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We consider the effect of a logarithmic fðRÞ theory, motivated by the form of the one-loop effective

action arising from gluons in curved spacetime, on the structure of relativistic stars. In addition to

analyzing the consistency constraints on the potential of the scalar degree of freedom, we discuss the

possibility of observational features arising from a fifth force in the vicinity of the neutron star surface. We

find that the model exhibits a chameleon effect that completely suppresses the effect of the modification

on scales exceeding a few radii, but close to the surface of the neutron star, the deviation from general

relativity can significantly affect the surface redshift that determines the shift in absorption (or emission)

lines. We also use the method of perturbative constraints to solve the modified Tolman-Oppenheimer-

Volkov equations for normal and self-bound neutron stars (quark stars).
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I. INTRODUCTION

The modification of the Einstein-Hilbert (EH) action to
include higher order curvature invariants has a distin-
guished history, beginning just a few years after the in-
troduction of general relativity (GR) [1]. However, it was
the realization that renormalization at one loop demands
that the EH action be supplemented with higher order
terms that stimulated interest in modifications in the strong
gravity regime, such as Starobinsky’s well-known curva-
ture driven inflationary scenario [2]. The possibility that
such corrections could affect gravitational phenomenology
at low energies was not seriously considered until the
discovery of the acceleration of the expansion of the
Universe [3], whereupon fðRÞ models in particular, in
which the EH action is replaced with a more general
function of the Ricci scalar, have been intensely studied
by many authors (see [4,5] for comprehensive reviews).

Modifications of gravity that lead to deviations in the
low energy regime, corresponding to the late Universe,
must, in addition to compatibility with cosmological ob-
servations and internal consistency requirements, stand up
to a host of constraints arising from equivalence principle
tests and Solar Systemmeasurements on local scales. Since
fðRÞ theories can be reformulated as a scalar-tensor theory
with a fixed coupling to matter, these tests are sufficient to
rule out the models, unless the fifth force generated by the
scalar degree of freedom is effectively screened, as in the
chameleon mechanism [6,7].

By comparison, the strong gravity regime is poorly con-
strained by observations [8]. One can consider the stability
of relativistic stars in fðRÞ gravity as a test of the theory’s
viability; indeed, it was claimed by the authors of [9] that
the formation of compact objects is actually prohibited in
cosmologically successful fðRÞmodels that modify the EH

action in the low-curvature regime, due to the presence of a
physically accessible curvature singularity. However, it
was later shown explicitly that this claim does not hold,
and that by taking account of the chameleon effect (i.e.
considering the nonlinearity of the field equations [10]) or
using a more realistic equation of state [11,12] such solu-
tions can be constructed.
One difficulty with the fðRÞmodels discussed in the last

paragraph is that the purported instabilities occur when
treating the model as exact at scales far removed from
the phenomena they were constructed to describe. This
consideration has led Cooney et al. [13]. to treat relativistic
stars as a framework in which to study fðRÞ models under
the assumption that the modifications are next to leading
order corrections to the EH action. Using the method of
perturbative constraints and corrections of the form Rnþ1,
they showed that the predicted mass-radius relation for
neutron stars differs from that calculated in the general
relativity, although this is degenerate with the neutron star
equation of state. Subsequent studies by other authors have
focused on R-squared models with fðRÞ ¼ Rþ �R2

[14,15] and also R��R�� [16] terms (see also [17,18])

where in the former the value of � is constrained to be � &
106 m2 (cf. [19] for a detailed discussion on this point).
Recently, the same fðRÞ model was applied to a neutron
star with a strong magnetic field and the constraints on the
parameter � obtained as � � 105 m2 [20]. The problem of
gravitational collapse and hydrostatic equilibrium in fðRÞ
gravity has also been considered by several authors [21].
In this paper, by considering the semiclassical approach

to quantum gravity, we propose a phenomenological fðRÞ
model of the form Rþ �R2 þ �R2 ln ðR=�2Þ that is rele-
vant for the strong field regime in the interior of relativistic
stars. fðRÞ theories with logarithmic terms have been
previously considered as models of dark energy [22] and
modified gravity models of this form have also been
discussed in early works [23] in the context of the
Starobinsky inflationary model. Cosmological evolution
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in a logarithmic model arising from a running gravitational
coupling has also been studied in the recent work [24].

It is well known that in the absence of a viable theory of
quantum gravity, semiclassical methods like quantum field
theory in curved spacetime are useful tools to study the
influence of gravitational fields on quantum phenomena
[25]. The curvature of spacetime modifies the gluon propa-
gator with terms proportional to the Ricci scalar in a
constant-curvature spacetime locally around the gluons.
As was first shown by Leen [26] and Calzetta et al. [27]
(see also [28]), one-loop renormalization of non-Abelian
gauge theories in a general curved spacetime induces terms
logarithmic in R that dominate at large curvature. Neutron
stars probe the dense QCD phase diagram at low tempera-
ture and high baryon densities, where the baryon density
in the stellar interior can reach an order of magnitude
beyond the nuclear saturation density �ns ¼ 2:7�
1017 kgm�3. In such a dense medium, where the strong
nuclear force plays an paramount role, we consider the
effect of corrections to the EH action involving terms of the
form �R2 þ �R2 ln ðR=�2Þ on the observational features
of the neutron star.

We shall also consider the effect of the fðRÞ model on a
separate class of neutron stars: self-bound stars, consisting
of strange quark matter with finite density but zero pressure
at their surface [29–31]. The interior of the star is made up
of deconfined quarks that form a color superconductor,
leading to a softer equation of state with possible observ-
able effects on the minimum mass, radii, cooling behavior,
and other observables [32,33].

The structure of this paper is as follows. In Sec. II we
motivate the fðRÞ model by considering the calculation of
the gauge invariant effective action for gauge fields in
curved spacetime. Then in Sec. III, we investigate con-
straints imposed upon the model from the requirements of
internal consistency and compatibility with observations,
and discuss the potential observational signatures due to a
change in the effective gravitational constant near the
surface of the star. In Sec. IV the structure of relativistic
stars is considered in the framework of the fðRÞ theory,
and we summarize our results in Sec. V. Unless otherwise
stated, we use a metric with signature þ2, and define
the Riemann tensor by R�

���¼@��
�
���@��

�
��þ

��
���

�
�����

���
�
��. We use units such that ℏ ¼ c ¼ 1.

II. MOTIVATIONS

The behavior of gauge theories in curved spacetime was
studied in detail by several authors some thirty years ago,
with the intention of seeing if quantitatively new effects
appear in the high-curvature limit (cf. [34] for a textbook
discussion and original references). In particular it was
shown by Calzetta et al. [27] that for a pure gauge theory
in a general curved spacetime, the effective value of the
gauge coupling constant can become small in the high
curvature limit, due to the presence of ln ðR=�2Þ terms in

the renormalized gauge-invariant effective action: a situ-
ation referred to as curvature-induced asymptotic freedom.
Without going into details, in this section we sketch how
this result comes about, and use the form of the full result
to motivate the phenomenological fðRÞ theory that will be
investigated in more detail in the remainder of the paper.
The classical action for a pure gauge field is1 S½A� ¼

� 1
4 ðF��; F

��Þ, where A� ¼ A�;at
adj
a is a gauge field in the

adjoint representation, ½tadja ; tadjb � ¼ ifabct
adj
a , and the field

strength is

F��;a ¼ r�A�;a �r�A�;a þ egfabcA�;bA�;c; (2.1)

in terms of the metric covariant derivative r�. The gen-

erating function for disconnected graphs in the presence of
a background gauge field A� and a source J� is

Z½J; A� ¼
Z

D½a�D½	�D½ �	� exp ði½S½Aþ a�
þ Sgf þ Sghost þ Sgrav þ ðJ�; a�Þ�Þ; (2.2)

where Sgf ¼ � 1
2! ðD � a;D � a; Þ is the gauge fixing term

and Sghost ¼ �R
ddx

ffiffiffiffiffiffiffi�g
p

�	D � ðDþ aÞ	 is the ghost field

action. Here D refers to the (gauge) covariant derivative
D� ¼ r� þ iegA�. Renormalizability in curved space-

time requires the inclusion of squared-curvature terms in
addition to the Einstein-Hilbert action

Sgrav ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
�M2

Pl�þM2
Pl

2
Rþ �1R

����R����

þ �2R
��R�� þ �3R

2

�
; (2.3)

where d is the number of spacetime dimensions, M2
Pl ¼

1=8
G and the authors of [27] use a metric with signature
�2 and, relative to our convention, the opposite sign for
R�

���. The gauge-invariant effective action �½A� is ob-

tained via a Legendre transformation from the functional
W ¼ �i ln ðZÞ. To one-loop order, it is given by

�½A�¼S½A�þSgravþ i

2
ln detðKÞ� i ln detðD2Þ; (2.4)

where

K�� ¼ g��D
2 � ð1� 1=!ÞD�D� � 2iegF�� þ R��;

(2.5)

and D2 ¼ D�D
�. Since �½A� is gauge invariant, the cal-

culation may be simplified without affecting the final result
by choosing the Feynman gauge! ¼ 1. In general, one has
a choice concerning the separation of the full action into a
free part and an interacting part, which determines which
terms provide propagators entering into Feynman diagrams

1In this section we use the shorthand ðf; gÞ ¼R
ddx

ffiffiffiffiffiffiffi�g
p

faðxÞgaðxÞ for fields f, g with components fa, ga.
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and which provide vertices. The above choice corresponds
to taking the free part to consist of all terms quadratic in the
quantum fields a, �	, 	.2 Regularizing using dimensional
regularization gives

�½A� ¼ S½AB�þSgrav;Bþ 1

ð4
Þd=2
Z
ddx

ffiffiffiffiffiffiffi�g
p 1

ð�R=6Þ2�d=2

�
��
1þ 1

12

�
1�d

2

��
�

�
2�d

2

�
Ce2g�

ð4�dÞF��;aF
��
a

þ�

�
2�d

2

�
N

�
�1

9

ðdþ 1Þ
dðd� 2ÞR

2

þd� 17

360
R����R

����þ 92�d

360
R��R

��

�

þX1
j¼3

�ðj� d
2Þ

ð�R=6Þj�2
tr½Hj�

�
; (2.6)

where �abC ¼ trðtadja ; t
adj
b Þ, N is the dimension of the

gauge group, andHj stands for curvature and field strength

terms entering into the relevant Schwinger-DeWitt series.
The subscript B indicates that these terms involve bare
quantities. Adopting the minimal subtraction scheme, the
renormalized gauge-invariant effective action �½A� is
found to be

�½A�¼S½A�þSgrav� 1

16
2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

ln

��R=6

4
�2

�
þ�E

�

�
�
11

12
e2gCF

��
a F��;aþ

�
� 13

360
R����R

����

þ11

45
R��R

��� 5

72
R2

�
N

�
; (2.7)

where S½A� þ Sgrav contain finite renormalized coefficients

and �E is the Euler-Mascheroni constant. Here, the minus
sign is kept in the logarithm to emphasize that it is �R=6
that plays the role of ‘‘squared mass’’ in the loop integrals,
however, the integrals leading to this result are well defined
regardless of the sign of R [27]. From a phenomenological
perspective the ln ð�1Þ ¼ i
 is simply another finite con-
tribution entering into the coefficients of the squared cur-
vature and field strength terms in the gravitational and
gauge field actions. It is noted in [27] that the appearance
of a negative argument in the logarithm could possibly be
interpreted as a vacuum instability. However, such imagi-
nary terms could be canceled by others arising from global
topological effects or from further R-dependent correc-
tions. It should also be noted that, for effects such as
curvature-induced asymptotic freedom, only the real part
ln ðjRj=jR0jÞ, where R0 is a scalar curvature chosen so that

eg is small and so perturbation theory is valid, enters the

expressions for the effective coupling constant eeffg [27].

Equation (2.7) takes account of the corrections to the
quantum field theory due to the presence of non-negligible
spacetime curvature. Ordinarily, QCD can be treated in
Minkowski spacetime, which is maximally symmetric,
however, in situations where the gravitational field is par-
ticularly strong it is desirable to generalize this. An ob-
vious first step is to consider a spacetime that maintains
maximal symmetry but allows for nonzero curvature, such
as a de Sitter or anti–de Sitter spacetime (cf. [35,36]).
Hence in the interior of a neutron star, where the spacetime
curvature is particularly large, one can consider a
Lagrangian on local, microscopic scales with a maximally
symmetric spacetime with constant curvature.
In a maximally symmetric spacetime with constant cur-

vature, the Ricci and Riemann tensors are proportional to
the Ricci scalar, i.e. R����R

���� / R2, R��R
�� / R2.

On the small scales relevant for QCD, the background
spacetime is highly symmetric and one can consider the
maximally symmetric case as an approximation: the gravi-
tational part of the effective Lagrangian for a non-Abelian
gauge field such as the gluon field would thus consist of
R2 and R2 ln ðR=�2Þ terms. Here, the factors of R2 arise as
a combination of the R����R

����, R��R
��, and R2 terms

in (2.7).
On astrophysical scales, however, gluons are no longer

the relevant degrees of freedom and the situation is quite
different. On large scales, far removed from those relevant
for subatomic particles, relaxing the constant curvature
condition would lead to a nonstandard dependence of the
gravitational action on the curvature. The phenomenology
of a neutron star is a window onto the strong-field limit of
gravitational theories, and as such, it is of great theoretical
interest to consider the observable effects of alternatives to
general relativity, the simplest being fðRÞ theories. Modulo
stability and consistency constraints, the form of the func-
tion fðRÞ can be arbitrary. In this article we are interested in
the effect of modifications to the EH action on the structure
of relativistic stars, where QCD plays an important role.
Motivated by the results summarized in this section, we
propose a phenomenological fðRÞ model3

Stot ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ �R2 þ �R2 ln ðR=�2Þ� þ Sm;

(2.8)

where the constants � and � should be determined by
observations. As we consider only astrophysical scales,
we do not include the effect of the cosmological constant

2Another possibility is to treat terms involving the background
field A as interaction terms, in which case the inverse propagator
involves only the first and last terms in (2.5). As shown in [27],
the final results for the two methods agree.

3In principle, one could extend this to include terms involving
one (but making use of the Gauss-Bonnet invariant, not both, cf.
[19]) of the other curvature invariants in (2.7). However, since on
the small scales on which (2.7) is relevant we can treat the
background spacetime as approximately maximally symmetric,
we consider only a function of the Ricci scalar here.
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term. We note that modified gravity theories of this form
have also been discussed in early works discussing the
effective gravitational action of conformally covariant
fields [23] in the context of the Starobinsky inflationary
model.

As we are considering neutron stars, a natural choice of
the parameter � should contain the relevant mass scales.
We will assume

� ¼ m2
n=MPl; (2.9)

where mn is the neutron mass and MPl is the Planck mass.
Taking account of factors of c and ℏ, the numerical value of
�2 is �2 ’ 1:3� 10�7 m�2. The characteristic value of
the Ricci scalar for a neutron star can be estimated by
(cf. [16]) R0 ¼ 8
G�� � 6M�=c2r3�, whereM� is the mass
and r� the radius of the star. For a typical neutron star
with M� ¼ 1:8M� and r� ¼ 10 km, we have R0 ’ 1:6�
10�8 m�2, with larger values expected in the high-density
region near the core. Thus, �2 is of the order of the
curvature of a typical neutron star.

III. CONSTRAINTS ON THE MODEL

In Sec. IV we shall investigate the phenomenology of
relativistic stars in the fðRÞ theory described by the action
(2.8), working in the metric formalism. First, in Secs. III A
and III B we consider consistency and observational con-
straints to check the viability of the model in such a
medium. It is important to emphasize that we treat the
model as an effective theory valid in the interior and
vicinity of ultradense matter, and so do not consider cos-
mological or Solar System tests.

A. Consistency constraints

An fðRÞ model inevitably introduces a scalar degree of
freedom, which is constrained by the requirement that the
model must be free of instabilities [4]. Such consistency
constraints are not always obvious at first sight; indeed,
generalizing the findings of Dolgov and Kawasaki [37], it
was pointed out by Frolov [38] that many fðRÞmodels that
deviate from general relativity in the infrared possess a
crippling nonlinear instability. In this section, we illustrate
how these constraints can restrict the parameters of our
model.

From (2.8) we have

fðRÞ ¼ Rþ �R2 þ �R2 ln
R

�2
: (3.1)

In this section and throughout this paper, we shall restrict
ourselves to the case in which the R2 ln ðR=�2Þ term is
subdominant to the R2 term i.e. j�j 	 1, where

� 
 �=�: (3.2)

The system is best studied in the original frame (i.e.
without performing a conformal transformation to the

Einstein frame). The equation of motion for the scalar
degree of freedom is

hfR ¼ 2f� fRR

3
þ 8
G

3
T; (3.3)

where T is the trace of the stress-energy tensor. Defining

 
 fR � 1; (3.4)

where fR 
 dfðRÞ=dR, this can be recast in the form

h ¼ dV

d
�F ; (3.5)

whereF ¼ �ð8
G=3ÞT appears as a force term and V is a
potential satisfying

dV

d
¼ 1

3
ð2f� fRRÞ: (3.6)

In the model at hand, the form of fðRÞ and its derivatives
are given by

fðRÞ ¼ Rþ �R2 þ �R2 ln ðR=�2Þ; (3.7)

fRðRÞ ¼ 1þ ð2�þ �ÞRþ 2�R ln ðR=�2Þ; (3.8)

fRRðRÞ ¼ 2�þ 3�þ 2� ln ðR=�2Þ; (3.9)

so that

dV

d
¼ 1

3
ðR� �R2Þ: (3.10)

As we shall see in Sec. IV, the modified Einstein equations
involve fRR, which is not analytic at R ¼ 0. Hence, we
shall restrict our analysis to non-negative values of the
curvature scalar. To obtain the form of the potential without
inverting, one can multiply (3.10) by (3.9) and integrate
with respect to R to yield the parametric equations4

ðRÞ ¼ R

�
2�þ �þ � ln

�
R2

�4

��
; (3.11)

and

VðRÞ ¼ �R2

9

�
�R

�
2�þ 7

3
�þ � ln

�
R2

�4

��

� 3�� 3�� 3

2
� ln

�
R2

�4

��
: (3.12)

The potential is shown in Fig. 1. One can see immediately
that in the limit of large curvature (R ! 1) V ! �1
while  ! sgnð�Þ1 (for negative � the potential turns

4Note that in order to show the full form of the potential
obtained from (3.1) using the range R 2 ð�1;1Þ, we have
adjusted the numerical factors here so that the arguments of
the logs depend on R2. We shall only consider the part corre-
sponding to R � 0.
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back on itself after an inflection point to reach negative ).
This should be contrasted with the behavior of the basic
fðRÞ ¼ Rþ �R2 model, where the potential is a simple
quadratic in the  field. Thus, Frolov’s singularity—in
which the curvature singularity is a finite distance in field
and energy values away from the stable solution—will be
avoided.

What is the nature of the stable solution in this model in
the absence of matter? From (3.10) we note that there are
two stationary points, at R ¼ 0 and R ¼ 1=�, respectively;
to ensure perturbative stability, the scalar degree of free-
dom should satisfy the important requirement that its
squared mass term is positive m2

 
 d2V=d2 > 0. It fol-

lows from (3.9) that

m2
ðRÞ ¼ dR

d

d

dR

�
2f� fRR

3

�
¼ 1� 2�R

3fRR
; (3.13)

however, one cannot substitute R ¼ 0 into this expression
due to the singularity in the logarithmic term in (3.9). For
small � we have from the form of the potential

VðR ¼ ��Þ ¼ �

3
½1þ �þ � ln ð�=�2Þ��2 þOð�3Þ;

(3.14)

which should be positive as � ! 0 if R ¼ 0 is a minimum.
Assuming j�j 	 1, this is true only when �< 0, regard-
less of the sign of �.

For R ¼ 1=� to be a minimum, one needs fRRðR ¼
1=�Þ< 0. As we do not consider negative curvature,
�> 0 and the condition is equivalent to

R��> 1; (3.15)

where we have defined

R� ¼ �2 exp

�
� 3

2
� ��1

�
: (3.16)

When j�j 	 1, the dimensionless ratio R�=�2 is exponen-
tially large for negative � and exponentially small for
positive �. We conclude that the stationary point at
R ¼ 1=� is only stable for negative alpha.
Since maximally symmetric solutions lead to a

constant Ricci scalar [and so the derivatives of 
vanish in (3.5)], one can conclude from this that the
maximally symmetric solution is Minkowski spacetime
(R ¼ 0) when �< 0 and de Sitter spacetime when
�> 0, �< 0.
We can also analyze the sign of m2

 away from the

stationary points. For negative � we find

m2
 > 0 ) R< R� ð�< 0Þ; (3.17)

which in terms of  is < � 
 �2�R�. For positive �
one must also take the numerator of (3.13) into account,
giving

m2
>0)

8<
:
R�<R< 1

2�; R�< 1
2�

R�>R> 1
2�; R�> 1

2�

ð�>0Þ: (3.18)

The relevant interval depends on whether the condition
R� < 1

2� is satisfied. Since we are only interested in positive

� here we can write this as

e�
�1�ln j�j > 2e�3=2j�2�j: (3.19)

As discussed in Sec. IV, in order to make use of the
method of perturbative constraints we shall work with
parameter values such that j��2j 	 1. Hence, when
j�j 	 1, R� < 1

2� is easily satisfied if �> 0. Similarly,

R� > 1
2� when �< 0.

The requirement that the graviton is not a ghost,5 or
equivalently that the effective gravitational constant Geff is

FIG. 1 (color online). The potential VðÞ corresponding to positive (blue) and negative (red) R. The branch points at  ¼ � are
indicated by the black circles. Large values, � ¼ � ¼ 1, j�j ¼ 0:25 have been chosen to illustrate the important features. Left panel:
Negative �. Middle panel: Positive �. The apparent minimum at  ¼ 0 in the middle panel is actually a maximum with branch points
at  ¼ � 	 1, as can be seen in the right panel, which is a close-up of the region around  ¼ 0 for �> 0.

5Here we assume that it is calculated by expanding the
propagator about Minkowski spacetime.
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positive, imposes the well-known condition fRðRÞ> 0.
Using the definition of  this gives >�1. We can write
this condition in terms of R: for �> 0, �< 0 the range of
the scalar curvature is bounded

R<�
�
2�W0

�
� exp ð12 þ ��1Þ

2�2�

���1
;

where W0 is the upper branch of the Lambert W function.
If j�j 	 1, the exponential in the argument is small, so the
upper limit is

fR > 0 ) R & �2e�
2�þ�
2� ¼ e1R� ð�> 0; � < 0Þ:

(3.20)

Thus, the condition ensuring the positivity of the scalar
mass (3.17) is sufficient to ensure that Geff > 0. If we
were to consider positive �, we need only recognize that
since the function fRðRÞ is decreasing as it crosses the
axis at fRðR ¼ 0Þ ¼ 1 the smallest value it can reach is
fRðR ¼ R�Þ ¼ 1� 2�R�. The condition can thus be ex-
pressed as

fR > 0 ) R� <
1

2�
ð�> 0; � > 0Þ (3.21)

which, as noted above, is easily satisfied with the choice
� 	 1. For negative � we find6

R<

8>>><
>>>:
�
h
2�W0

�
� exp ð12þ��1Þ

2�2�

	i�1 ð�< 0; � < 0Þ
�
h
2�W�1

�
� exp ð12þ��1Þ

2�2�

	i�1 ð�< 0; � > 0Þ;

(3.22)

where W0 and W�1 indicate the upper and lower branches
of the Lambert W function respectively. Since for large x,
W0ðxÞ � ln ðxÞ, and for small x, W�1ðxÞ � ln ð�xÞ, when
j�j 	 1, we have

R & � 1

2�
; (3.23)

as in the � ¼ 0 case, i.e. fðRÞ ¼ Rþ �R2. For �> 0 this
is a stronger upper bound than that in (3.18). For �< 0, �
is positive and so (3.23) is weaker than (3.17), which
already restricts R to exponentially small values. One
difference between this and the fðRÞ ¼ Rþ �R2 model
is that the negative � case is not ruled out by the fRR
condition, so can be considered as a viable parameter
choice, albeit for a restricted range of values of R.
These constraints are summarized in Table I.

As with many fðRÞmodels in the literature, the potential
VðÞ is multivalued, with branches at the points  ¼ �

(see Fig. 1). As long as the conditions derived above are
satisfied, the field will not reach these critical points. In the
case of negative � (with �> 0) this amounts to a (large)
upper limit of the value of the spacetime curvature for
which the model can be considered valid, which is far
away from the stable solution at R ¼ 0 and for the small
values of j�j considered here, significantly larger than the
curvature encountered in neutron stars. However, for posi-
tive �, the potential has no stable minimum when �> 0
and the branch point occurs at the lower limit of the range
of validity, corresponding to a value of R much smaller
than the characteristic curvature of a neutron star. In a
realistic scenario, this could be remedied by the presence
of a matter term T � 0, which would give rise to a mini-
mum in the effective potential. Since the model in this
paper is considered phenomenologically as an (ultraviolet)
modification to general relativity that is relevant in the
presence of dense nuclear matter, and in reality neutron
stars are not completely isolated but instead occur in
astrophysical situations with a nonzero stress tensor, the
instability may be avoided in practice. This notwithstand-
ing, in the remainder of this paper we will consider only
negative values of �.
The results of this subsection are presented in Table I. In

particular we note that for �> 0, the condition ensuring
unitarity—equivalent to fR > 0 for fðRÞ theories—is sat-
isfied for a wide range of curvature values when � is
positive, but is restricted to values less than �1=2� [as
in the fðRÞ ¼ �R2 case] when �< 0. In the latter case,
however, the condition for positive squared mass is signifi-
cantly tighter, so this choice of parameters would lead to
instabilities for all but a tiny range of curvature values in
the absence of matter. Despite this, in the numerical work
in Sec. IV we shall consider both positive and negative
values of �, so as to compare with other works in the
literature.

B. Observational constraints

We begin this subsection by considering the fifth force
due to the extra scalar degree of freedom of the fðRÞ
theory. This fifth force can affect the effective gravita-
tional constant Geff and gravitational redshift at the sur-
face of a neutron star zs. By performing a conformal
transformation

TABLE I. The unitarity and positive-squared-mass constraints
on the allowed curvature range for different values of the
parameters � and �, using j�j ¼ j�=�j 	 1 and j�2�j 	 1.
R� is defined in (3.16).

Parameters Unitarity m2
 > 0

�> 0
�> 0 R� < 1=2� R� <R< 1=2�
�< 0 R< e1R� R< R�

�< 0
�> 0 R <�1=2�, R * e1R� 1=2�< R< R�
�< 0 R <�1=2� R< R�

6Since the inverse function RðÞ is multivalued, for �< 0,
�> 0 there is a second valid region: R>�½2�W0ð� exp ð12 þ
��1Þ=ð2�2�ÞÞ��1 ’ e1R�. However, this corresponds to an ex-
tremely large value of the scalar curvature.
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~g�� ¼ F2ð�Þg��; (3.24)

where

F2ð�Þ 
 fRðRÞ ¼ e�2Q�=Mpl ; (3.25)

the action (2.8) can be written in the Einstein frame,

~S ¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
M2

Pl

2
~R� 1

2
@��@��� Vð�Þ

�

þ
Z

d4xLMðF�1ð�Þg��; cMÞ; (3.26)

Vð�Þ ¼ M2
Pl

2

fRðRÞR� fðRÞ
f2RðRÞ

; (3.27)

where a tilde indicates quantities in the Einstein frame,
cM stands for the matter fields and for fðRÞ theories

Q ¼ �1=
ffiffiffi
6

p
: (3.28)

Varying the action (3.26) with respect to the scalar field �
yields (in the spherical symmetric case)

d2�

d~r2
þ 2

~r

d�

d~r
� dVeff

d�
¼ 0; (3.29)

where ~r ¼ e�Q�=Mplr and the effective potential Veff is

Veffð�Þ ¼ Vð�Þ þ ��eQ�=Mpl ; (3.30)

with the conserved energy density in the Einstein frame

�� ¼ e3Q�=Mpl�. The effective potential in a medium with
the density �i has a minimum at � ¼ �i which is the
solution of dVeff=d� ¼ 0 with the corresponding mass
m2

i 
 Veff;��ð�iÞ. The chameleon mechanism [6] can be

described as follows. Inside the star (� ¼ �in), the cha-
meleon field is almost frozen at its minimum value �in,
with corresponding mass min determined by the internal
density �in. Then near the surface at ~r1 < ~rs (where ~rs is
the star radius), the chameleon field changes suddenly.
Outside the star the scalar field is close to its minimum
value �out, with corresponding mass mout determined by
the outside density �out. The exact form of the chameleon
field outside the star can be written as [6,39]

�ð~rÞ ’ �out � QeffMs

4
Mpl~r
e�moutð~r�~rsÞ ~r > ~rs; (3.31)

where Ms is the total mass of the star and �th is the thin
shell parameter

�th ¼ �in ��out

6QMpl�s

; (3.32)

and the Newtonian potential at the surface of the star is

�s¼GMc

~rs
. The effective coupling constant Qeff is defined

as Qeff ¼3Q�th in the thin-shell regime (�th	1) and
Qeff ¼Q in the thick-shell regime [�th ’ Oð1Þ]. The
thin-shell parameter �th is an essential parameter of

the chameleon mechanism. This parameter determines
if the modified theory satisfies the local constraints or
not. For example, the post-Newtonian parameter �PPN is
given by

�PPN ’ 1� 6Q2�th

1þ 6Q2�th
�
1� ~r

~rs

	 ; (3.33)

so that for �th 	 1, �PPN ’ 1 as expected [4,7].
For brevity, in the remainder of this section we drop

the tilde on quantities in the Einstein frame. The force
mediated by the chameleon field on a test body of mass
m at distance r from a central body of mass Ms and radius
rs is

7

j ~Fchj ¼ m
Q

MPl

j ~r�j; (3.34)

where � is given in (3.31). One can write for the total
force (gravitational and chameleon)

Ftot 
 FG þ F� ¼ Geff

mMc

r2
; (3.35)

where the effective gravitational coupling constant is
defined as

Geff 
 ð1þ �2ÞG; (3.36)

�2 ’ 2QQeff exp ð�moutðr� RsÞÞ; (3.37)

and G is the bare gravitational coupling constant.
The parameter � can be constrained with binary pulsar

tests [40]. For example, observations of the famous Hulse-
Taylor binary pulsar PSR B1913þ 16 [41] give j�j<
0:04. The binary pulsars PSR J141-6545 [42] and
PSR1534þ 12 [43] give j�j< 0:024 and j�j< 0:075,
respectively.
The parameter �2 for a neutron star of mass M ¼ 2M�

and radius rs ¼ 11 km for two values of parameter � and
fixed � ¼ �=� is plotted in Fig. 2. In this figure one can
see that for the case with � ¼ 5� 105, �2 & 0:001
for r * 1:2rs, so the model easily satisfies the observa-
tional constraints quoted above. For the larger value, � ¼
5� 106, �2 takes larger values further from the surface of
the star, however, since binary pulsar tests are sensitive to

7The geodesic equation in the Jordan frame is

€x � þ �
�
�� _x� _x� ¼ 0;

and in the Einstein frame

€x � þ ~��
�� _x

� _x� ¼ ��;��
;� � 2�;� _x� _x��;�;

where � 
 Q
MPl

�. In the nonrelativistic limit the last term can
be neglected and the chameleon force ~Fch on a test particle is
given by

~F ch ¼ �m�;�
~r�:
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the scale rbs  rs, corresponding of the order of the
mean separation of the two stars, any effect on the orbital
motion of a binary system is completely negligible.8

However, near the surface of the star, the deviation from
GR is larger: this deviation has observational effects on
redshift of surface atomic lines that could in principle
distinguish GR from modified theories of gravity [46,47].
The thermal spectrum of a neutron star will be detected
by an observer at infinity with a gravitational redshift zs
equal to

zs 
 ��

�0

¼ BðrÞ�1=2 � 1; (3.38)

where BðrÞ ¼ 1� 2GM=r and �0 is the wavelength in the
laboratory. Buchdahl’s theorem [48] limits the value of
M=R for a spherical symmetric star in GR to M=R<
4=9, so the maximum possible value of the redshift from
the surface is zs � 2.

In Fig. 3 we have plotted zs as a function of r in the
immediate vicinity of the surface of a typical neutron
star with mass Ms ¼ 2M� and radius rs ¼ 11 km for
� ¼ �=� ¼ �0:05. We can see that in the case of � ¼
5� 106 m2, the deviation from GR is considerable, but
for � ¼ 106 m2 and � ¼ 5� 105 m2, the gravitational

redshift zs is close to the GR value zGRs ’ 0:51. A large
number of neutron stars exhibiting thermal emission have
been observed by x-ray satellites such as the Chandra
X-ray Observatory, and XMM-Newton (see [49] for a
recent review) and proposed missions such as ATHENA
[50] promise an increase in the number and quality of the
lines that can be used to analyze neutron star properties. In
principle then, for large � this deviation could be observed
in lines originating close to the surface of the neutron star;
in practice this would be dogged by uncertainties relating
to the composition of the outer envelope of the neutron star,
and would require a careful treatment that is beyond the
scope of this paper.

FIG. 2. The parameter �2 
 Geff=G� 1 against the distance to the surface of a neutron star of radius rs ¼ 11 km andMs ¼ 2M� in
the fðRÞ ¼ Rþ �R2 þ �R2 ln ðR=�2Þ gravity for different values of � and � 
 �=�.

FIG. 3. The gravitational redshift parameter zs against the
distance to the surface of a neutron star with radius rs ¼
11 km and Ms ¼ 2M� in the fðRÞ ¼ Rþ �R2 þ
�R2 ln ðR=�2Þ model for different values of � and � 
 �=� ¼
�0:05.

8One could also consider gravitational radiation from binary
pulsars as a potential discriminant between GR and modified
gravity [44]. It has been shown in [45] that an application of
fðRÞ ¼ Rþ �R2 to the gravitational radiation of a hypothetical
binary pulsar system requires that �< 1:7� 1017 m2, under the
assumption that the dipole power accounts for at most 1% of the
quadrupole power. However, as we shall see in the following
section, consistent application of the perturbative method means
that we must restrict � to values � & 106 m2. Thus, as far as our
assumption that the logarithmic term constitutes only a subdo-
minant correction to the R2 term holds true, the fðRÞ model
considered here is not significantly constrained by measurements
of the orbital period decay of double neutron stars.
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IV. THE STRUCTURE OF RELATIVISTIC STARS

As mentioned in the Introduction, neutron stars probe
the dense QCD phase diagram at low temperature and high
baryon densities, where the baryon density in the stellar
interior can reach an order of magnitude beyond the nu-
clear saturation density �ns ¼ 2:7� 1017 kgm�3. In such
densities, matter can pass into a regime where the quark
degrees of freedom are exited. In this section we consider
the internal structure of relativistic stars within the frame-
work of the phenomenological fðRÞ model (2.8) and cal-
culate the effect on the neutron star mass-radius (M-R)
relation.

A. Field equations

To obtain the field equations, we will use the method of
perturbation constraints adopted by Cooney et al. [13] for
the study of neutron stars in fðRÞ theory, and later used (in
a slightly different form) by other authors [14–16,20]. This
method is useful for investigating corrections to GR that
give rise to field equations that would otherwise be almost
unmanageable. The correction terms are treated as next to
leading order terms in a larger expansion. To this end, the
modified theory in Eq. (3.1) is rewritten as

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþ �hðRÞÞ þ Sm; (4.1a)

hðRÞ ¼ R2 þ �R2 ln
R

�2
; (4.1b)

where � 
 �=�. In order to avoid conflict with the consis-
tency constraints discussed in Sec. IIIA, we can consider the
regime in ð�;�Þ parameter space where �> 0 and �< 0,
i.e.�> 0 and� < 0with j�j 	 1. In this section, however,
we elevate � to the status of a perturbative parameter and so
focus on the ð�; �Þ parameter space. In addition, in order to
compare with related works in the literature, we consider
both negative and positive values of �.

The field equations arising from the action (4.1) are

R���1

2
g��Rþ�

�
hRR���1

2
g��h�ðr�r��g��hÞhR

�

¼8
GTm
��; (4.2)

where hR 
 �h=�R and Tm
�� 
 �2=

ffiffiffiffiffiffiffi�g
p

@Sm=@g
��.

Taking the trace of Eq. (4.2),

R� �½hRR� 2hþ 3hhR� ¼ �8
GT; (4.3)

and substituting R from Eq. (4.3) into Eq. (4.2) gives

R�� þ �

�
hRR�� � 1

2
g��ðhRR� hÞ

�
�
r�r� þ 1

2
g��h

�
hR

�

¼ 8
G

�
Tm
�� � 1

2
g��T

m

�
: (4.4)

We shall consider the perturbative expansion in the dimen-
sionless constant

cR ¼ ��2 (4.5)

[recall from (2.9) that �2 is of the order of the curvature of
a typical neutron star]. At zeroth order in cR, the equations

are ordinary GR equations with gð0Þ�� solutions; in the
perturbative approach we expand the quantities in the
metric and stress-energy tensor up to first order in cR, i.e.

g�� ¼ gð0Þ�� þ cRg
ð1Þ
��: (4.6)

Considering the line element

ds2 ¼�BðrÞdt2 þAðrÞdr2 þ r2ðd�2 þ sin 2�d�2Þ; (4.7)

and assuming a perfect fluid inside the star (T
m�
� ¼

diag½��; P; P; P�) the field equations (4.4) can be written

R00

B
þ �

�
hR

R00

B
þ 1

2
ðhRR� hÞ þ 1

2A

�
h00R þ

�
3B0

2B
� A0

2A
þ 2

r

�
h0R

��
¼ 4
Gð�þ 3PÞ; (4.8a)

R11

A
þ �

�
hR

R11

B
� 1

2
ðhRR� hÞ � 1

2A

�
3h00R þ

�
B0

2B
� 3A0

2A
þ 2

r

�
h0R

��
¼ 4
Gð�� PÞ; (4.8b)

R22

r2
þ �

�
hR

R22

B
� 1

2
ðhRR� hÞ � 1

2A

�
h00R þ

�
B0

2B
� A0

2A
þ 4

r

�
h0R

��
¼ 4
Gð�� PÞ; (4.8c)

where a prime indicates differentiation with respect to r.
To first order in cR the pressure and the energy density are
P ¼ Pð0Þ þ cRP

ð1Þ and � ¼ �ð0Þ þ cR�
ð1Þ, respectively.

B. Modified Tolmann-Oppenheimer-Volkov equations

In astrophysics, the Tolman-Oppenheimer-Volkoff
equations constrain the structure of a spherically symmet-
ric body of isotropic material that is in static gravitational

equilibrium [51]. Before considering an ansatz for the

solutions inside the star and obtaining the modified

Tolmann-Oppenheimer-Volkov equations (MTOV), some-

thing should be said about the exterior solutions. As the

modified theory in Eq. (4.1) is considered for high curva-

ture regimes in presence of matter, we assume that, outside

of the star, the solutions can be approximately explained by

the Schwarzschild solution,
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AoutðrÞ ¼ BoutðrÞ�1 ¼
�
1� 2GMtot

r

��1
; (4.9)

where for a few radii far from the star, Mtot receives no
corrections due to the modified theory. However, for dis-
tances close to the surface of the star, a good approxima-
tion should include the � corrections.

The ansatz for the interior solutions is then

AðrÞ 

�
1� 2GMðrÞ

r

��1
; (4.10)

where MðrÞ contains corrections to the first order in �
arising from the form of hðRÞ. Using Eq. (4.8) and the
geometrical relation

R00

2B
þ R11

2A
þ R22

r2
¼ 2M0G

r2
; (4.11)

the first MTOV equation is found to be

dM

dr
¼ 4
�r2 � �r2

�
4
�hR � 1

4G
ðhRR� hÞ

� 1

2AG

��
2

r
� A0

2A

�
h0R þ h00R

��
: (4.12)

The second MTOVequation is derived by using Eq. (4.8c),
the conservation equation r�T

m�
� ¼ 0,

B0

B
¼ � 2P0

�þ P
; (4.13)

and the relation

R22

r2
¼ G

r2

�
dM

dr
þM

r
� r

A

�
B0

B

��
: (4.14)

This gives

dP

dr
¼ � A

r2
ð�þ PÞ

�
MGþ 4
Gr3P� �r3

�
1

4
ðhRR� hÞ

þ 1

2A

�
2

r
þ B0

2B

�
h0R þ 4
GPhR

��
: (4.15)

C. Neutron stars

The structure of neutron stars has been previously
studied in fðRÞ models of the form fðRÞ � Rþ �R2

[13–15] and the Starobinsky model [11] as well as in
models incorporating R��R�� terms [16,17] and the gravi-

tational aether theory [18]. The modification to GR mani-
fests itself in observable features such as the mass-radius
(M-R) relation of neutron stars. To solve Eqs. (4.12) and
(4.15) a third equation is needed to relate the matter density
� and the pressure P, i.e. the equation of state (EOS) of the
neutron star. The EOS contains information about the
behavior of the matter inside the star. As the properties
of matter at high densities are not well known, there are
different types of equations of state that give rise to differ-
ent M-R relationships [32,52]. Here, we consider two types
of EOS: the simpler polytropic EOS and a more realistic
SLy EOS [53].

1. Polytopic EOS

In this case we consider a simplified polytropic equation
of state,

� ¼ 2�þ 5:0; (4.16)

where

� ¼ log ð�=g cm�3Þ; � ¼ log ðP=dyn cm�2Þ: (4.17)

The MTOV equations (4.12) and (4.15), together with
(4.16), were then solved numerically, using a Fehlberg
fourth-fifth order Runge-Kutta method to integrate from
the center of star to the surface. We define the surface of the
star as the point where the density drops to a value of order
109 kg=m3. We use this value to define the surface (rather
than � ¼ 0) for numerical stability as the density and
pressure drop precipitously near the surface of the neutron
star. Moreover, this density corresponds to the boundary of
the neutron star crust, and is thus the limit for the equations
of state considered in the calculation, which describe nu-
clear matter at high densities (cf. [15]).
To obtain the M-R diagram for a given equation of state,

one can solve the MTOV equations for stars with initial
conditions (central densities) within a specified range. In
the fðRÞ model in hand, hRR includes the ln ðR=�2Þ term,
which is not well defined at R ¼ 0. Thus, we restrict the
calculation to the R> 0 domain, i.e. we do not consider
stars with a pressure high enough to give rise to negative
curvature. The density at the center of the star is increased
from �ns (�ns ¼ 2:7� 1017 kgm�3 is the nuclear satura-
tion density) until the point where the Ricci scalar goes to
zero. The numerical results for this case are shown in
Fig. 4. In this case the deviation from GR can clearly be
seen to increase for larger values of �. For this type of
equation of state it can also be seen that the deviation from
GR becomes more asymmetric for negative and positive
values of� as � increases, and positive (negative) values of
� give rise to lower (higher) mass stars for a given radius.
For simplicity, in the calculations presented in this paper,

we assume that the neutron stars are slowly spinning, so that
the spacetime metric can be cast in the general form (4.7).
The slow-rotation assumption has been commonly used
(sometimes implicitly) in works that measure the mass and
radius of neutron stars using observations of bursting stars
after the method of [33] (cf. the recent review [49] and
references therein). In Fig. 4 we have included for compari-
son with our results numerical data from [54] showing 2�
constraints derived from observations of three neutron stars,
calculated using the slow-rotation assumption.9

9The observed quantities in this case are the apparent surface area
and ‘‘touchdown’’ flux [54]. Measurements of these quantities can
be combined with the distance to each source to give uncorrelated
values of the mass and radius of the neutron star, which parame-
terize the metric of the object. In this case of rapid rotation,
the results would depend on at least two additional metric
elements [47].
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2. SLy EOS

The SLy equation of state models the behavior of
nuclear matter at high densities. An explicit analytic
representation is

� ¼ a1 þ a2�þ a3�
3

1þ a4�
f0ða5ð�� a6ÞÞ

þ ða7 þ a8�Þf0ða9ða10 � �ÞÞ
þ ða11 þ a12�Þf0ða13ða14 � �ÞÞ
þ ða15 þ a16�Þf0ða17ða18 � �ÞÞ; (4.18)

where � and � are defined as in (4.17) and

f0ðxÞ ¼ 1

ex þ 1
: (4.19)

The coefficients ai are listed in [53]. The results are shown
in Fig. 5. Here again the density at the center of star
changes from �ns to the point where the Ricci scalar goes

to zero. As the SLy equation of state is stiff and R / ð��
3PÞ, when � � 0 we do not obtain stars with a radius
smaller than rs � 11 km, compared to rs < 10 km for
the R-squared model (left-top panel). The deviation from
the GR case is most prominent where the central density
(and thus the pressure) takes intermediate values such that
R is large. At this point, which corresponds to extremely
low-mass stars, an asymmetric deviation from GR that
increases in magnitude with j�j can be seen, as with the
polytropic equation of state. However, here it is the solu-
tions corresponding to positive � that exhibit the greatest
deviation from GR.
As in the fðRÞ ¼ Rþ �R2 model [14,15] there is an

inversion of the modified gravity effect near the central
density � ’ 5�ns for the SLy equation of state. This point
corresponds to stars with a mass �2M�; since this is close
to the point where R ¼ 0 (beyond which the logarithmic
model is not valid) there is little deviation from the GR
case for stars with astrophysical masses for this equation of

FIG. 4 (color online). The mass-radius (M-R) diagram for neutron stars in GR (� ¼ � ¼ 0) and fðRÞ ¼ Rþ �R2 þ �R2 lnR=�2

using a simplified polytropic equation of state (4.16). Here � 
 �=� and the range of the matter density at the center of the star is
varied from �ns to the point where the Ricci scalar goes to zero for the � � 0 cases. �ns ¼ 2:7� 1017 kgm�3 is the nuclear saturation
density. The dotted contour gives the 2� constraints derived from observations of three neutron stars reported in [54]. The presence of
the logarithmic term (� � 0) can be seen to cause larger deviations from the GR case compared to the R-squared model (� ¼ 0).
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state. If one were to use a softer equation of state (which
permits a larger range of central densities) one would
expect larger deviations from the GR case after this inver-
sion point.

D. Binding energy

An important property of neutron stars that is often
neglected in theoretical studies is the binding energy
[55–57], which due to the extreme compactness of relativ-
istic stars can constitute a significant fraction of the mass of
the star (as large as 25% [58]). This can be an important
factor in models of binary evolution. The so-called
baryonic mass10 MB necessarily exceeds the total mass
of the star—the measurable quantity plotted in the M-R

diagrams—as the latter includes both the rest-mass energy
of its constituents and the negative binding energy. The
baryonic mass is defined in terms of the volume element of
the Schwarzschild metric (4.10) and the number density of
particles nðrÞ as [56]

MB ¼ 4
mB

Z rs

0
nðrÞ½AðrÞ�1=2r2dr; (4.20)

where mB is the mass of a baryon and rs the surface radius
of the star. In our case, since we do not consider mass
transfer or accretion driven evolution, a more useful quan-
tity is the proper mass,

MP ¼ 4

Z rs

0
�ðPÞ½AðrÞ�1=2r2dr; (4.21)

where the mass density �ðPÞ is related directly to the
pressure PðrÞ [given by the solution of (4.15)] by the

FIG. 5 (color online). The mass-radius (M-R) diagram for neutron stars in GR (� ¼ � ¼ 0) and fðRÞ ¼ Rþ �R2 þ �R2 lnR=�2

using the realistic SLy equation of state (4.18). Here � 
 �=� and the range of the matter density at the center of the star changes from
�ns to the point where the Ricci scalar goes to zero for the � � 0 cases. �ns ¼ 2:7� 1017 kgm�3 is the nuclear saturation density. The
dotted contour gives the 2� constraints derived from observations of three neutron stars reported in [54]. For larger values of �, the
presence of the logarithmic term can be seen to cause larger deviations from the GR case compared to the R-squared model (� ¼ 0).
The deviation from the GR case is most prominent where the central density (and thus the pressure) takes intermediate values such that
R is large.

10If the star were to be disassembled into its constituent
baryons, MB would be the total mass of the baryons.
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equation of state [cf. (4.16) and (4.18)]. The mass density is
related to the total mass M by

M ¼ 4

Z rs

0
�ðPÞr2dr: (4.22)

In terms of this quantity we have the gravitational binding
energy of the neutron star [57]

BEG ¼ ðMP �MÞc2; (4.23)

which, following [57], we define as a positive quantity so
that M ¼ MP � BEG=c

2 (cf. [55]).
In Fig. 6 we calculate the gravitational binding energy

using (4.23) in the framework of the fðRÞ model for the
polytropic and SLy equations of state. We find that the
deviation of BEG from the GR case follows the behavior
exhibited in the M-R diagrams in Figs. 4 and 5. In the
polytropic case, where the simplified equation of state
allows for significant deviations of the total mass M from
the GR case, we see a decrease in the magnitude of BEG for
negative � and an increase for positive � corresponding to
the increase and decrease respectively of the total mass.
The size of the deviation increases with the magnitude of
�, and very small values <0:8M� (not relevant for astro-
physical situations) can lead to a change in the sign of BEG

(i.e. positive gravitational binding energy) for large values
of �. However, for realistic values of the total mass, this is
not an issue. In the case of the more realistic SLy equation
of state, the deviation from the GR case is almost
negligible.

E. Quark stars

The concept of a star made of strange quark matter was
first suggested by Itoh [29] and later expanded upon by
Witten [30]. The unusual physical properties, such as the
absence of a minimum mass and a finite density but zero
pressure at their surface, were later studied by Alcock et al.

[31,59]. In this model it is assumed that the star is made
mostly of u, d, s quarks together with electrons, which give
total charge neutrality. The interior of the star is made up of
deconfined quarks that form a color superconductor, lead-
ing to a softer equation of state with possible observable
effects on the minimum mass, radii, cooling behavior, and
other observables [32,33]. In this subsection we investigate
the effect of the modified gravity on the structure of this
type of self-bound star.
The equation of state of strange matter made up of u, d, s

quarks can be considered in the framework of the MIT
bag model. In this model, a linear approximation is as-
sumed as [60]

P ’ að�� �0Þ; (4.24)

where �0 is the density of the strange matter at zero
pressure. The MIT bag model describing the strange quark
matter involves three parameters, viz. the bag constant
B ¼ �0=4, the strange quark mass ms, and the QCD
coupling constant �c. If we neglect the strange quark
mass, then a ¼ 1=3. For ms ¼ 250 MeV we have a ¼
0:28. In units of B60 ¼ B=ð60 MeV fm�3Þ, the constant
B is restricted to 0:98<B< 1:52 [60]. The M-R diagram
for a quark star with a ¼ 0:28 and B ¼ 1 is shown in
Fig. 7. From this figure it is clear that the masses of quark
stars with negative values of � are always enhanced with
respect to GR and the masses of quark stars with positive
values of � are diminished relative to GR, irrespective of
the value of �. Compared to the SLy and polytropic equa-
tions of state, larger values of � [i.e. � ¼ Oð107 m2Þ] can
give rise to stars with masses and radii in the ranges
allowed by the observational constraints. As in the pre-
vious subsection, it can be seen that the deviation is larger
for larger values of j�j. In the case of the quark star,
however, the equation of state is less stiff so there is
more deviation in the mass-radius diagram with respect
to GR.

FIG. 6 (color online). The gravitational binding energy BEG [defined in (4.23)] as a function of the total mass M for the polytropic
(left panel) and SLy (right panel) equations of state. In each case, the value of � is taken to be � ¼ �0:1.
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FIG. 7 (color online). The mass-radius (M-R) diagram for the quark star case in GR and fðRÞ ¼ Rþ �R2 þ �R2 lnR=�2 using a
linear equation of state (4.24) with a ¼ 0:28 and B ¼ 1. Here � 
 �=� and the range of the matter density at the center of the star
changes from 1:54�ns to 9:3�ns, where �ns ¼ 2:7� 1017 kgm�3 is the nuclear saturation density. The dotted contour gives the 2�
constraints derived from observations of three neutron stars reported in [54].

FIG. 8 (color online). The parameter j�max j ¼ jAMGðrÞ=AGRðrÞ � 1jmax as a function of �5 ¼ �=105 for the SLy equation of state
(left), polytropic equation of state (middle), and quark star (right). The red (solid), blue (short-dashed), magenta (dot-dashed), green
(long-dashed) lines indicate the � ¼ 0, �0:01, �0:1, �0:25 cases respectively. A necessary condition for the validity of the
perturbative approach is j�max j< 1. The circles indicate the parameter values used in Figs. 4, 5, and 7.
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F. The perturbative regime

In all considered cases, it is important to stay in the
perturbative regime, so that the first order corrections to the
metric in (4.6) are small. This can be measured quantita-
tively with

j�j ¼









AMGðrÞ
AGRðrÞ � 1









; (4.25)

where AðrÞ is the rr component of the metric defined in
Eq. (4.10) and the subscripts MG and GR refer to the
modified gravity and general relativity cases respectively.

This quantity varies as a function of radius for each star,
and also depends on the corresponding central density. In
Fig. 8, we have plotted the quantity j�max j as a function of
�5 ¼ �=105 (where the subscript max refers to the maxi-
mum value for a given choice of parameters) for the SLy,
polytropic, and quark star equations of state.

A necessary condition for the validity of the perturbative
approach is j�max j< 1. The plots for the SLy and
polytropic equations of state (left and middle) show that
the fðRÞ ¼ Rþ �R2 þ �R2 lnR=�2 model can be treated
perturbatively for j�j & 106. The dependence of j�max j on
� is linear, with the slope depending on the value of �.
Including a small logarithmic term (� ¼ �0:01) decreases
j�max j, however, increasing � further leads to larger devi-
ations from GR and thus larger values of j�max j. As
mentioned above, in the quark star case, we can reach
larger values of � with respect to neutron stars while
remaining in the perturbative regime.

V. SUMMARY

In this article we have considered the effect of a loga-
rithmic fðRÞ theory, fðRÞ ¼ Rþ �R2 þ �R2 ln ðR=�2Þ,
motivated by the form of the one-loop effective action
arising from gluons in curved spacetime, on the structure
of relativistic stars. Unlike many fðRÞ theories in the
literature, the modifications to general relativity are
significant in the strong-field regime, which is less well
constrained by observations. Considering the motivation,
we treat the model as an effective theory, valid in the
interior and near vicinity of neutron stars, where QCD
effects play an important role.

An fðRÞ theory inevitably introduces a scalar degree of
freedom, and in Sec. III A we have derived the constraints
imposed upon the parameters of the model due to stability
and internal consistency requirements. Unlike the related
Rþ �R2 model, we find that, when the logarithmic term is
a subdominant correction—i.e. j�j ¼ j�=�j 	 1, which
we assume throughout this work—one can consider posi-
tive and negative values of �. In addition, in the absence of
matter, the existence of a stable minimum at R ¼ 0 forces
us to work with negative values of the coefficient of the
logarithmic term �.

In Sec. III B, we have also considered the constraints
imposed upon the model by observations; in particular

relating to the possibility of a fifth force due to the scalar
degree of freedom. Since we treat the model as an effective
theory valid only in the vicinity of ultradense matter, we do
not need to contend with cosmological or terrestrial con-
straints, however, it is important to consider the effect of
the modification on binary pulsars and direct observations
of neutron stars. Transforming the theory to the Einstein
frame, we have shown that the model exhibits a chameleon
effect, completely suppressing the effect of the modifica-
tion on scales exceeding a few radii, so that any effect on
the orbital motion of a binary system is completely negli-
gible. We showed that this model satisfies the binary star
observations of the effective gravitational constant for a
wide range of parameters � and �.
On smaller scales, near the surface of the neutron star,

the deviation from general relativity can be significant.
Observations of bursting neutron stars depend strongly
on the surface redshift zs, which determines the shift in
absorption (or emission) lines due to elements in the at-
mosphere, as well as the Eddington critical luminosity. In
Fig. 3 we have plotted the dependence of zs on the radial
coordinate in the immediate vicinity of the neutron star
surface (which is directly related to the observable quantity
��=� ¼ zs) showing that there are strong �-dependent
deviations from general relativity, which could in principle
be detected, utilizing data from future x-ray missions.
In Sec. IV, we have used the method of perturbative

constraints to derive and solve the modified Tolman-
Oppenheimer-Volkov equations for neutron and quark
stars. The changes to the mass-radius diagram for neutron
stars are shown in Fig. 4 for a toy polytropic equation
of state and in Fig. 5 for a realistic SLy equation of state.
As in the fðRÞ ¼ Rþ �R2 model [14,15] there is an
inversion of the modified gravity effect near the central
density � ’ 5�ns for the SLy equation of state. For the SLy
equation of state, the deviation from GR is more evident
for smaller central densities (corresponding to the lower
right of the plots in Fig. 5). However, in the polytropic case,
for higher central densities (top-left part of the plots in
Fig. 4), one can observe a larger deviation from GR with
respect to lower central densities (bottom right on the
plots). In addition, in the polytropic case, the deviation
from GR is much larger than the SLy case for equal values
of the parameter�. For the polytropic equation of state, the
asymmetry in the M-R diagram for positive and negative
values of parameter � is also reduced. In this section, we
have also calculated the gravitational binding energy of the
neutron stars for each equation of state.
As has been noted in the case of other fðRÞmodels, there

is a degeneracy with the choice of equation of state that is
largely unconstrained. To break this degeneracy, one could
consider other observables, such as those relating to the
cooling [61] or spin properties [62] of the neutron stars. In
particular, it was suggested in [13] that since cooling
by neutron emission—which is the dominant cooling
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mechanism for young ( & 104–106 years) neutron stars—is
particularly sensitive to the central density of the star,
measurements of the surface temperature could offer a
discriminant. However, in practice, the neutrino cooling
rate is difficult to model due to the strong dependence on
features such as condensates in the star’s composition.

We find that the range of the parameter � & 106 m2 that
is consistent with the perturbative treatment in our model
for the SLy and polytropic equations of state is comparable
with that in related works, where � & 105 m2 [14,15,20].
In the quark star case, one can reach larger values of
�� 107 m2 while remaining in the perturbative regime.

Finally, in Sec. IVE, we have considered the case of
self-bound stars, consisting of strange quark matter. We
found that the M-R diagram and internal density distribu-
tion were insensitive to the presence of the logarithmic
term, and for positive � the mass is always enhanced
relative to that calculated using general relativity.

As the modified Tolman-Oppenheimer-Volkov equa-
tions for the fðRÞ model considered here involve
ln ðR=�2Þ terms that are not well defined at R ¼ 0 we
have restricted our analysis to the R> 0 domain. Since
neutron star equations of state are stiff and R / ð�� 3PÞ,
when � � 0 we cannot consider central densities above a
maximum value. This is particularly evident in Fig. 5, as
the largest deviations from GR occur for stars with low
masses, corresponding to a medium central density. Using
an equation of state that is less stiff for large densities
would give rise to more significant deviations for larger
mass stars. This can be seen in the quark star case.

In this paper, for simplicity, we have not considered the
effect of rotation of the neutron stars, i.e. we have assumed

that the neutron stars are not rapidly spinning. Such a
slow-rotation assumption has been used both in related
works treating neutron stars in modified gravity [13–18]
and in astrophysical papers e.g. [33,54]. In future work, in
order to be able to estimate the importance of rotational
effects in neutron stars in modified gravity it would be
instructive to perform a perturbative analysis similar to that
presented here, but perturbing about the Hartle-Thorne
metric, which provides an accurate approximation to the
spacetime of weakly magnetic neutron stars with moderate
spin frequencies (cf. [62]).
To conclude, we have shown that considering the finite

logarithmic terms arising in the calculation of the effective
action for a gauge field in a phenomenological fðRÞ frame-
work leads to interesting observational consequences dif-
fering from the predictions of general relativity. To make
this connection more definite is beyond the scope of this
article, although as observational data improve, one can
entertain the possibility that neutron star systems may in
the future have a role to play in analyzing the predictions of
quantum field theory in curved spacetime.
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