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We present compact Q-balls in an (anti–)de Sitter background in D dimensions, obtained with

a V-shaped potential of the scalar field. Beyond critical values of the cosmological constant

�̂crðDÞ compact Q-shells arise. By including the gravitational backreaction, we obtain boson stars

and boson shells with (anti–)de Sitter asymptotics. We analyze the physical properties of these

solutions and determine their domain of existence. In four dimensions we address some astrophysical

aspects.
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I. INTRODUCTION

Inspired by Wheeler’s quest for the existence of geons
[1], boson stars were introduced by Feinblum and
McKinley [2], Kaup [3], and Ruffini and Bonazzola [4].
In these boson stars the electromagnetic vector field was
replaced by some tentative scalar field. With the discovery
of a Higgs-like boson last year at the LHC [5,6] the first
fundamental scalar field has been found. But numerous
scalar fields have been predicted to exist in high energy
physics and cosmology.

Boson stars arise as stationary localized solutions of
the coupled Einstein-Klein-Gordon equations [2–4,7].
The physical properties of boson stars depend strongly
on the type of scalar field potential employed (see e.g.
the review articles [8–13]). Miniboson stars arise, when
only a mass term is present but no self-interaction. They
can reach only relatively small masses. Larger boson stars
are obtained when a repulsive quartic self-interaction is
included [14]. For these two types of boson stars gravity is
a necessary ingredient.

In contrast, in the presence of a sextic potential one
obtains solitonic boson stars [8], which possess a flat
space-time limit, where they correspond to nontopological
solitons [15] (or Q-balls [16]). Moreover, these solitonic
boson stars can reach even higher masses [8].

Here we consider boson stars, which are compact in the
sense that the scalar field of these spherically symmetric
configurations is finite inside a ball of radius ro, but
vanishes identically outside this radius. In this respect
the compact Q-balls resemble stars [17]. Obtained from a
V-shaped self-interaction potential, these compact boson
stars also possess a flat space-time limit, compact Q-balls
[18–20]. These represent solutions of the signum-Gordon
equation.

The study of scalar fields with a V-shaped self-
interaction potential has revealed interesting physical phe-
nomena. When coupled to electromagnetism, the balance
of forces allows for shell-like configurations [19]. In these
Q-shells the scalar field vanishes identically both inside a
certain radius ri and outside a certain radius ro. The scalar
field thus forms a shell of charged matter, ri < r < ro.
When coupling these shells to gravity the resulting

boson shells possess an emptyMinkowski space interior r <
ri. However, the shells need not be empty in their interior;
they can harbor a black hole in there [21]. Thus one finds
that uniqueness and no-hair theorems for black holes can be
avoided in the presence of boson shells [21,22].
Whereas these previous studies considered only asymp-

totically flat solutions, we here include a cosmological
constant. On the one hand, a positive cosmological con-
stant is relevant from an observational point of view, since
it can model the dark energy of the Universe. Since boson
stars are very compact objects that can possess very high
densities, they have been suggested as alternatives to
supermassive black holes, e.g. in the center of galaxies
[23]. Even if that would be excluded by observations (for a
discussion see e.g. [24]) boson stars could still act as toy
models for very compact objects, e.g. neutron stars. Such a
model of a compact star in a space-time with a positive
cosmological constant should be a more realistic descrip-
tion of compact stars in the Universe, since all observations
seem to indicate the existence of a form of dark energy.
A negative cosmological constant, on the other hand,

leads to solutions that can be interpreted within the AdS/
CFT correspondence [25,26]. Recently, the study of boson
stars in anti–de Sitter (AdS) space-time received increasing
attention [27–34]. This is related to the fact that within the
context of a holographic description of superconductors
and superfluids [35–37] (for reviews see [38–40]) the for-
mation of scalar hair on charged solitons in asymptotically
AdS has been interpreted as an insulator/superconductor
phase transition [41,42]. The limit of setting the electric
charge of the scalar field e to infinity, which due to the
scaling symmetries corresponds to setting Newton’s
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constant G to zero, is called the ‘‘probe limit’’ in this
context. We adapt this nomenclature here and refer to the
case, where the matter field equation is solved in a fixed
background, as ‘‘the probe limit.’’ In the opposite limit
e ¼ 0, the gauge symmetry becomes global and the resulting
solutions are uncharged solitons in AdS. These are essen-
tially uncharged boson stars and have been suggested to be
the holographic description of glueball condensates [41].

Boson stars in asymptotic AdS are also of interest from
another point of view. It has been suggested that the
dynamical formation of a black hole in AdS is the dual
description of thermalization in a strongly coupled quan-
tum field theory. As such the stability of AdS space-time
was studied with respect to perturbations, and it was con-
jectured that AdS is unstable under arbitrarily small scalar
perturbations and that eventually a black hole would form
due to the reflection of the perturbations on the AdS
boundary [43]. However, in [44] it was shown that boson
stars appear to be nonlinearly stable. If that were true,
thermalization in the dual field theory would not occur.
Hence, boson stars in AdS play an important role in the
context of the nonlinear (in)stability of AdS space-time,
and thus of its dual description.

Here we first consider the set of boson star solutions for
various space-time dimensions D � 3 in the probe limit.
Interestingly, the presence of a positive cosmological con-
stant allows for the existence of boson shells without an
electromagnetic field. We note that all objects constructed
here are electrically neutral.

By solving the coupled set of the Einstein-signum-
Gordon equations, we subsequently determine the domain
of existence of the compact (A)dS boson stars and shells in
D � 3 space-time dimensions. We analyze their physical
properties and briefly address the stability of the boson
stars from a catastrophe theory point of view [45–49]. We
also address astrophysical aspects of boson stars and boson
shells in four dimensions for the physical value of the
cosmological constant.

The paper is organized as follows. In Sec. II we present
the action, the Ansatz, the equations of motion together
with the scaling property, the boundary conditions and the
global charges. We present the solutions in the probe limit
in Sec. III. The boson stars and shells obtained with the
backreaction taken into account are discussed in Sec. IV.
We end with our conclusions and an outlook in Sec. V.

II. MODEL

A. Action

We consider the action of a self-interacting complex
scalar field � coupled to Einstein gravity in D dimensions

S ¼
Z �

1

16�G
ðR� 2�Þ � 1

2
ð@��Þ�ð@��Þ �Uðj�jÞ

�

� ffiffiffiffiffiffiffi�g
p

dDx; (1)

with curvature scalar R, cosmological constant �, and
Newton’s constant G, and the asterisk denotes complex
conjugation. The scalar potential U is chosen as

Uðj�jÞ ¼ �j�j: (2)

Note that we set c ¼ ℏ � 1 here. To be able to compare
with observations we would have to reinsert the physical
values of these constants. For D ¼ 4 the dimensionful
action has been given in [17], and we refer the reader to
this paper. In the present paper we will also give physical
quantities of the boson stars in observationally relevant
units for � � 0 and D ¼ 4.
Variation of the action with respect to the metric and the

matter fields leads, respectively, to the Einstein equations

G�� ¼ R�� � 1

2
g��ðR� 2�Þ ¼ 8�GT�� (3)

with stress-energy tensor

T�� ¼ g��LM � 2
@LM

@g�� (4)

and the matter field equation

r�r�� ¼ ��
�

j�j ; (5)

where r� denotes the covariant derivative.

Invariance of the action under the global phase
transformation

� ! �ei� (6)

leads to the conserved current

j� ¼ �ið��@����@���Þ; j�;� ¼ 0; (7)

and the associated conserved charge Q.

B. Ansatz

To construct spherically symmetric boson star solutions
we employ Schwarzschild-like coordinates and adopt the
spherically symmetric metric

ds2 ¼ g��dx
�dx� ¼ �A2Ndt2 þ N�1dr2 þ r2d�2

D�2;

(8)

where d�2
D�2 is the metric on the D� 2 dimensional unit

sphere.
The associated Ansatz for the boson field takes the form

� ¼ �ðrÞei!t (9)

with the frequency !. The conserved scalar charge Q

Q ¼ �
Z

jtjgj1=2dD�1x (10)

is then proportional to !.
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We next introduce dimensionless quantities by

r¼ r̂=!; �¼ �̂�=!2; �¼ �̂!2; 8�G¼�!4=�2:

(11)

Thus the coupling strength of gravity is expressed in terms
of the coupling constant �. This yields the set of equations

1

A
A0 ¼ 2�

D� 2
r̂

�
�̂2

N2
þ ð�̂0Þ2

�
; (12)

r̂N0 ¼ ðD� 3Þð1� NÞ � 2
r̂2�̂

D� 2

� 2
�r̂2

NðD� 2Þ ðN
2ð�̂0Þ2 þ 2N�̂þ �̂2=A2Þ; (13)

�̂00 ¼ A2N � �̂

A2N2
� ðD� 3Þ þ N

r̂N
�̂0 þ 2r̂ �̂

ðD� 2ÞN �̂0

� 4
r̂�

ðD� 2ÞN �̂�̂0: (14)

C. Boundary conditions

Let us now specify the boundary conditions for the
metric and the boson field. For the metric function A we
adopt

Aðr̂oÞ ¼ 1; (15)

where r̂o is the outer radius of the boson star. Since it
retains this value to infinity, this fixes the time coordinate.
For the metric function Nðr̂Þ we require at the origin the
regularity condition for globally regular ball-like boson
star solutions

Nð0Þ ¼ 1; (16)

and for globally regular shell-like solutions

Nðr̂iÞ ¼ 1� 2�̂

ðD� 2ÞðD� 1Þ r̂
2
i ; (17)

where r̂i is the inner radius of the shell.
For boson stars we require for the boson field function

one condition at the origin and two conditions at the outer
radius r̂o

�̂0ð0Þ ¼ 0; �̂ðr̂oÞ ¼ 0; �̂0ðr̂oÞ ¼ 0: (18)

Since this is one condition too many, we introduce another
auxiliary differential equation, r̂0o ¼ 0, by treating r̂o as a
function. Thus r̂o is constant, but the value of the constant
is adjusted in the numerical scheme such that the boundary
conditions Eqs. (18) are satisfied. This determines the outer
radius of the star.

For boson shells, on the other hand, we require at the
inner radius r̂i and at the outer radius r̂o the conditions

�̂ðr̂iÞ ¼ 0; �̂0ðr̂iÞ ¼ 0; �̂ðr̂oÞ ¼ 0; �̂0ðr̂oÞ ¼ 0:

(19)

We now also make the ratio of inner and outer radii r̂i=r̂o an
auxiliary (constant) variable.
For the numerical computation we introduce the scaled

coordinate x ¼ ðr̂� r̂iÞ=ðr̂o þ r̂iÞ, such that the inner
radius is at x ¼ 0 and the outer radius is at x ¼ 1.

D. Outer solutions

We refer to the solution in the exterior region r̂ � r̂o as
the outer solution of the boson stars and boson shells. In the
asymptotically flat case, the outer solution is given by the
Schwarzschild solution. In the presence of a cosmological
constant the Schwarzschild–de Sitter and Schwarzschild–
anti–de Sitter solutions

�̂ðr̂Þ ¼ 0; Aðr̂Þ ¼ 1;

Nðr̂Þ ¼ 1� 2�

r̂D�3
� 2�̂

ðD� 2ÞðD� 1Þ r̂
2;

� ¼ const

(20)

are exact solutions of the ordinary differential equations
(ODEs) in the exterior region.
Hence the mass parameter of the solutions is given by

� ¼
�
1� Nðr̂oÞ � 2r̂2o�̂

ðD� 2ÞðD� 1Þ
�
r̂D�3
o

2
: (21)

E. Inner solutions

Analogously, we refer to the solution in the interior
region r̂ � r̂i as the inner solution of the boson shells. In
the asymptotically flat case, the regular inner solution
corresponds to flat Minkowski space, whereas in the pres-
ence of a cosmological constant the regular inner solutions
correspond to either de Sitter or anti–de Sitter space. Note,
however, that in general Aðr̂Þ ¼ const ¼ Ai � 1. Thus a
rescaling of the time coordinate, t ! t=Ai, is required to
obtain the de Sitter or anti–de Sitter line element in the
standard form.
In principle, we could replace these regular inner solu-

tions by the appropriate black hole solutions, analogously
to the asymptotically flat case [21,22]. Then these inner
solutions would correspond to Schwarzschild–de Sitter or
Schwarzschild–anti–de Sitter solutions.

III. PROBE LIMIT

Here we present the families of solutions in the so-called
probe limit. Thus we obtain the solutions for vanishing
coupling to gravity, i.e., � ¼ 0, in the respective
background.
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A. Q-ball solutions in the Minkowski background

For a vanishing cosmological constant the Q-ball solu-
tions can be found analytically and expressed in terms of
Bessel functions. The D ¼ 4 solution was given in [18,19]

�̂ðr̂Þ ¼
�
1� r̂o

r̂
sin r̂
sin r̂o

if 0 � r̂ � r̂o

0 if r̂ � r̂o:
(22)

For D � 3 dimensions this generalizes according to

�̂ðr̂Þ ¼ r̂�nC1Jnðr̂Þ þ 1; Nðr̂Þ ¼ 1; Aðr̂Þ ¼ 1;

(23)

where n ¼ ðD� 3Þ=2. The constant C1 and the outer

radius r̂o are determined by the conditions �̂ðr̂oÞ ¼ 0 and

�̂0ðr̂oÞ ¼ 0. The latter yields Jnþ1ðr̂oÞ ¼ 0. Hence r̂o is the
smallest nonvanishing zero of Jnþ1. From the first condi-
tion it then follows that C1 ¼ �r̂no=Jnðr̂oÞ. Thus we find
�̂ðr̂Þ¼1�

�
r̂o
r̂

�
n Jnðr̂Þ
Jnðr̂oÞ ; r̂� r̂o; �̂ðr̂Þ¼0; r̂>r̂o:

(24)

The properties of the unique solution in D ¼ 4 dimen-
sions was discussed in [17]. When going to higher dimen-
sions, the properties of the respective solutions vary only
slowly with D, and likewise when going to D ¼ 3. This is
seen in Fig. 1, when restricting to a vanishing cosmological

constant, �̂ ¼ 0.

B. Q-ball solutions in an (anti–)de Sitter background

Let us now consider the Q-ball solutions in an (anti–)de
Sitter background in D dimensions. To obtain these
solutions, we have solved the scalar field equation in
the respective background numerically, employing a
Newton-Raphson scheme.

When the scaled cosmological constant �̂ is varied,
the solutions change smoothly from the Minkowski back-
ground solutions. In Fig. 1 we exhibit the dependence of the

solutions on �̂. Here we show the value of the scalar field at

the origin �̂ð0Þ together with the value of the outer radius r̂o
of the solutions for D ¼ 3, 4, 5 and 10 dimensions.

As the scaled cosmological constant �̂ increases from

zero, the value of the scalar field at the origin �̂ð0Þ
decreases along with the outer radius r̂o. Interestingly,

there is a maximal value �̂max ðDÞ, which increases with
the dimension D, for which these solutions exist. At

�̂max ðDÞ a second branch of solutions is encountered.
Moving backwards along this second branch the value of

the scalar field at the origin �̂ð0Þ continues to decrease,

until it reaches zero at a critical value �̂crðDÞ.
At �̂crðDÞ the solutions change character and Q-shells

arise. As �̂ decreases further, the inner radius r̂i increases

along with the outer radius r̂o. In the limit �̂ ! 0 the size
of the shells diverges while the ratio r̂i=r̂o tends to one.
Thus there are noQ-shells in a Minkowski or anti–de Sitter
background.
Likewise, when the Q-ball solutions are continued to

negative values of the cosmological constant, they change
smoothly from the Minkowski background solutions,
as seen in Fig. 1. As the scaled cosmological constant

�̂ decreases from zero, the value of the scalar field at

the origin �̂ð0Þ increases along with the outer radius r̂o
until a minimal value �̂min ðDÞ is encountered, beyond
which no such solutions exist. Our data indicate that

�̂min ðDÞ ¼ �ðD� 2Þ=ð2ðD� 1ÞÞ. For a derivation of
this limit in D ¼ 4 dimensions see Appendix A.

IV. BACKREACTION

To study the backreaction of the Q-balls and Q-shells
on the space-time, we have solved the coupled system
of equations for the metric and the scalar field numerically.
In the following we first discuss the case of D ¼ 4 dimen-
sions, and then turn to other dimensions.
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FIG. 1 (color online). Left: The value of the scalar field at the origin �̂ð0Þ and Right: the value of the outer radius r̂o for Q-ball and
Q-shell solutions in the (anti–)de Sitter background in D ¼ 3, 4, 5 and 10 dimensions. The black dots label the transition points
between Q-balls and Q-shells.
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A. Boson stars and boson shells in D ¼ 4

1. Asymptotically de Sitter boson stars and shells

Let us start by briefly recalling the properties of the
single family of asymptotically flat compact boson star
solutions found in [17]. At � ¼ 0 this family starts from
the Q-ball solution in the Minkowski background. As seen
in Fig. 2, with increasing � the value of the scalar field

at the origin �̂ð0Þ decreases, until it reaches a finite
minimum, and then increases strongly, while � undergoes
damped oscillations. In other physical quantities these
damped oscillations with respect to � lead to a spiral-
like pattern, as seen for the outer radius r̂o or the mass
parameter �. Such a behavior is typical for boson stars
and neutron stars.

Here we have extended this family of compact boson
star solutions to negative values of the coupling constant
�, as seen in Fig. 2. The physical interpretation of the
solutions with negative � is that they represent compact
solutions made from phantom scalar fields. Thus the nega-
tive sign of � can be absorbed by the negative Lagrangian
of the phantom field. Ever since the relevance of dark
energy for cosmology became apparent, such phantom
fields are found ubiquitously in the literature. Moreover,
phantom fields also allow for the formation of various
types of wormholes.

Let us now turn to compact de Sitter boson stars by

increasing the value of �̂ from zero. We demonstrate the
effect of a positive cosmological constant on the compact
solutions in Fig. 2 by exhibiting the physical properties of

such families of solutions for several values of �̂. We see

that for finite �̂ the minimum of �̂ð0Þ reaches zero. This
signals the occurrence of boson shells.

In particular, for a given value of �̂, �̂ð0Þ reaches zero at
a critical value �crð�̂Þ. Then for �> �crð�̂Þ boson shells

exist. �crð�̂Þ is exhibited in Fig. 3. For very small positive

�̂, the critical value �crð�̂Þ is negative. Thus there exist
phantom boson shells in this case, which turn into ordinary
boson shells, as � increases beyond zero. Extrapolation to

�̂ ¼ 0 indicates that indeed no shells exist in this limit.

For all values of �̂ the compact boson stars exhibit the
characteristic spirals. In Fig. 2 these are seen for the value
of the outer radius r̂o, the value of the metric function at the
outer radius Nðr̂oÞ and the value of the scaled mass �.
Interestingly, phantom-type boson star solutions exist only

for small values of �̂. Since the mass � has the same sign
as �, branches with a negative mass exist only for small

values of �̂.
Whereas there is an upper bound �max for the compact

boson stars, there is no such bound for the boson shells.
However, with increasing � their outer radius decreases
and tends to a finite limiting value. At the same time, the
ratio of the inner and outer radii r̂i=r̂o increases and tends
to one. Thus the shells become smaller and thinner, while
their scaled mass � grows. On the other hand, as � is kept

fixed while �̂ is decreased, the shells grow in size, while
the ratio r̂i=r̂o tends to one. Here in the limit � ! 0 the
shell size diverges.

2. Astrophysical considerations

In the above subsection we have constructed the domain
of existence of compact boson stars and boson shells in
terms of dimensionless quantities. We can obtain physical
solutions with dimensionful quantities by scaling these
dimensionless solutions appropriately.
In the case of a vanishing cosmological constant we have

considered compact stars [17]. In particular, we have
shown that when the mass of these boson stars is on the
order of the solar mass, then their radius is on the order of
ten(s) of kilometers; thus they can correspond in mass and
size to neutron stars. Moreover, spirals are also encoun-
tered for neutron stars, when they approach the black hole
limit.
Concerning their stability, we employ arguments from

catastrophe theory [45–49]. According to catastrophe the-
ory, the stability changes only at turning points. Thus when
starting from a stable configuration, the stability should
change at the maximum of the mass. Therefore solutions
inside the spiral should be unstable. For neutron stars or
ordinary boson stars this has been confirmed by a mode
analysis.
Since the value of the cosmological constant as obtained

from cosmology is very small, � & 10�52 m�2 in metric
units, its presence hardly affects the properties of boson
stars that have masses on the order of the mass of the sun.
Thus the results for boson stars correspond to those ob-
tained before [17]. However, the presence of a positive
cosmological constant, no matter how small, does allow for
boson shells. But those boson shells possess cosmological
mass and length scales. It would be interesting to see
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whether such thin boson shells can be associated with
voids, i.e. with vast regions of empty space surrounded
by a shell of matter.

To see the effect of � on the compact boson stars let us
now consider very big scales.

We fix � ¼ 3��H
2
0=c

2 at its physical value, with

�� ¼ 0:7 and H0 ¼ 75 km=ðMpcsÞ, as an example.

This translates into the mass scale M0 ¼ c2=ðG ffiffiffiffi
�

p Þ �
5:7� 1022M�. From the relation (11) we find ! ¼
c

ffiffiffiffiffiffiffiffiffiffiffi
�=�̂

q
� 3:52� 10�18 s�1=

ffiffiffiffi
�̂

p
and the corresponding

time scale T ¼ 2�=! � 56:6
ffiffiffiffi
�̂

p
gigayears.

In Fig. 4 we show our scaled results for the mass M in
units of M0 for boson stars and boson shells versus the
outer radius r̂o in units of gigaparsec. Shown in addition
are the black hole horizon and the cosmological horizon of
the corresponding Schwarzschild–de Sitter space-times.
Note that these two horizons coincide for the extremal
configuration with the maximum value of the mass.

These Schwarzschild–de Sitter values form the bound-
ary, within which all extended objects must remain. As
seen in Fig. 4, the boson stars reside well within these
bounds. Note that since we consider only positive values of
the gravitational coupling, i.e., no phantom fields, the
boson star curves associated with the smaller values of
the parameter T consist of two disconnected parts.

The boson shells, in contrast, exist until they reach
this cosmological bound. In particular, all boson shell
curves extend precisely to the extremal value of the
Schwarzschild–de Sitter curve, where the two horizons
coincide. When approaching this limiting configuration,
the inner radius of the shells approaches the outer radius.
Thus the ratio r̂i=r̂o tends to the value one in this limit.
More massive shells cannot exist.

Converting the values in Fig. 4 into numerical values we
find that with � ¼ 10�52 m�2 the mass of the boson stars
is on the order of 1052 kg and their radius is on the order of
Gigaparsec (Gpc). These are sizes that are beyond those of
galaxies and galaxy clusters. If there were dark matter
distributions on such large scales, our solutions would be
able to model those. Choosing somewhat smaller values of
T, on the other hand, we would find sizes relevant for
galaxies or galaxy clusters, so that these solutions could
be considered to model the dark matter halo of galaxies or
the dark matter in galaxy clusters, respectively. Note that in
the limit of vanishing mass the radius ro becomes spurious
since the nonscaled boson field vanishes identically.

3. Asymptotically anti–de Sitter boson stars

As expected, compact boson stars exist also for negative
values of the cosmological constant. Indeed, the asymptoti-
cally Minkowski solutions can be smoothly extended to

negative values of �̂, thus yielding asymptotically AdS
boson stars. In Fig. 5 we exhibit some of their physical

properties versus the coupling constant �, for several

values of �̂.
We note that the domain of existence of these compact

AdS boson stars decreases with decreasing �̂. This sug-

gests that there is a limiting minimal value for �̂ for
compact boson stars. Analogous to the dS case, some of
the physical properties of AdS boson stars exhibit damped
oscillations with respect to �, whereas other properties
exhibit spirals. Moreover, as in the dS case, there are
phantom boson stars, associated with negative values of �.
However, we do not find AdS boson shells. In the AdS

case, the scalar field �̂ never reaches the value zero at the
origin, which is necessary for boson shells to arise. We
conclude, that the extra attraction associated with negative
� inhibits the formation of AdS shells even stronger than
in the asymptotically flat case, � ¼ 0. The existence of
shells needs repulsion that can be provided either by a
positive cosmological constant, as seen in the previous
subsection, or by the presence of electric charge
[18,19,21,22].

B. Boson stars and boson shells in D � 4

Here we consider the domain of solutions and their
properties for various space-time dimensions. We have
made a complete study for dimensions D ¼ 3, 5 and 10.
Since the dependence on D is mostly rather smooth, we
exhibit only a number of selected cases. As an example of a
solution, we show an asymptotically de Sitter boson shell
solution in Fig. 6.

1. Asymptotically de Sitter boson stars and shells

We start our discussion by considering boson stars and
boson shells inD ¼ 5 dimensions. Some of their properties
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boson stars and boson shells. The black solid curve represents
the black hole horizon and the cosmological horizon of the
Schwarzschild–de Sitter space-times.
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are exhibited in Fig. 7 and can be compared to those of
Fig. 2.

A surprising feature is that in D ¼ 5 boson shells seem

to exist in the asymptotically flat case, �̂ ¼ 0. This follows
from the additional (almost vertical) line present in Fig. 7

for �̂ð0Þ. However, since this line is reaching zero for a
very small negative value of �, those shells are phantom
shells. The small branch of phantom shells is seen more
clearly in the plot of Að0Þ in the inset. As � ! 0, the size of
these phantom shells diverges.

For finite values of �̂, however, we obtain also ordi-

nary dS boson shells. The critical value �crð�̂Þ of the
transition between the boson stars and shells is seen in
Fig. 3. In particular, the resulting phantom dS boson
shells continue to exist beyond � ¼ 0, where they
smoothly turn into ordinary boson shells. As in D ¼ 4,

at fixed �̂ with increasing � the outer radius r̂o of these
boson shells decreases, tending to a finite limiting value,
while their ratio r̂i=r̂o of inner and outer radii increases
toward one.
The compact dS boson stars, on the other hand, exist

only below a maximal value of �, which is given either by
the onset of the spiral or by the transition to dS boson

shells. For a given �̂, the domain of existence of dS boson
stars in D ¼ 5 with respect to � is smaller than in D ¼ 4.
When going to higher dimensions, this trend continues. In
contrast, the domain of existence of phantom dS boson
stars increases with increasing D.
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FIG. 6 (color online). The metric functions A, N and the scalar
field function �̂ are shown for the boson shell solution in

D ¼ 5 for parameters � ¼ 0:33 and �̂ ¼ 0:15. rc indicates the
cosmological horizon.
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In D ¼ 3 dimensions gravity is nondynamic. Therefore
we may expect that boson stars may exhibit a different
behavior in D ¼ 3 dimensions than in higher dimensions.

Let us first inspect the dependence of some of the
properties of the compact three-dimensional objects on �

for several values of �̂. Figure 8 exhibits the scalar field �̂

at the origin, �̂ð0Þ, the outer radius r̂o, and the scaled
mass �. Here we observe that indeed some properties of
compact boson stars are very different in D ¼ 3 dimen-

sions. First of all, we notice a maximal value of �̂ð0Þ
that decreases with increasing �̂. This maximal value is
encountered for negative values of �, and thus these
configurations correspond to phantom boson stars.

As this maximal value of �̂ð0Þ two branches of solutions
merge. Along one of these branches �̂ð0Þ reaches zero.
Thus boson shells emerge at the corresponding critical

value �cr. With increasing �̂ the critical value �cr in-
creases (at least for positive �cr), analogously to other
dimensions.

The second branch of boson star solutions, however,
exhibits a different behavior from the one observed before.

Clearly, the damped oscillations of �̂ð0Þ with � are not

present. Instead a monotonic decrease of �̂ð0Þ with
increasing � is observed, and no maximal value of � is

encountered. We further observe that for small �̂, �̂ð0Þ and
the outer radius r̂o depend only weakly on �̂.
The absence of a maximal value of � suggests to

consider the dependence of the compact boson stars on

�̂, choosing fixed large values of �. As can be seen from
Figs. 8(e) and 8(f), for a given � boson star solutions

exist only up to a maximal value of �̂ that increases with

�. Finally, we note that the solutions with �̂ ¼ 0 are
not asymptotically flat, since their mass parameter �
is finite. This holds for boson stars and boson shells
alike.

2. Asymptotically anti–de Sitter boson stars

Let us turn finally to AdS boson stars in D dimensions.
Some properties of asymptotically AdS boson stars in
D ¼ 5 are exhibited in Fig. 9. As in four dimensions, there
are no ordinary AdS boson shells in other than four dimen-
sions. However, there is a very small region of phantom
AdS boson shells. This is seen by inspecting the critical

curve �crð�̂Þ for negative values of � close to zero.
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Here the critical curve passes negative values of �̂ as well.

Like the phantom shells for �̂ ¼ 0 these phantom AdS

shells diverge in size as � ! 0.
Otherwise all the basic properties of these AdS solutions

in D ¼ 5 are similar to those of the D ¼ 4 AdS solutions
discussed above. Moreover, we observe only gradual
changes with increasing D. In particular, the domain of
existence of AdS boson stars with respect to � decreases

with D. Only the domain of phantom AdS shells increases
slightly, as seen in Fig. 3.
The lower dimensional case D ¼ 3 is special again,

as can be seen in Figs. 8(e) and 8(f), where the dependence

of �̂ð0Þ and � on �̂ is shown for several values of �.

Interestingly, for a given � there is no lower bound of �̂
encountered. Moreover, the mass becomes practically

independent of � as �̂ becomes sufficiently small.
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When �̂ is fixed instead, while � is varied, no spirals
are encountered for the compact three-dimensional
boson stars, whereas spirals are present in all higher
dimensions. This was observed before for ordinary
boson stars [28]. Restricting to positive �, there is a

maximal value of �̂ð0Þ for a given �̂. However, when
allowing for phantom fields, a minimal value of � is

encountered, beyond which �̂ð0Þ increases without
bound, while the mass decreases.

V. CONCLUSIONS AND OUTLOOK

We have studied compact boson stars and shells
obtained with a V-shaped interaction potential in D�3
dimensions. The V-shaped potential confines the scalar
field to a finite region, which can be ball-like or shell-
like.

In the probe limit, we have given the general analytical
solution for Q-balls in a Minkowski background. Here no
Q-shells exist. Q-shells arise only beyond a critical value
�crðDÞ> 0 of the cosmological constant, which increases
with the number of dimensions D. Likewise, Q-balls
exist only above a minimal value of the cosmological

constant, which seems to correspond to �̂min ðDÞ ¼
�ðD� 2Þ=ð2ðD� 1ÞÞ.
Subsequently, we have taken the backreaction into

account. The resulting configurations correspond to com-
pact boson stars and boson shells. By solving the coupled
set of Einstein-scalar field equations, we have obtained the
full set of solutions, subject to Minkowski, de Sitter and
anti–de Sitter asymptotics for a number of space-time
dimensions, ranging from 3 to 10.
For any dimension D � 3 there are compact boson stars

with all three types of asymptotics. But concerning their

properties, we see a distinct behavior in three dimensions

that is different from the common behavior encountered in

all higher dimensions. In four and higher dimensions, these

boson stars exist in a finite interval �min ðD; �̂Þ � � �
�max ðD; �̂Þ. In contrast, in three dimensions there is no

upper bound on the value of �.
Also, all boson stars in four and higher dimensions

exhibit a spiral-like dependence of the outer radius and

the mass on the coupling constant �. At the same time, the

scalar field value �̂ð0Þ exhibits damped oscillations. In

contrast, in three dimensions the respective boson star
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properties do not exhibit such a spiral-like dependence or
damped oscillations.

By exploring the parameter space, we also find boson
stars for negative values of �. These boson stars with
negative � correspond to phantom boson stars, since the
negative sign of � can be reinterpreted as a negative sign
associated with the scalar field in the Lagrangian, and thus
with a phantom field. Ample motivation for the considera-
tion of phantom fields is nowadays provided by cosmology.

In contrast to boson stars, boson shells do not exist
for Minkowski asymptotics, if there is no additional
force present, balancing the gravitational attraction.
Consequently, there are no ordinary AdS boson shells.
However, dS boson shells do exist. Here the positive
cosmological constant provides the necessary repulsion.
On the other hand, there exist small regions of phantom
AdS shells in more than four dimensions.

In four dimensions we have also considered astrophys-
ical aspects of the compact boson stars and boson shells.
While we can always adjust the parameters of the solutions
to describe compact astrophysical objects with masses and
sizes of neutron stars as discussed in [17], the influence of
the cosmological constant on these objects is negligible,
when the physical value of � is taken. The new feature is,
however, that in addition to boson stars there exist also
boson shells for positive values of �.

We have then addressed the question, what the proper-
ties of such compact objects would be, if we set the scale
by the physical value of �. Interestingly, in this case the
resulting sets of boson stars reach huge masses and sizes
that are more akin to structures on the largest scales of
the Universe. The boson shells, on the other hand, can grow
in mass until they reach the limit, set by the extremal
Schwarzschild–de Sitter solution, for which the event
horizon and the cosmological horizon merge.

For negative � one might be tempted to consider the
AdS/CFT correspondence and try to interpret the solutions
within this framework. However, all of our solutions are
compact. The outer solutions are all given in terms of the
Schwarzschild-AdS solutions. Thus the AdS boundary
does not feel anything of the solutions except for their
mass. Consequently, for such compact solutions the con-
cept of holography does not work. Indeed, lots of different
compact objects may sit in the bulk, and if they have the
same mass, the boundary does not notice a difference.

As our next step we plan to include rotation [50].
Rotating boson stars are known for noncompact configu-
rations in four dimensions [12,13,51–55]. Interestingly,
their angular momentum J is quantized in terms of their
particle numberQ, J ¼ nQ, where n is an integer. Rotating
boson stars have also been constructed in odd dimensions
(with equal magnitude angular momenta for D � 5)
[56–59]. We expect that the rotation of compact boson
stars will lead to interesting new features. Moreover, there
may be rotating boson shells in the presence of a cosmo-
logical constant.

It should also be interesting to construct interacting
compact Q-balls and Q-shells for a finite cosmological
constant. These should arise in the presence of several
complex scalar fields [55,60,61].
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APPENDIX A: ADS SOLUTIONS IN THE
PROBE LIMIT

Here we consider the AdS solutions in the probe
limit. We introduce the scaled coordinate � ¼ r̂=‘, where

‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðD�2ÞðD�1Þ

2�̂

q
, and the scaled scalar field c ¼

�̂=�̂ð0Þ. This yields for the (ODE) of the function c

ð�mNc 0Þ0 þ ‘2�m

N
c ¼ ‘2�m

�̂ð0Þ ; (A1)

where m ¼ ðD� 2Þ, N ¼ 1þ �2, and prime denotes the
derivative with respect to �.
We rewrite the ODE, Eq. (A1), as

c 00 þ pc 0 þ qc ¼ F; with p ¼ ðlog ð�mNÞÞ0;

q ¼ ‘2

N2
; F ¼ ‘2

N�̂ð0Þ :
(A2)

If y1 is a solution of the homogeneous ODE, then a
second independent solution of the homogeneous ODE
can be found,

y2ð�Þ ¼ c0y1ð�Þ
Z �

0

d	

	mNðy1ð	ÞÞ2
; (A3)

where c0 is a constant.
Now the general solution of the inhomogeneous ODE

can be written as

c ¼ c1y1 þ c2y2 þ yinh; (A4)

where c1 and c2 are constants and

yinhð�Þ¼ ‘2

c0�̂ð0Þ
�
�
y2ð�Þ

Z �

0
	my1ð	Þd	�y1ð�Þ

Z �

0
	my2ð	Þd	

�

(A5)

is a special solution of the inhomogeneous ODE.
Let us assume that y1 is regular at � ¼ 0 and y1ð0Þ ¼ 1.

As a consequence the integral in Eq. (A3) diverges and y2
is singular at � ¼ 0. However, the special solution of the
inhomogeneous ODE is regular and vanishes at � ¼ 0.
Thus to obtain the regular solution with c ð0Þ ¼ 1 we set
c1 ¼ 1 and c2 ¼ 0.
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Next we consider the conditions for compact solutions,
i.e. c ð�oÞ ¼ 0 and c 0ð�oÞ ¼ 0 at some �o.

c ð�oÞ ¼ y1ð�oÞ þ ‘2

�̂ð0Þ
�
y2ð�oÞ

Z �o

0
	my1ð	Þd	

� y1ð�0Þ
Z �o

0
	my2ð	Þd	

�

¼ 0; (A6)

c 0ð�oÞ ¼ y01ð�oÞ þ ‘2

�̂ð0Þ
�
y02ð�oÞ

Z �o

0
	my1ð	Þd	

� y01ð�0Þ
Z �o

0
	my2ð	Þd	

�

¼ 0: (A7)

The linear superpositions y01ð�oÞc ð�oÞ � y1ð�oÞc 0ð�oÞ ¼
0 and y02ð�oÞc ð�oÞ � y2ð�oÞc 0ð�oÞ ¼ 0 yield

0 ¼ ½ðy01ð�oÞy2ð�0Þ � y02ð�oÞy1ð�oÞ	
Z �o

0
	my1ð	Þd	;

(A8)

0 ¼ ½ðy01ð�oÞy2ð�0Þ � y02ð�oÞy1ð�oÞ	

�
�
1� ‘2

�̂ð0Þ
Z �o

0
	my2ð	Þd	

�
; (A9)

respectively, where we set c0 ¼ 1.
Since y1 and y2 are solutions of the homogeneous ODE,

it follows that y01y2 � y02y1 ¼ ch=ð�mNÞ for some constant
ch. As a consequence ½ðy01ð�oÞy2ð�oÞ � y02ð�oÞy1ð�oÞ	 �
0 and the conditions (A8) and (A9) reduce to

0 ¼
Z �o

0
	my1ð	Þd	; (A10)

�̂ð0Þ ¼ ‘2
Z �o

0
	my2ð	Þd	: (A11)

The first equation determines the point �o and the second

the value of �̂ð0Þ.
Now we are left with the problem to determine the range

of ‘ for which solutions of Eq. (A10) exist. Although the
solutions of the homogeneous ODE can be expressed in
terms of hypergeometric functions, we did not succeed to
determine the minimal values of ‘ in the general case, i.e.
in all dimensions.

However, in D ¼ 4 dimensions the solution y1 can be
expressed in terms of trigonometric functions,

y1 ¼ 1

‘�
½� cos ð‘ arctan�Þ � ‘ sin ð‘ arctan�Þ	; (A12)

which simplifies the problem considerably. Here we con-
sider only ‘ � 1. The case ‘ ¼ 1 needs special treatment.

We will show that Eq. (A10) has only a solution �o if
‘ > 3. Clearly, the integral in Eq. (A10) can vanish only if

the integrand possesses (at least) one zero. To analyze this
condition we introduce a new coordinate z ¼ arctan�,
with 0 � z < �=2, and consider the function

� cos ð‘ arctan�Þ � ‘ sin ð‘ arctan�Þ
¼ tan z cos ð‘zÞ � ‘ sin ð‘zÞ

¼ ðsin z cos ð‘zÞ � ‘ cos z sin ð‘zÞÞ= cos z

¼ FðzÞ= cos z: (A13)

Since cos z does not change sign on the interval 0 � z <
�=2, it is sufficient to consider the function

F ¼ sin z cos ð‘zÞ � ‘ cos z sin ð‘zÞ: (A14)

Now we are left with the question for which values of ‘ the
function F does not possess a zero.
Let us first restrict to ‘ > 1. Expanding the function F

for small values of z we find F ¼ zð1� ‘2Þ þOðz3Þ< 0.
On the other hand, evaluating F at z ¼ �=2 yields
Fð�=2Þ ¼ cos ð‘�=2Þ> 0 for 3< ‘< 5. Thus, FðzÞ pos-
sesses at least one zero for 3< ‘< 5. Consequently, we
can restrict to 1< ‘< 3.
We rewrite Eq. (A14) as

F ¼ � 1

2
½ð‘� 1Þ sin ðzð‘þ 1ÞÞ þ ð‘þ 1Þ sin ðzð‘� 1ÞÞ	

¼ � ‘þ 1

2
½b cos a sin aþ sin ðbaÞ	; (A15)

where b ¼ 2 ‘�1
‘þ1 , a ¼ zð‘þ 1Þ=2 are restricted to 0< b<

1 and 0< a< �
2�b < �. It can be seen from Fig. 10

that Fða; bÞ indeed does not possess a zero in the
region ð0; �Þ � ð0; 1Þ. Consequently there are no compact
solutions with 1< ‘< 3.
Now we turn to the case 0< ‘ < 1. With ‘0 ¼ 1=‘ > 1

and z0 ¼ z=‘0 the function F reads

 0  0.5  1  1.5  2  2.5  3  0
 0.2

 0.4
 0.6

 0.8
 1

 0
0.2
0.4
0.6
0.8
 1
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1.4

b cos(a)sin(a)+sin(ab)

a
b

FIG. 10 (color online). The function Fða; bÞ as given in (A15).
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F ¼ sin ð‘0z0Þ cos ðz0Þ � 1

‘0
cos ð‘0z0Þ sin ðz0Þ

¼ � 1

‘0
½sin ðz0Þ cos ð‘0z0Þ � ‘0 cos ðz0Þ sin ð‘0z0Þ	

¼ 1

2‘0
½ð‘0�1Þsinðz0ð‘0þ1ÞÞþð‘0þ1Þsinðz0ð‘0�1ÞÞ	:

(A16)

Note that now 0<z0<�=2‘0<�=2. Therefore, z0ð‘0þ1Þ<
�
2 ð1þ1=‘0Þ<� and z0ð‘0 � 1ÞÞ< �

2 ð1� 1=‘0ÞÞ<� imply

sin ðz0ð‘0 þ 1ÞÞ> 0 and sin ðz0ð‘0 � 1ÞÞ> 0. This shows
that the function F does not have a zero for 0< ‘< 1.

To conclude, we have found a lower bound for ‘, i.e.
‘min ¼ 3, below which no compact solution can exist.
However, this does not prove that solutions exist for
‘ � ‘min , since the condition Eq. (A10) is more restrictive
than F ¼ 0 for some �. Indeed, for ‘ ¼ 3 Eq. (A10) yields
an equation of the form x� tanh ðxÞ ¼ 0, which has no
solution for x > 0. However, consider the case when the
function FðzÞ possesses only one zero on the interval
ð0; �=2Þ for some ‘ > 3. Denote the zero by z1. The
condition (A10) can then be written as

0 ¼
Z zo

0
FðzÞ sin z

cos 4z
dz

¼
Z z1

0
FðzÞ sin z

cos 4z
dzþ

Z zo

z1

FðzÞ sin z

cos 4z
dz: (A17)

The first integral yields a finite negative contribution,
since FðzÞ is bounded and negative on ð0; z1Þ. The second
integral, on the other hand, assumes any positive value
between zero and infinity, as zo ranges between z1 and
�=2, since FðzÞ is bounded and positive on ðz1; �=2Þ.
Consequently, there exists a zo on ðz1; �=2Þ for which
both integrals in Eq. (A17) cancel, implying that compact
solutions exist for some ‘ > ‘min .
As an example we computed the exact solution for

‘ ¼ 4. We found

c ð�Þ ¼ 1

15ð1þ �2Þ2
�
15� 10�2 � �4

� 1

4��0

ð4½ð7�4 þ 100�2 � 30Þ�
� 30ð5�2 � 1Þ arctan�	 � 15ð�4

þ 10�2 � 15Þ� log ð1þ �2ÞÞ
�
: (A18)

For this solution the values �o ¼ 7:0657485298 and
�0 ¼ 20:286677195 have been computed numerically.
Remarkably, they coincide with the corresponding values
of our numerically computed solution of the ODE up to
eight digits.
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