace. The two-
dimensional constraint surface described by Eq. (50) is the
separation surface for the signs of the matter density term.
The matter density is positive in the space enclosed by the
constraint surface, and is negative outside of the surface.
The vector fields and some typical trajectories of the phase-
space flows can be combined together to study the tenden-
cies of the phase flows, as is done below.
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To complement thevector-field-slice approach, some typi-
cal trajectories of the phase-space flows with �m > 0 are
plotted in Fig. 4. Compared to the vacuum case, the phase-
space flows still originate at PointA and terminate at PointD,

but the trajectories between Point A and Point D can be
different from the vacuum solutions. Some flows, such as
those plotted as solid (cyan) and dashed (magenta) lines in
Fig. 4, behave similarly to those in the vacuum case shown in
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FIG. 3 (color online). The vector fields of f _�P; _�P; _HPg on the slices of HP ¼ const for the R lnR model with �0 ¼ R0 ¼ 1. The
thinner (blue) arrows denote that _HP < 0 at the positions of the arrows. The thicker (red) arrows are for _HP > 0. The solid (black) line
is the intersection between the two-dimensional vacuum constraint surface and the slice of HP ¼ const. The dashed (cyan) line is the
trace of _�P ¼ 0, where the flows change the direction of the _�P component. In (a)–(c), Point A is a repeller and Point C is a saddle
point. In (d), Point D is an attractor. In (f), Point B is a saddle point. In (h), Point D0 is a repeller. In (i), Point A0 is a saddle point and
Point C0 is an attractor. (a)HP ! 1. (b)HP ¼ 0:5. (c)HP ¼ 0:25. (d)HP ¼ 0:083. (e)HP ¼ 0:016. (f)HP ¼ 0. (g)HP ¼ �0:016. (h)
HP ¼ �0:083. (i) HP ! �1.
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Fig. 2. The flows go down from Point A, then up, then make
a turn and go down to Point D. This is also shown in
Figs. 3(a)–3(c). The thinner (blue) arrows near Point A in
Fig. 3(a) show the downward movement from Point A. The
thicker (red) arrows near the boundary in Figs. 3(b) and 3(c)
show the upward movement. The thinner (blue) and thicker
(red) arrows near the dashed (cyan) line in Figs. 3(b) and 3(c)
show the turn and movement down to Point D. Some flows
(well away from the constraint surface in vacuum), such as
those plotted with dash-dotted (red) and solid (blue) lines in
Fig. 4, can be very different from those in the vacuum case.
The flow plotted with a dash-dotted (red) line goes directly
downwards from Point A to Point D. This behavior can also
be observed from the thinner (blue) arrows in the region
ð�0:5<�p < 0:5; c p > 0Þ in Figs. 3(a)–3(d). Regarding

the trajectory plotted with a solid (blue) line in Fig. 4, one
part of it from Point A to Point C is not shown due to the
difficulty in obtaining an accurate numerical integration near
the boundary. The part of this trajectory from Point C to
Point D goes down from Point C, makes two turns, and
approaches PointD. This is also shown by the thinner (blue)
arrows at the corresponding places in Figs. 3(b)–3(d).

The fact that Point D is still an attractor in the presence
of matter is related to the dynamics of the scale factor a.
Equation (11) implies that _a is positive when the Hubble
parameter H is positive. Then the matter density keeps
decreasing in the evolution and asymptotically comes to
zero. Correspondingly, the phase flows approach Point D.

The flows with �m < 0 are between or outside of the two
branches of the vacuum constraint surface. They also

connect the critical points as the flows with �m > 0 do.
However, the trajectories for �m < 0 are not shown in this
paper because they are not physically meaningful.

Some slices of the vector fields f _�P; _�Pg with HP < 0
are shown in Figs. 3(g)–3(i). The typical behavior of the
phase flows can be analyzed in a similar way as in the case
of HP > 0, and is not included.

VI. THE COSMOLOGICAL EVOLUTION
OF THE R lnR MODEL

In the previous section, we studied the global behavior
of the phase-space dynamics in fðRÞ cosmology, where �m

and �r are independent of the Hubble parameter,H. In this
section, we explore the physically more important solution
where the scalar field� tracks the matter density evolution,
and �m and �r are related to H by

8�G

3
ð�m þ �rÞ � ð�m þ�rÞH2 ¼

�
�m;0

a3
þ�r;0

a4

�
H2

0 ;

where the ‘‘0’’ in the indices denotes that the quantities are
measured today with z ¼ 0. The �i

0s are defined as �i ¼
8�G�i=ð3H2Þ, where the index i refers to radiation or
matter. At high redshift, the field � of this solution closely
follows the minimum of the effective potential Veff , which
is defined by V 0

eff ¼ V0ð�Þ � 8�G�m=3 [see Eq. (9)], until
the field� becomes very light and ‘‘releases,’’ approaching
the de Sitter minimum of the potential Vð�Þ.
Equation (38) shows that the model is reduced to general

relativity when R is equal to R0. However, as argued in

FIG. 4 (color online). Some typical trajectories of the phase-space flows with �m > 0 for the R lnR model with �0 ¼ R0 ¼ 1.
Compared to the vacuum case, in the �m > 0 case the phase-space flows still originate at Point A and terminate at Point D. Regarding
the trajectory plotted with a solid (blue) line, one part of it between A and C is not shown due to the difficulty in obtaining an accurate
numerical integration near the boundary. (a) Trajectories with �m > 0. (b) Top view.
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Sec. IV, the field � logarithmically runs with respect to
X ¼ 8�G�=�, and the R lnR model slowly deviates from
general relativity. In this paper, we set units so that R0 is
equal to 1, and let R be equal to R0 around z ¼ 3:5� 104,
where the matter-radiation equality takes place [43].

The cosmological acceleration is a low-curvature issue.
Consequently, fðRÞ gravity should be reduced to general
relativity at the high-curvature scale, and it only deviates
from general relativity at the low-curvature scale.
However, in the R lnR model, the modification term is
not negligible at both the high- and low-curvature scales.
In order to reduce this model to general relativity at the
high-curvature scale, the parameter�0 should be much less
than 1, as discussed in Sec. IV. However, �0 cannot be too
small because of the relation between the de Sitter curva-

ture and �0, � ¼ R0e
�1=�0þ1, and also because of the

relation between the mass of the field and �0. Note that
the mass of the field � is defined by

m2 � V 00ð�Þ ¼ 1

3
�e�=�0�2

�
�

�0

� 1

�
: (55)

A tiny �0 generates an extremely small value for � and a
heavy mass for the field �. Consequently, the matter-
domination stage would last too long due to the extremely
small value of �, and the evolution of � would be very
slow due to its heavy mass. With the same arguments, the
parameter �0 cannot be too large either. A large �0 would
result in a short matter-domination epoch (if such an epoch
were to exist) and a fast evolution of �. These are illus-
trated in Figs. 5(a) and 5(c), respectively. Consequently,
one needs to choose an intermediate value for �0. Letting
�0 take the value of 0.02, we plot the evolution of the �i’s
and weff in Fig. 5(b) and that of � in Fig. 5(c). In this
solution, matter-radiation equality takes place around a
redshift of z ¼ 3250 [43], and �m ¼ 0:32 at z ¼ 0. The
field � runs significantly depending on the matter density,
as shown in Eq. (44). Consequently, the effective dark
energy density also changes significantly, as implied in
Eq. (16). As a result, there is no ideal matter-domination
epoch at high redshift. Moreover, weff is far away from the
expected value of �1 in the late Universe for this model.

The equation of state weff oscillates, as shown in Fig. 5.
This is related to the initial conditions in the numerical
simulations, and can be explained as follows. At high
redshift, the field � oscillates near the minimum of the
effective potential Veffð�Þ, defined by V0

effð�Þ ¼ V0ð�Þ �
8�G�m=3 [see Eq. (21)]. The close dependence of weff

on the kinetic terms of _� and €� also makes weff oscillate
[9,44]. [See Eqs. (15)–(17), which define weff .]

In Sec. III, we analyzed the cosmological viability of
fðRÞ gravity, and concluded that a heavy mass for the field
� would result in a slow evolution of � and thus a long
matter-domination epoch, and vice versa. These conclu-
sions are verified by the evolution of the�i’s and�, shown
in Fig. 5.

FIG. 5 (color online). The cosmological evolution for the
R lnR model with R0 ¼ 1. (a) The cosmological evolution with
�0 ¼ 0:04. A large �0 makes a small V 00ð�Þ and then a fast
evolution of �. (b) The cosmological evolution with �0 ¼ 0:02.
(c) The evolution of the field � with �0 taking different values.
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VII. PHASE-SPACE DYNAMICS
OF THE HU-SAWICKI MODEL

A. Introduction to the Hu-Sawicki model

In the R lnR model, general relativity is recovered only
for a particular range of curvature scales due to the loga-
rithmic running of f0 with respect to the matter density.
This makes it hard for the R lnR model to have a sensible
cosmological evolution. Actually, this problem is allevi-
ated in the modified logarithmic model [31],

fðRÞ ¼ R
aþ ln ðR=R0Þ
1þ ln ðR=R0Þ ¼ R

�
1� b

1þ ln ðR=R0Þ
�
; (56)

where b ¼ 1� a, because in this model f0 asymptotes to a
finite value and general relativity is restored at the high-
curvature scale. In this model, the running of the beta
function, � ¼ �kð�� ��Þ2, is essentially the same as in
the R lnR model. k and �� are positive constants.
Therefore, this model can still generate a hierarchy, as
discussed in Sec. IV. However, the function fðRÞ still
deviates noticeably from general relativity from R ¼ R0

to R � R0. In the�CDM-like models, the scalar field f0 is
almost frozen when the Ricci scalar is higher than the
cosmological constant scale, and is released when the
Ricci scalar is near the cosmological constant scale. In
the rest of this paper, we apply the techniques developed
above to a typical example of the �CDM-like models:
the Hu-Sawicki model. The function fðRÞ in this model
reads [8]

fðRÞ ¼ R� R0

C1R
n

C2R
n þ Rn

0

;

where C1 and C2 are dimensionless parameters, R0 ¼
8�G ��0=3, and ��0 is the average matter density of the
current Universe. We consider one of the simplest versions
of this model, i.e., for n ¼ 1,

fðRÞ ¼ R� CR0R

Rþ R0

; (57)

where C is a dimensionless parameter. With this choice,

f0 ¼ 1� CR2
0

ðRþ R0Þ2
; (58)

R ¼ R0

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C

1� f0

s
� 1

3
5; (59)

V 0ð�Þ ¼ R3

3ðRþ R0Þ2
�
1þ ð1� CÞR0

R

�
2þ R0

R

��
: (60)

Equations (58) and (60) show that as long as the matter
density is much greater than R0, the curvature R will trace
the matter density well, � will be close to 1 but will not
cross 1, and general relativity will be restored. As implied
in Eq. (60), in order for this model to have a de Sitter

attractor where V 0ð�Þ ¼ 0, the parameter C needs to be
greater than 1. In this paper, we set C ¼ 1:2.

B. Phase-space dynamics in vacuum

We explore the phase-space dynamics of the Hu-Sawicki
model using the Poincaré compactification in Eq. (51). For
this model, the parameter 	 in Eq. (51) is set to 1, and
Eq. (58) implies that the left boundary of the phase space is
constrained by � � f0 ¼ 1.
We first study the structure of the vacuum constraint

surface, which is plotted in Fig. 6. It is similar to that in
the R lnR model. The surface is folded in the octants of
ð� 	 0; � 
 0; H 
 0Þ and ð� 	 0; � 	 0; H 	 0Þ.
There are five critical points on the H 
 0 branch of the
constraint surface for this model. When C and R0 take the
values of 1.2 and 1, respectively, the coordinates of these
critical points are as follows.

A: ð�P ¼ 0�; �P ¼ 1; HP ¼ 1Þ;
B: ð�P ¼ �0:884; �P ¼ 0:412; HP ¼ 0:227Þ;
C: ð�P ¼ 0þ; �P ¼ �1; HP ¼ 1Þ;
D: ð�P ¼ 0:502; �P ¼ 0; HP ¼ 0:233Þ;
E: ð�P ¼ �0:196; �P ¼ 0; HP ¼ 0Þ:

Similar to the R lnR model, in the Hu-Sawicki model,
Point A is a repeller, Points B and C are saddle points, and
Point D is an attractor. Point E is a new critical saddle
point. It is on the cutting edge and also on one end of a
critical line. The details on Point E and the critical line are
discussed below.
In the three-dimensional phase space f�;�;Hg, the

two-dimensional plane � ¼ 1� C is very special. From
Eqs. (57) and (59), one can see that on this plane

fðRÞ ¼ R ¼ 0: (61)

The intersections between the constraint equation (12) in
vacuum and the plane � ¼ 1� C in the octant ð� 	
0; � 
 0; H 
 0Þ can be expressed as follows. On the
vacuum Hþ branch,

� ¼ 1� C; � ¼ �; H ¼ ��

�
; (62)

and on the vacuum H� branch,

� ¼ 1� C; � ¼ �; H ¼ 0: (63)

The vacuum Hþ and H� branches are obtained from the
constraint equation (12) by setting �m ¼ �r ¼ 0

H� ¼ 1

2

2
4��

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

�

�
2 � 2ðf��RÞ

3�

s 3
5:

The line given by Eq. (63) is a critical saddle line. With
Eqs. (8)–(12) and (61), one can see that, on this line,
_� ¼ _H ¼ 0. Consequently, _HP is equal to zero on the
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transformed line in the compactified phase space f�P;�P;
HPg. The critical line is the bottom of theHP 
 0 branch of
the vacuum constraint surface. The corresponding critical
line on the HP 	 0 branch is the top of that branch. These
two lines are connected by Point E, for which ð� ¼ 1�
C;� ¼ 0; H ¼ 0Þ. At this point, _� ¼ _� ¼ _H ¼ 0, and

then _�P ¼ _�P ¼ _HP ¼ 0. Point E is a critical saddle
point, as shown in Fig. 6. Moreover, Point E is also the
only point connecting the two branches of HP 
 0 and
HP 	 0 of the vacuum constraint surface, as shown in
Fig. 6. The combined critical line is shown by a solid
(magenta) line in Fig. 7(f).

The dynamics on the constraint surface of HP < 0 can
be explored in a similar way, and is omitted.

C. Phase-space dynamics in the presence of matter

Some typical slices for the vector fields of f _�P; _�Pg with
HP taking different values in the presence of matter are
shown in Fig. 7. In the case of �m > 0, the phase flows in
the Hu-Sawicki model move similarly to those in the R lnR
model. Specifically, the flows start from Point A, and end at
Point D. The phase flows for �m < 0 are skipped because
they are not physical.

The phase-space dynamics of the modified logarithmic
model given by Eq. (56), the exponential model given by
Eq. (64) (below) [45–48], and the Tsujikawa (hyperbolic
tangent) model given by Eq. (65) (below) [44] are also
analyzed here:

fðRÞ ¼ R� b½c� exp ð�R=R0Þ�; (64)

fðRÞ ¼ R� b tanh ðR=R0Þ: (65)

In Eqs. (64) and (65), b, c, and R0 are constants. When the
models have a de Sitter attractor with the parameters taking
appropriate values, the phase-space dynamics is similar to
that of the Hu-Sawicki model. The noticeable differences
are given below. In the modified logarithmic model,

f0 ¼ 1� b

1þ log ðR=R0Þ þ
b

½1þ log ðR=R0Þ�2

 1� b

4
:

Therefore, the left boundary of � � f0 in the phase space
of f�;�;Hg is constrained by � 
 1� b=4. In the
Tsujikawa model described by Eq. (65), the left boundary
of � in the phase space of f�;�;Hg is constrained by

� � f0 ¼ 1� ðb=R0Þsech2ðR=R0Þ 
 1� b=R0:

A critical point, labeled as E and at which fðRÞ ¼ R ¼ 0,
is present in the Hu-Sawicki model. However, a similar
point is absent in the modified logarithmic model described
by Eq. (56) and the exponential model described by
Eq. (64). This occurs because in the modified logarithmic
model the Ricci scalar R cannot be zero due to the loga-
rithmic function shown in fðRÞ and f0 of this model, and in
the exponential model fðRÞjR¼0 ¼ �b � c � 0.

FIG. 6 (color online). The constraint surface and the phase-space flows with �m ¼ 0 for the Hu-Sawicki model with C ¼ 1:2 and
R0 ¼ 1. As in the R lnR model, Point A is a repeller, Points B and C are saddle points, and Point D is an attractor. Point C0 is an
attractor, and Point D0 is a repeller. Point E is a critical saddle point. It is the lowest point of the HP 
 0 branch of the vacuum
constraint surface. It is also the only point connecting the two branches, HP 
 0 and HP 	 0, of the constraint surface. In (b), the left
boundary of the constraint surface is defined by� � f0 ¼ 1. Regarding the trajectories in green (light color), the parts of them between
A and C are not plotted due to the difficulty in obtaining an accurate numerical integration near the boundary. The shadings correspond
to the values ofHP. A color bar is not shown because the values ofHP can be seen from the z axis. (a) Constraint surface. (b) Top view.
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D. Cosmological evolution

In Sec. III, the conditions for the existence of a matter-
domination epoch in the early Universe for fðRÞ gravity
were explored, which can be expressed as the requirement

that the corrections should be less than the main terms at

three orders of derivative with respect to the Ricci scalar R.

Namely, if we rewrite the function fðRÞ as fðRÞ ¼ Rþ
AðRÞ, with AðRÞ being the modification term, then we have
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FIG. 7 (color online). The phase flows on the slices of HP ¼ const for the Hu-Sawicki model with C ¼ 1:2 and R0 ¼ 1. The thinner
(blue) arrows denote that _HP < 0. The thicker (red) arrows are for _HP > 0. The solid (magenta) line is the intersection between the
two-dimensional constraint surface and the slice ofHP ¼ const. The dashed (cyan) line is the trace of _�P ¼ 0. The solid (black) line is
defined by � � f0 ¼ 1. In (a), Point A is a repeller and Point C is a saddle point. In (b), Point D is an attractor. In (c), Point B is a
saddle point. In (f), Point E is a saddle point and the solid (magenta) line is a critical saddle line. In (h), Point D0 is a repeller. In (i),
Point A0 is a saddle point and Point C0 is an attractor. (a) HP ! 1. (b) HP ¼ 0:233. (c) HP ¼ 0:227. (d) HP ¼ 0:017. (e) HP ¼ 0:0001.
(f) HP ¼ 0. (g) HP ¼ �0:0001. (h) HP ¼ �0:233. (i) HP ! �1.
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jAðRÞj � R; jA0ðRÞj � 1; and A00ðRÞ � 1=R:

(66)

We can now compare the cosmological evolution of the
fðRÞ models discussed above with the results of Eq. (66).

For the R lnR model expressed by Eq. (38), we have

A00ðRÞ ¼ �0

R
:

As discussed in Sec. VI, under the balance of general
relativity restoration in the early Universe and dark energy
domination in the late Universe, a value around 0.02 is
chosen for �0. In this case, A0ðRÞ does not run slowly
enough with respect to R to ensure an ideal matter-
domination epoch. For the modified logarithmic model
(56), we have

A00ðRÞ ¼ b

R

�
1

½1þ ln ðR=R0Þ�2
� 2

½1þ ln ðR=R0Þ�3
�
:

Therefore, in the early Universe where R is much greater
than R0, A

00ðRÞ in this model runs more slowly than the one
in the R lnR model, and hence has a better cosmological
evolution, as shown in Ref. [40]. The �CDM-like models
(e.g., the Hu-Sawicki model) are very close to the �CDM
model at high redshift. At low redshift, the modification
term in the function fðRÞ becomes important, and the dark
energy is dominant enough to drive the cosmic accelera-
tion. In one of the simplest versions of the Hu-Sawicki
model (57),

A00ðRÞ ¼ 2CR0

ðRþ R0Þ3
� 1

R
; when R � R0:

Thus, A0ðRÞ moves more slowly with respect to R than the
one in the modified logarithmic model. Consequently,
models of this type better fit the cosmological observations
in both the early and the late Universe. The exponential
model (64) and the Tsujikawa (hyperbolic tangent) model
(65) are similar in terms of A00ðRÞ to the Hu-Sawicki model,
and they have similar cosmological evolutions as well [47].

VIII. CONCLUSIONS

In this article, we studied the cosmological evolution in
fðRÞ gravity, and obtained the conditions of cosmological
viability by using the scalar field description of fðRÞ
gravity. In the early Universe, the field � is coupled to
the matter density, acquiring mass from this coupling; thus
it has a slow-roll evolution. Consequently, general relativ-
ity is recovered and a matter-domination stage is ensured in
the early Universe. In the late Universe, when the scalar
curvature is around the cosmological constant scale, the
field � will be released from its coupling to the matter
density and approach the de Sitter minimum of the poten-
tial Vð�Þ. Then, the dark energy will be dominant and
drive the cosmic speed-up. The fact that in the early
Universe the field � slow-rolls is due to the heavy mass

obtained from the coupling between the field � and the
matter density. This behavior is very close to that of the
chameleon mechanism explored in the context of the Solar
System tests of fðRÞ gravity.
The phase-space dynamics and the cosmological evolu-

tion of the R lnR model and the Hu-Sawicki model were
studied in detail. The R lnR model has the feature of being
singularity free, which is an advantage in terms of the
hierarchy problem between the cosmological acceleration
scale and the Planck scale. On the other hand, in this model
general relativity can only be restored at a certain high-
curvature regime due to the logarithmic running of f0 with
respect to the matter density. Therefore, it is hard for this
model to have a sensible cosmological evolution in the
early Universe. The Hu-Sawicki model is very close to the
�CDM model, and can generate a cosmological evolution
compatible with the observations of both the early and the
late Universe.
In our explorations of phase-space dynamics, for sim-

plicity the radiation density was set to zero. In order to
obtain a global picture of the phase space, we compactified
the infinite phase space into a finite space via the Poincaré
transformation. The R lnR model and the Hu-Sawicki
model have similar phase-space dynamics. In the vacuum
case where the matter density is zero, the phase space is
three-dimensional and the constraint surface is two-
dimensional. The phase-space dynamics was explored in
the three-dimensional phase space f�;�;Hg without diffi-
culty. In the expansion branch of the phase space, the
constraint surface has a repeller and a de Sitter attractor;
while in the contraction branch, the constraint surface has
an attractor and a de Sitter repeller. The phase flows simply
move from the repeller to the corresponding attractor in
each space. When the matter density is not zero, the phase
space f�;�;H; ag is four-dimensional, and the constraint
surface is three-dimensional. For ease of visualization, we
projected the four-dimensional phase space f�;�;H; ag
onto the three-dimensional phase space f�;�;Hg by taking
the scale factor a as an implicit variable. It is not conve-
nient to study the phase-space dynamics on the three-
dimensional constraint surface directly. Instead, we cut
the three-dimensional surface into two-dimensional slices
of HP ¼ const, and explored the vector fields of the phase
flows on the slices.
As a supplement, we plotted some typical trajectories of

the phase flows. Like those in the vacuum case, when the
matter density is not zero, the phase flows still move from
the repeller to the corresponding attractor in each space.
Some trajectories between the repeller and the attractor are
similar to those in the vacuum case, while some others are
not. We also explored the phase-space dynamics of some
other fðRÞ models, such as the modified logarithmic
model, the exponential model, and the Tsujikawa model.
The results are similar to those of the Hu-Sawicki model.
We presented some generic features of the phase-space
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dynamics in fðRÞ gravity in this paper. We developed new
techniques to explore the phase-space dynamics: compac-
tifying the infinite phase space into a finite space via the
Poincaré transformation; studying the vector fields on
the two-dimensional slices of the constraint surface when
the constraint surface is three-dimensional; and plotting
typical trajectories of the phase flows. These techniques are
very general and could be applied to studies of other
similar dynamical systems.
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APPENDIX: LAMBERT W FUNCTION

The Lambert W function is defined [49] by

Y ¼ WðYÞeWðYÞ; (A1)

where Y can be a negative or a complex number. In this
paper, we only consider the case of Y > 0. When 0< Y �
1, WðYÞ � 1, eWðYÞ ! 1, then WðYÞ � Y. When Y � 1,
WðYÞ � 1, then lnY � W. Concisely,

WðYÞ ¼
�
Y if 0< Y � 1;
lnY if Y � 1:

(A2)

[1] A. G. Riess et al. (Supernova Search Team Collaboration),
Astron. J. 116, 1009 (1998).

[2] S. Perlmutter et al. (Supernova Cosmology Project
Collaboration), Astrophys. J. 517, 565 (1999).

[3] R. A. Knop et al. (The Supernova Cosmology Project),
Astrophys. J. 598, 102 (2003).

[4] A. G. Riess et al. (Supernova Search Team Collaboration),
Astrophys. J. 607, 665 (2004).

[5] P. A. R. Ade et al. (Planck Collaboration),
arXiv:1303.5062.

[6] S.M. Carroll, Living Rev. Relativity 4, 1 (2001).
[7] S.M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,

Phys. Rev. D 70, 043528 (2004).
[8] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[9] A. A. Starobinsky, JETP Lett. 86, 157 (2007).
[10] V. Miranda, S. E. Joras, I. Waga, and M. Quartin, Phys.

Rev. Lett. 102, 221101 (2009).
[11] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[12] A. D. Felice and S. Tsujikawa, Living Rev. Relativity 13, 3

(2010).
[13] D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman,

A. Singh, and M. Srednicki, Phys. Rev. D 56, 1939
(1997).

[14] G. Felder, A. Frolov, L. Kofman, and A. Linde, Phys. Rev.
D 66, 023507 (2002).

[15] V. Faraoni, Phys. Rev. D 70, 044037 (2004).
[16] A. Vikman, Phys. Rev. D 71, 023515 (2005).
[17] H. Wei and R.-G. Cai, Phys. Rev. D 72, 123507

(2005).
[18] R. Bean, D. Bernat, L. Pogosian, A. Silvestri, and M.

Trodden, Phys. Rev. D 75, 064020 (2007).
[19] L. Amendola, R. Gannouji, D. Polarski, and S. Tsujikawa,

Phys. Rev. D 75, 083504 (2007).
[20] J. C. C de Souza and V. Faraoni, Classical Quantum

Gravity 24, 3637 (2007).

[21] L. Pogosian and A. Silvestri, Phys. Rev. D 77, 023503
(2008).

[22] J. D. Evans, L.M.H. Hall, and P. Caillol, Phys. Rev. D 77,
083514 (2008).

[23] T. Clifton, Phys. Rev. D 78, 083501 (2008).
[24] E. J. Copeland, S. Mizuno, and M. Shaeri, Phys. Rev. D

79, 103515 (2009).
[25] R. Giambo and J. Miritzis, Classical Quantum Gravity 27,

095003 (2010).
[26] M. Abdelwahab, R. Goswami, and P. K. S. Dunsby, Phys.

Rev. D 85, 083511 (2012).
[27] M.M. Ivanov and A.V. Toporensky, Int. J. Mod. Phys. D

21, 1250051 (2012).
[28] L. G. Jaime, L. Patino, and M. Salgado, arXiv:1206.1642.
[29] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[30] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559

(2003).
[31] A. V. Frolov and J.-Q. Guo, arXiv:1101.4995.
[32] A. V. Frolov, Phys. Rev. Lett. 101, 061103 (2008).
[33] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104

(2004).
[34] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026

(2004).
[35] I. Navarro and K.V. Acoleyen, J. Cosmol. Astropart. Phys.

02 (2007) 022.
[36] T. Faulkner, M. Tegmark, E. F. Bunn, and Y. Mao, Phys.

Rev. D 76, 063505 (2007).
[37] J.-A. Gu and W.-T. Lin, arXiv:1108.1782.
[38] T. Tamaki and S. Tsujikawa, Phys. Rev. D 78, 084028

(2008).
[39] S. Tsujikawa, T. Tamaki, and R. Tavakol, J. Cosmol.

Astropart. Phys. 05 (2009) 020.
[40] J.-Q. Guo, arXiv:1306.1853.
[41] A. Nunez and S. Solganik, arXiv:hep-th/0403159.
[42] A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1

(2003).

COSMOLOGICAL DYNAMICS IN fðRÞ GRAVITY PHYSICAL REVIEW D 88, 124036 (2013)

124036-15

http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/378560
http://dx.doi.org/10.1086/383612
http://arXiv.org/abs/1303.5062
http://dx.doi.org/10.12942/lrr-2001-1
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1134/S0021364007150027
http://dx.doi.org/10.1103/PhysRevLett.102.221101
http://dx.doi.org/10.1103/PhysRevLett.102.221101
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.1103/PhysRevD.56.1939
http://dx.doi.org/10.1103/PhysRevD.56.1939
http://dx.doi.org/10.1103/PhysRevD.66.023507
http://dx.doi.org/10.1103/PhysRevD.66.023507
http://dx.doi.org/10.1103/PhysRevD.70.044037
http://dx.doi.org/10.1103/PhysRevD.71.023515
http://dx.doi.org/10.1103/PhysRevD.72.123507
http://dx.doi.org/10.1103/PhysRevD.72.123507
http://dx.doi.org/10.1103/PhysRevD.75.064020
http://dx.doi.org/10.1103/PhysRevD.75.083504
http://dx.doi.org/10.1088/0264-9381/24/14/006
http://dx.doi.org/10.1088/0264-9381/24/14/006
http://dx.doi.org/10.1103/PhysRevD.77.023503
http://dx.doi.org/10.1103/PhysRevD.77.023503
http://dx.doi.org/10.1103/PhysRevD.77.083514
http://dx.doi.org/10.1103/PhysRevD.77.083514
http://dx.doi.org/10.1103/PhysRevD.78.083501
http://dx.doi.org/10.1103/PhysRevD.79.103515
http://dx.doi.org/10.1103/PhysRevD.79.103515
http://dx.doi.org/10.1088/0264-9381/27/9/095003
http://dx.doi.org/10.1088/0264-9381/27/9/095003
http://dx.doi.org/10.1103/PhysRevD.85.083511
http://dx.doi.org/10.1103/PhysRevD.85.083511
http://dx.doi.org/10.1142/S0218271812500514
http://dx.doi.org/10.1142/S0218271812500514
http://arXiv.org/abs/1206.1642
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1103/RevModPhys.75.559
http://dx.doi.org/10.1103/RevModPhys.75.559
http://arXiv.org/abs/1101.4995
http://dx.doi.org/10.1103/PhysRevLett.101.061103
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1088/1475-7516/2007/02/022
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://arXiv.org/abs/1108.1782
http://dx.doi.org/10.1103/PhysRevD.78.084028
http://dx.doi.org/10.1103/PhysRevD.78.084028
http://dx.doi.org/10.1088/1475-7516/2009/05/020
http://dx.doi.org/10.1088/1475-7516/2009/05/020
http://arXiv.org/abs/1306.1853
http://arXiv.org/abs/hep-th/0403159
http://dx.doi.org/10.1016/j.physletb.2003.08.039
http://dx.doi.org/10.1016/j.physletb.2003.08.039


[43] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.
Suppl. Ser. 192, 18 (2011).

[44] S. Tsujikawa, Phys. Rev. D 77, 023507 (2008).
[45] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, L.

Sebastiani, and S. Zerbini, Phys. Rev. D 77, 046009
(2008).

[46] E. V. Linder, Phys. Rev. D 80, 123528 (2009).

[47] K. Bamba, C.-Q. Geng, and C.-C. Lee, J. Cosmol.
Astropart. Phys. 08 (2010) 021.

[48] E. Elizalde, S. Nojiri, S. D. Odintsov, L. Sebastiani, and S.
Zerbini, Phys. Rev. D 83, 086006 (2011).

[49] R.M. Corless, G. H. Gonnet, D. E. G. Hare, D. J.
Jeffrey, and D. E. Knuth, Adv. Comput. Math. 5, 329
(1996).

JUN-QI GUO AND ANDREI V. FROLOV PHYSICAL REVIEW D 88, 124036 (2013)

124036-16

http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1103/PhysRevD.77.023507
http://dx.doi.org/10.1103/PhysRevD.77.046009
http://dx.doi.org/10.1103/PhysRevD.77.046009
http://dx.doi.org/10.1103/PhysRevD.80.123528
http://dx.doi.org/10.1088/1475-7516/2010/08/021
http://dx.doi.org/10.1088/1475-7516/2010/08/021
http://dx.doi.org/10.1103/PhysRevD.83.086006
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1007/BF02124750

