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We propose a graphical representation of detector sensitivity curves for stochastic gravitational-wave

backgrounds that takes into account the increase in sensitivity that comes from integrating over frequency in

addition to integrating over time. This method is valid for backgrounds that have a power-law spectrum in

the analysis band. We call these graphs ‘‘power-law integrated curves.’’ For simplicity, we consider cross-

correlation searches for unpolarized and isotropic stochastic backgrounds using two or more detectors. We

apply our method to construct power-law integrated sensitivity curves for second-generation ground-based

detectors such as Advanced LIGO, space-based detectors such as LISA and the Big Bang Observer, and

timing residuals from a pulsar timing array. The code used to produce these plots is available at https://

dcc.ligo.org/LIGO-P1300115/public for researchers interested in constructing similar sensitivity curves.
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I. INTRODUCTION

When discussing the feasibility of detecting gravitational
waves using current or planned detectors, one often plots
characteristic strain hcðfÞ curves of predicted signals
[defined below in Eq. (5)] and compares them to sensitivity
curves for different detectors. The sensitivity curves are
usually constructed by taking the ratio of the detector’s
noise power spectral density PnðfÞ to its sky- and
polarization-averaged response to a gravitational wave
RðfÞ, defining SnðfÞ � PnðfÞ=RðfÞ and an effective char-
acteristic strain noise amplitude hnðfÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
. If the

curve corresponding to a predicted signal hcðfÞ lies above
the detector sensitivity curve hnðfÞ in some frequency band,
then the signal has signal-to-noise ratio>1. An example of
such a plot is shown in Fig. 1, which is taken from [1].

For stochastic gravitational waves, which are typically
searched for by cross-correlating data from two or more
detectors, one often adjusts the height of a sensitivity
curve to take into account the total observation time
(e.g., T ¼ 1 yr or 5 yr). For uncorrelated detector noise,
the expected (power) signal-to-noise ratio of a cross-
correlation search for a gravitational-wave background
for frequencies between f and fþ �f scales like

ffiffiffiffiffiffiffiffiffiffi
T�f

p
.

So the effective characteristic strain noise amplitude hnðfÞ
should be multiplied by a factor of 1=ðT�fÞ1=4. Also,
instead of characteristic strain, one often plots the pre-
dicted fractional energy density in gravitational waves
�gwðfÞ as a function of frequency, which is proportional

to f2h2cðfÞ [see Eq. (6)]. An example of such a plot is
shown in Fig. 2, which is taken from [2].

But for stochastic gravitational waves, plots such as
Figs. 1 and 2 do not always tell the full story. Searches

for gravitational-wave backgrounds also benefit from the
broadband nature of the signal. The integrated signal-

to-noise ratio � [see Eq. (21)] also scales like
ffiffiffiffiffiffiffiffiffiffi
Nbins

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f=�f

p
, where Nbins is the number of frequency bins of

width �f in the total bandwidth�f. As we shall see below,
the actual value of the proportionality constant depends on
the spectral shape of the background and on the detector
geometry (e.g., the separation and relative orientation of
the detectors), in addition to the individual detector noise
power spectral densities. Since this improvement to the
sensitivity is signal dependent, it is not always folded into
the detector sensitivity curves, even though the improve-
ment in sensitivity can be significant.1 And when it is
folded in, as in Fig. 2, a single spectral index is assumed,
making it difficult to compare published limits with arbi-
trary models. In other cases, limits are given as a function
of spectral index, but the constrained quantity depends on
an arbitrary reference frequency; see Eq. (7).
To illustrate the improvement in sensitivity that comes

from integrating over frequency, consider the simple case
of a white gravitational-wave background signal in white
uncorrelated detector noise. In this case, � increases by
precisely

ffiffiffiffiffiffiffiffiffiffi
Nbins

p
compared to the single bin analysis. For

ground-based detectors like LIGO, typical values2 of �f
and �f are �f � 100 Hz and �f � 0:25 Hz, leading to
Nbins � 400, and a corresponding improvement in � of
about 20; see, e.g., [2]. For colored spectra and nontrivial

*ethrane@ligo.caltech.edu
†joseph.romano@ligo.org

1To be clear, integration over frequency is always carried out
in searches for stochastic gravitational-wave backgrounds, even
though this is not always depicted in sensitivity curves.

2The 0.25 Hz bin width typical of LIGO stochastic analyses is
chosen to be sufficiently narrow that one can approximate the
signal and noise as constant across the width of the bin, yet
sufficiently wide that the noise can be approximated as sta-
tionary over the duration of the data segment.
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detector geometry the improvement will be less, but a
factor of �5–10 increase in � is not unrealistic.

In this paper, we propose a relatively simple way to
graphically represent this improvement in sensitivity for
gravitational-wave backgrounds that have a power-law
frequency dependence in the sensitivity band of the
detectors. An example of such a ‘‘power-law integrated
sensitivity curve’’ is given in Fig. 3 for a correlation
measurement between the Advanced LIGO detectors in
Hanford, WA and Livingston, LA. Details of the construc-
tion and interpretation of these curves will be given in

Sec. III, Fig. 7. We show this figure now for readers who
might be anxious to see the results.
In Sec. II we briefly review the fundamentals of cross-

correlation searches for gravitational-wave backgrounds,
defining an effective strain noise power spectral density
SeffðfÞ for a network of detectors. For simplicity, we
consider cross-correlation searches for unpolarized and
isotropic stochastic backgrounds using two or more detec-
tors. In Sec. III we present a graphical method for con-
structing sensitivity curves for power-law backgrounds
based on the expected signal-to-noise ratio for the search,
and we apply our method to construct new power-law
integrated sensitivity curves for correlation measurements
involving second-generation ground-based detectors such
as Advanced LIGO, space-based detectors such as the Big
Bang Observer (BBO), and a pulsar timing array. For
completeness, we also construct a power-law integrated
sensitivity curve for an autocorrelation measurement using
LISA. We conclude with a brief discussion in Sec. IV.

II. FORMALISM

In this section, we summarize the fundamental proper-
ties of a stochastic background and the correlated response
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FIG. 3 (color online). �gwðfÞ sensitivity curves from different
stages in a potential future Advanced LIGO Hanford-LIGO
Livingston correlation search for power-law gravitational-wave
backgrounds. The top black curve is the single-detector sensi-
tivity curve, assumed to be the same for both H1 and L1. The red
curve shows the sensitivity of the H1L1 detector pair to a
gravitational-wave background, where the spikes are due to
zeros in the Hanford-Livingston overlap reduction function
(see left panel of Fig. 5). The green curve shows the improve-
ment in sensitivity that comes from integration over an obser-
vation time of 1 year for a frequency bin size of 0.25 Hz. The set
of black lines is obtained by integrating over frequency for
different power-law indices, assuming a signal-to-noise ratio
� ¼ 1. Finally, the blue power-law integrated sensitivity curve
is the envelope of the black lines. See Sec. III, Fig. 7 for more
details.

FIG. 1 (color online). Sensitivity curves for gravitational-wave
observations and the predicted spectra of various gravitational-
wave sources, taken from [1].
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FIG. 2 (color online). Plot showing strengths of predicted
gravitational-wave backgrounds in terms of �gwðfÞ and the

corresponding sensitivity curves for different detectors, taken
from [2]. Upper limits from various measurements, e.g., S5
LIGO Hanford-Livingston and pulsar timing, are shown as
horizontal lines in the analysis band of each detector. The upper
limits take into account integration over frequency, but only for a
single spectral index.
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of a network of detectors to such a background. In order
to keep track of the many different variables necessary
for this discussion, we have included Table I, which sum-
marizes key variables.

A. Statistical properties

In transverse-traceless coordinates, the metric perturba-
tions habðt; ~xÞ corresponding to a gravitational-wave back-
ground can be written as a linear superposition of
sinusoidal plane gravitational waves with frequency f,

propagation direction k̂, and polarization A:

habðt; ~xÞ ¼
Z 1

�1
df

Z
S2
d2�k̂

X
A

hAðf; k̂ÞeAabðk̂Þei2�fðt�k̂� ~x=cÞ;

(1)

where eAabðk̂Þ are the gravitational-wave polarization ten-

sors and A ¼ þ,� (see, e.g., [3]). The Fourier components

hAðf; k̂Þ are random fields whose expectation values define
the statistical properties of the background. Without loss

of generality we can assume hhAðf; k̂Þi ¼ 0. For unpolar-
ized and isotropic stochastic backgrounds, the quadratic
expectation values have the form

hhAðf; k̂Þh�A0 ðf0; k̂0Þi ¼ 1

16�
�ðf� f0Þ�AA0�2ðk̂; k̂0ÞShðfÞ;

(2)

where

ShðfÞ ¼ 3H2
0

2�2

�gwðfÞ
f3

(3)

is the gravitational-wave power spectral density, and

�gwðfÞ ¼ 1

�c

d�gw

d ln f
(4)

is the fractional contribution of the energy density in
gravitational waves to the total energy density needed to
close the universe [3]. (Throughout this paper we utilize
single-sided power spectra.) The variable �c denotes the
critical energy density of the universe, while d�gw denotes

the energy density between f and fþ df. In terms of the
characteristic strain defined by

hcðfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShðfÞ

q
; (5)

it follows that

�gwðfÞ ¼ 2�2

3H2
0

f2h2cðfÞ: (6)

B. Power-law backgrounds

In this paper, we will restrict our attention to
gravitational-wave backgrounds that can be described by
power-law spectra:

�gwðfÞ ¼ ��

�
f

fref

�
�
; (7)

where � is the spectral index and fref is a reference
frequency, typically set to 1 yr�1 for pulsar timing
observations and 100 Hz for ground-based detectors.
The choice of fref , however, is arbitrary and does not affect
the detectability of the signal.
It follows trivially that the characteristic strain also has a

power-law form:

hcðfÞ ¼ A�

�
f

fref

�
�
; (8)

TABLE I. Summary of select variables with references to key equations.

Variable Definition

habðt; ~xÞ metric perturbation, Eq. (1)

hAðf; k̂Þ Fourier coefficients of metric perturbation, Eq. (1)

ShðfÞ strain power spectral density of a gravitational-wave background, Eq. (3)

�gwðfÞ fractional energy density spectrum of a gravitational-wave background, Eq. (4)

hcðfÞ characteristic strain for gravitational waves, Eq. (5)

hðtÞ detector response to gravitational waves, Eq. (12)

RA
I ðf; k̂Þ detector response to a sinusoidal plane gravitational wave, Eq. (12)

~hðfÞ Fourier transform of hðtÞ, Eq. (13)
�IJðfÞ overlap reduction function for the correlated response to a gravitational-wave background, Eq. (15)

RIðfÞ detector response to a gravitational wave averaged over polarizations and directions on the sky, Eq. (17)

PhIðfÞ detector power spectral density due to gravitational waves, Eq. (18)

PnIðfÞ detector power spectral density due to noise, Eq. (21)

SeffðfÞ effective strain noise power spectral density for a detector network, Eq. (23)

heffðfÞ effective characteristic strain noise amplitude for a detector network, Eq. (24)

SnðfÞ strain noise power spectral density for a single detector, Eq. (27)

hnðfÞ characteristic strain noise amplitude for a single detector, hnðfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSnðfÞ

p
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where the amplitude A� and spectral index � are related to
�� and � via

�� ¼ 2�2

3H2
0

f2refA
2
�; � ¼ 2�þ 2: (9)

For inflationary backgrounds relevant for cosmology,
it is often assumed that

�gwðfÞ ¼ const; (10)

for which � ¼ 0 and � ¼ �1. For a background arising
from binary coalescence,

�gwðfÞ / f2=3; (11)

for which � ¼ 2=3 and � ¼ �2=3. This power-law
dependence is applicable to supermassive black-hole co-
alescences targeted by pulsar timing observations as well
as compact binary coalescences relevant for ground-based
and space-based detectors.

C. Detector response

The response hðtÞ of a detector to a passing gravitational
wave is the convolution of the metric perturbations
habðt; ~xÞ with the impulse response Rabðt; ~xÞ:

hðtÞ �
Z 1

�1
d�

Z
d3yRabð�; ~yÞhabðt� �; ~x� ~yÞ

¼
Z 1

�1
df

Z
d2�k̂

X
A

RAðf; k̂ÞhAðf; k̂Þei2�fðt�k̂� ~x=cÞ;

(12)

where ~x is the location of the measurement at time t. The

function RAðf; k̂Þ is the detector response to a sinusoidal

plane wave with frequency f, propagation direction k̂, and
polarization A. In the frequency domain, we have

~hðfÞ ¼
Z

d2�k̂

X
A

RAðf; k̂ÞhAðf; k̂Þe�i2�fk̂� ~x=c: (13)

D. Overlap reduction function

Given two detectors, labeled by I and J, the expectation
value of the cross correlation of the detector responses
~hIðfÞ and ~hJðfÞ is

h~hIðfÞ~h�Jðf0Þi ¼
1

2
�ðf� f0Þ�IJðfÞShðfÞ; (14)

where

�IJðfÞ � 1

8�

Z
d2�k̂

X
A

RA
I ðf; k̂ÞRA�

J ðf; k̂Þe�i2�fk̂�ð ~xI� ~xJÞ=c

(15)

is the overlap reduction function (see, e.g., [4,5] in the
context of ground-based interferometers). Note that
�IJðfÞ is the transfer function between gravitational-wave

strain power ShðfÞ and detector response cross power
CIJðfÞ ¼ �IJðfÞShðfÞ. It is often convenient to define a
normalized overlap reduction function �IJðfÞ such that
for two identical, colocated and coaligned detectors,
�IJð0Þ ¼ 1. For identical interferometers with opening
angle between the arms �,

�IJðfÞ ¼ ð5=sin 2�Þ�IJðfÞ: (16)

For a single detector (i.e., I ¼ J), we define

RIðfÞ � �IIðfÞ; (17)

which is the transfer function between gravitational-wave
strain power ShðfÞ and detector response auto power

PhIðfÞ ¼ RIðfÞShðfÞ: (18)

Note that RIðfÞ is the antenna pattern of detector I aver-
aged over polarizations and directions on the sky. A plot of
RIðfÞ normalized to unity for the strain response of an
equal-arm Michelson interferometer is shown in Fig. 4.
Detailed derivations and discussions of the overlap re-

duction functions for ground-based laser interferometers,
space-based laser interferometers, and pulsar timing arrays
can be found in [3–5], [6,7], and [8,9], respectively. In
Fig. 5 we plot the overlap reduction functions for the strain
response of the LIGO Hanford-LIGO Livingston detector
pair in the long-wavelength limit (valid for frequencies
below a few kHz) and the strain response of a pair of
mini LISA-like Michelson interferometers in the hexagram
configuration of the Big Bang Observer (BBO), which is a
proposed space-based mission, whose goal is the direct
detection of the cosmological gravitational-wave back-
ground [10–12]. The two Michelson interferometers for
the BBO overlap reduction function are located at opposite
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FIG. 4 (color online). A plot of the transfer function RIðfÞ
normalized to unity for the strain response of an equal-arm
Michelson interferometer. The dips in the transfer function occur
around integer multiples of c=ð2LÞ, where L is the arm length of
the interferometer.
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vertices of a hexagram (‘‘Star of David’’) and have arm
lengths L ¼ 5� 107 m and opening angles � ¼ 60�.

In Fig. 6 we plot both the overlap reduction function and
the Hellings and Downs curve [8] for the timing response
of a pair of pulsars in a pulsar timing array. Assuming two
pulsars are separated by an angle c IJ on the sky, then to a
very good approximation [9]

�IJðfÞ ¼ 1

ð2�fÞ2
1

3
�IJ (19)

where

�IJ � 3

2

�
1� cos c IJ

2

�
log

�
1� cos c IJ

2

�
� 1

4

�
1� cos c IJ

2

�
þ 1

2
þ 1

2
�IJ (20)

is the Hellings and Downs factor [8]. (The normalization is
chosen so that for a single pulsar, �II ¼ 1.)

E. Signal-to-noise ratio

The expected (power) signal-to-noise ratio for a
cross-correlation search for an unpolarized and isotropic
stochastic background is given by [3]

� ¼ ffiffiffiffiffiffi
2T

p �Z fmax

fmin

df
�2
IJðfÞS2hðfÞ

PnIðfÞPnJðfÞ
�
1=2

; (21)

where T is the total (coincident) observation time and
PnIðfÞ, PnJðfÞ are the auto power spectral densities for
the noise in detectors I, J. The limits of integration
½fmin ; fmax 	 define the bandwidth of the detector. This is
the total broadband signal-to-noise ratio, integrated over
both time and frequency. It can be derived as the expected
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FIG. 6 (color online). Left panel: Overlap reduction function for a pair of pulsars, with �IJ chosen to be 0.25. Right panel: Hellings
and Downs function �ðc IJÞ. Note that the overlap reduction function is a function of frequency for a fixed pair of pulsars, while the
Hellings and Downs function is a function of the angle between two pulsars and is independent of frequency.
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signal-to-noise ratio of a filtered cross correlation of the
output of two detectors, where the filter function is chosen
so as to maximize the signal-to-noise ratio of the cross
correlation.3 For a network of detectors, this generalizes to

� ¼ ffiffiffiffiffiffi
2T

p �Z fmax

fmin

df
XM
I¼1

XM
J>I

�2
IJðfÞS2hðfÞ

PnIðfÞPnJðfÞ
�
1=2

; (22)

where M is the number of individual detectors, and we
have assumed the same coincident observation time T for
each detector.

The above expression for � suggests the following
definition of an effective strain noise power spectral density
for the detector network,

SeffðfÞ �
�XM
I¼1

XM
J>I

�2
IJðfÞ

PnIðfÞPnJðfÞ
��1=2

; (23)

with corresponding strain noise amplitude

heffðfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSeffðfÞ

q
: (24)

In terms of SeffðfÞ, we have

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2T�f

p ffiffiffiffiffiffiffiffiffiffi
Nbins

p �
S2h
S2eff

�
1=2

; (25)

where h i denotes an average4 over the total bandwidth of
the detectors, �f ¼ Nbins�f. For the case of M identical,
colocated and coaligned detectors, things simplify further.
First,

SeffðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

MðM� 1Þ

s
SnðfÞ; (26)

where

SnðfÞ � PnðfÞ=RðfÞ (27)

is the strain noise power spectral density in a single
detector. Second,

� ¼ ffiffiffiffiffiffiffiffiffiffi
T�f

p ffiffiffiffiffiffiffiffiffiffi
Nbins

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM� 1Þp �

S2h
S2n

�
1=2

: (28)

Thus, we see that the expected signal-to-noise ratio scales
linearly with the number of detectors for M 
 1, the
square root of the total observation time, and the square
root of the number of frequency bins. Note thatffiffiffiffiffiffiffiffiffiffi
T�f

p ffiffiffiffiffiffiffiffiffiffi
Nbins

p ¼ ffiffiffiffiffiffiffiffiffiffi
T�f

p
, which is the total time-frequency

volume of the measurement.

III. POWER-LAW INTEGRATED CURVES

A. Construction

The sensitivity curves that we propose are based on
Eq. (22) for the expected signal-to-noise ratio �, applied
to gravitational-wave backgrounds with power-law spec-
tra. These ‘‘power-law integrated sensitivity curves’’ in-
clude the improvement in sensitivity that comes from the
broadband nature of the signal, via the integration over
frequency. The following construction is cast in terms of
�gwðfÞ, but we note that power-law integrated curves can

also easily be constructed for hcðfÞ or ShðfÞ using Eqs. (3)
and (5) to convert between the different quantities.
(1) Begin with the detector noise power spectral den-

sities PnIðfÞ, PnJðfÞ, and the overlap reduction
functions �IJðfÞ for two or more detectors. Using
Eq. (23), first calculate the effective strain power
spectral density SeffðfÞ and then convert it to energy
density units �effðfÞ using Eq. (3).

(2) Assume an observation time T, typically between 1
and 10 yr.

(3) For a set of power-law indices, e.g., � ¼
f�8;�7; . . . 7; 8g, and some choice of reference fre-
quency fref , calculate the value of the amplitude��

such that the integrated signal-to-noise ratio has
some fixed value, e.g., � ¼ 1. Explicitly,

�� ¼ �ffiffiffiffiffiffi
2T

p
�Z fmax

fmin

df
ðf=frefÞ2�
�2

effðfÞ
��1=2

: (29)

Note that the choice of fref is arbitrary and will not
affect the sensitivity curve.

(4) For each pair of values for� and��, plot�gwðfÞ ¼
��ðf=frefÞ� versus f.

The envelope of the �gwðfÞ power-law curves is

the power-law integrated sensitivity curve for a
correlation measurement using two or more detec-
tors. Formally, the power-law integrated curve is
given by

�PIðfÞ ¼ max
�

�
��

�
f

fref

�
�
�
: (30)

Interpretation: Any line (on a log-log plot) that is tangent
to the power-law integrated sensitivity curve corresponds
to a gravitational-wave background power-law spectrum
with an integrated signal-to-noise ratio � ¼ 1. This means
that if the curve for a predicted background lies every-
where below the sensitivity curve, then � < 1 for such a
background. On the other hand, if the curve for a pre-
dicted power-law background with spectral index � lies
somewhere above the sensitivity curve, then it will be

observed with an expected value of � ¼ �
pred
� =�� > 1.

Graphically, �pred
� is the value of the predicted power-law

spectrum evaluated at fref , while �� is the value of the

3The above expression for � assumes that the gravitational-
wave background is weak compared to the instrumental noise in
the sense that PhIðfÞ � PnIðfÞ for all frequencies in the
bandwidth of the detectors.

4Explicitly, hXi � ð1=�fÞRfmax

fmin
XðfÞdf.
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same power-law spectrum that is tangent to the sensitivity
curve, also evaluated at fref .

B. Plots

The calculation of a power-law integrated sensitivity
curve is demonstrated in the left-hand panel of Fig. 7 for
the Hanford-Livingston (H1L1) pair of Advanced LIGO
detectors. Following steps 1–5 above, we begin with the
design detector noise power spectral density PnðfÞ for an
Advanced LIGO detector [13] (which we assume to
be the same for both H1 and L1) and divide by the
absolute value of the H1L1 overlap reduction function
to obtain the effective strain spectral density SeffðfÞ ¼
PnðfÞ=j�H1L1ðfÞj of the detector pair to a gravitational-
wave background [see Eq. (23)]. We then convert SeffðfÞ
to an energy density �effðfÞ via Eq. (3) to obtain the
solid red curve. After integrating 1 yr of coincident data
and assuming a frequency bin width of 0.25 Hz, we
obtain the solid green curve, which is lower by a factor
of 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
2T�f

p
. (The green curve, which depends on the

somewhat arbitrary value of �f, can be thought of as an
intermediate data product in LIGO analyses.) Then as-
suming different spectral indices �, we integrate over

frequency [see Eq. (29)], setting � ¼ 1 to determine the
amplitude �� of a power-law background. This gives us

the set of black lines for each power-law index �. The
blue power-law integrated curve is the envelope of these
black lines.
The right-hand panel of Fig. 7 illustrates how to interpret

a power-law integrated sensitivity curve. We replot the
green and blue curves from the left-hand panel, which
respectively represent the time-integrated and power-law
integrated sensitivity of an Advanced LIGO H1L1 corre-
lation measurement to a gravitational-wave background.
Additionally, we plot two theoretical spectra of the form

�gwðfÞ / f2=3, which is expected for a background due to

compact binary coalescences. The dark brown line corre-
sponds to a somewhat pessimistic scenario in which
Advanced LIGO, running at design sensitivity, would de-
tect � 10 individual binary-neutron-star coalescences per
year of science data [14]. The light brown line represents a
somewhat optimistic model in which Advanced LIGO,
running at design sensitivity, would detect � 100 individ-
ual binary-neutron-star coalescences per year of science
data [14]. (A binary-neutron-star detection rate of 40 yr�1

is considered a realistic rate for Advanced LIGO [15].)
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FIG. 7 (color online). Left panel:�gwðfÞ sensitivity curves fromdifferent stages in a potential futureAdvancedLIGOH1L1correlation
search for power-law gravitational-wave backgrounds. (For readers of a grayscale copy, we are starting at the top of the plot and working
toward the bottom.) The red line shows the effective strain spectral density SeffðfÞ ¼ PnðfÞ=j�H1L1ðfÞj of the H1L1 detector pair to a
gravitational-wave background signal converted to energy density�effðfÞ via Eq. (3). [The PnðfÞ used in this calculation is the design
detector noise power spectral density for an Advanced LIGO detector, assumed to be the same for both H1 and L1.] The spikes in the red
curve are due to zeros in the overlap reduction function �H1L1ðfÞ, which is shown in the left panel of Fig. 5. The green curve,
SeffðfÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2T�f

p
, is obtained through the optimal combination of 1 yr of data, assuming a frequency bin width of 0.25 Hz, as is typical [2].

The vertical dashed orange line marks a typical Advanced LIGO reference frequency, fref ¼ 100 Hz. The set of straight black lines is
obtained by performing the integration in Eq. (29) for different power-law indices �, requiring that � ¼ 1 to determine��. Finally, the

blue power-law integrated sensitivity curve is the envelope of the black lines. Right panel: A demonstration of how to interpret a power-
law integrated curve. The thin green line and thick blue line are the same as in the left panel. The two dashed brown lines represent two
different plausible signalmodels for gravitational-wave backgrounds arising frombinary-neutron-star coalescence; see, e.g., [14]. In each
case,�gwðfÞ / f2=3; however, the two curves differ by an order of magnitude in the overall normalization of�gwðfÞ. The louder signal
will induce a signal-to-noise ratio � > 1 with an Advanced LIGO H1L1 correlation measurement as it intersects the blue power-law
integrated curve—even though it falls below the time-integrated green curve. Theweaker signal will induce a signal-to-noise ratio � < 1
with Advanced LIGO H1L1, as it is everywhere below the power-law integrated curve.
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The light-brown curve intersects the blue power-law inte-
grated curve, indicating that the somewhat optimistic
model will induce a signal-to-noise ratio � > 1. The dark
brown curve falls below the blue power-law integrated
curve, indicating that the somewhat pessimistic model
will induce a signal-to-noise ratio � < 1. Note that neither
curve intersects the green time-integrated sensitivity curve.

In the following subsections, we plot power-law inte-
grated sensitivity curves for several upcoming or proposed
experiments: networks of Advanced LIGO detectors
(Fig. 9), BBO (Fig. 10, top panel), LISA (Fig. 10, middle
panel), and a network of pulsars from a pulsar timing array
(Fig. 10, bottom panel).

1. Advanced LIGO networks

For the Advanced LIGO networks, we use the design
detector noise power spectral density PnðfÞ taken from
[13], assumed to be the same for every detector in the
network. We consider three networks: H1L1 (just the US
aLIGO detectors), H1H2 (a hypothetical colocated pair of
aLIGO detectors), and H1L1V1K1 (the US aLIGO detec-
tors plus detector pairs created with Virgo V1 and KAGRA
K1).5 In reality, Virgo and KAGRA are expected to have
different noise curves than aLIGO, but we assume the
same aLIGO noise for each detector in order to show
how the sensitivity curve changes by adding additional
identical detectors to the network. Given this assumption,
the effective strain power spectral density can be written as

SeffðfÞ ¼ PnðfÞ=ReffðfÞ; (31)

where

ReffðfÞ ¼
�XM
I¼1

XM
J>I

�2
IJðfÞ

�
1=2

(32)

is the sky- and polarization-averaged response of the net-
work to a gravitational-wave background. A plot of the
various overlap reduction functions �IJðfÞ andReffðfÞ for
the H1L1V1K1 network is given in Fig. 8. The resulting
power-law integrated sensitivity curves are shown in Fig. 9.

2. Big bang observer

For the BBO sensitivity curve, the noise power spectral
density for the two Michelson interferometers is taken
to be
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FIG. 9 (color online). Different networks of advanced detec-
tors assuming T ¼ 1 yr of observation. We also include 95% CL
limits from initial LIGO for comparison [2].
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FIG. 8 (color online). Left panel: Individual normalized overlap reduction functions for the six different detector pairs comprising
the H1L1K1V1 network. Right panel: Sky- and polarization-averaged response of the H1L1V1K1 network to a gravitational-wave
background.

5We have taken the location and orientation of the KAGRA
detector to be that of the TAMA 300-m interferometer in Tokyo,
Japan. We have not included the planned LIGO India detector
[16] in this network, as the precise LIGO-India site has not yet
been decided upon.
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PnðfÞ ¼ 4

L2

�
ðf�xÞ2 þ ðf�aÞ2

ð2�fÞ4
�
; (33)

where

ðf�xÞ2 ¼ 2� 10�34 m2

Hz
; (34)

ðf�aÞ2 ¼ 9� 10�34 m2

s4 � Hz (35)

are the position and acceleration noise (see Table II from
[11]) and L ¼ 5� 107 m is the arm length. Following
[12], we have included an extra factor of 4 multiplying
the first term in Eq. (33), which corresponds to high-
frequency noise that is 4 times larger than shot noise alone.
The overlap reduction function for the Michelson interfer-
ometers located at opposite vertices of the BBO hexagram
is shown in the right panel of Fig. 5. The power-law
integrated curve for BBO is given in Fig. 10, top panel.

3. LISA

For LISA, the analysis is necessarily different since the
standard cross-correlation technique used for multiple detec-
tors such as an Advanced LIGO network, BBO, or a pulsar
timing array is not possible for a single LISA constellation.
This is because the two independent Michelson interferome-
ters that one can synthesize from the six links of the standard
equilateral LISAconfiguration are rotated at 45�with respect
to one another, leading to zero cross correlation for an iso-
tropic gravitational-wave background for frequencies below
about c=2L ¼ 3� 10�2 Hz [17]. It is possible, however, to
construct a combination of the LISA data whose response to
gravitational waves is highly suppressed at these frequencies
and hence can be used as a real-time noise monitor for LISA
[18,19]. It is also possible to exploit the differences between
the transfer function and spectral shape of a gravitational-
wave background and that due to instrumental noise and/or
an astrophysical foreground (e.g., from galactic white-dwarf
binaries) to discriminate a gravitational-wave background
from these other noise contributions [20,21].

For the ideal case of an autocorrelation measurement
in a single detector assuming perfect subtraction of instru-
mental noise and/or any unwanted astrophysical foreground,
Eq. (21) for the expected signal-to-noise ratio is replaced by

� ¼ ffiffiffiffi
T

p �Z 1

0
df

R2ðfÞS2hðfÞ
P2
nðfÞ

�
1=2

; (36)

where RðfÞ � �ðfÞ is the transfer function of the
detector and PnðfÞ is its noise power spectral density. (Theffiffiffi
2

p
reduction in� compared to a cross-correlation analysis is

due to the use of data from only one detector instead of two.)
For standard LISA,

PnðfÞ ¼ 1

L2

�
ðf�xÞ2 þ 4ðf�aÞ2

ð2�fÞ4
�
; (37)
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FIG. 10 (color online). One-sigma, power-law integrated sen-
sitivity curves. The dashed purple curves show the effective strain
spectral density SeffðfÞ [SnðfÞ for LISA, middle panel] converted
to fractional energy density units [see Eqs. (3), (23), and (27)].
Top panel: BBO assuming T ¼ 1 yr of observation. The spike at
� 2:5 Hz is due to a zero in the BBO overlap reduction function.
Middle panel: LISA autocorrelation measurement assuming
T ¼ 1 yr of observation and perfect subtraction of instrumental
noise and/or any unwanted astrophysical foreground. Bottom
panel: A pulsar timing array consisting of 20 pulsars, 100 ns
timing noise, T ¼ 5 yr of observation, and a cadence of 20 yr�1.
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where

ðf�xÞ2 ¼ 4� 10�22 m2

Hz
; (38)

ðf�aÞ2 ¼ 9� 10�30 m2

s4 � Hz (39)

are the position and acceleration noise [6,11] and L ¼ 5�
109 m is the arm length. The transfer functionRðfÞ is taken
from Fig. 4, restricted to the LISA band, 10�4 Hz< f <
10�1 Hz. Using the above expression for� and following the
same steps from the previous subsection for the construction
of a power-law integrated curve, we obtain the sensitivity
curve for LISA given in Fig. 10, middle panel.

Note that the minimum value of�ðfÞ shown in this plot
is about a factor of 10 times smaller than the value of
�gwðfÞ � 2� 10�13 reported in [20,21]. Part of this

difference is due to our use of � ¼ 1 for the sensitivity
curve, while their value of �gwðfÞ corresponds to a strong

(several 	) detection having a Bayes factor � 30. The
remaining factor can probably be attributed to the margin-
alization over the instrumental noise and galactic fore-
ground parameters in [20,21], while Eq. (36) assumes
that we know these parameters perfectly.

4. Pulsar timing array

For the pulsar timing array sensitivity curve, we consider
a network of 20 pulsars taken from the International Pulsar
Timing Network (IPTA) [22], which we assume have
identical white timing noise power spectral densities,

PnðfÞ ¼ 2�t	2; (40)

where 1=�t is the cadence of the measurements, taken to
be 20 yr�1, and 	 is the root-mean-square timing noise,
taken to be 100 ns. We note that the pulsar timing network
we envision may be somewhat optimistic, as 100 ns root-
mean-square timing noise is ambitious. Also, we do not
include the effects of fitting each pulsar’s period P and
spin-down rate _P to a timing model, which introduces both
nonstationarity in the timing residuals and loss of sensitiv-
ity [23]. Nevertheless, one can still write down an analo-
gous expression to Eq. (22) including these effects [24].

Since the timing noise power spectral densities are
identical, it follows that

SeffðfÞ ¼ SnðfÞ
�XM
I¼1

XM
J>I

�2IJ

��1=2
; (41)

where

SnðfÞ ¼ PnðfÞ=RðfÞ ¼ 12�2f2PnðfÞ (42)

and �IJ are the Hellings and Downs factors for each pair of
pulsars in the array. For our choice of 20 pulsars,XM

I¼1

XM
J>I

�2IJ ¼ 4:74; (43)

which can thought of as the effective number of pulsar pairs
for the network. Finally, we assume a total observation time
T ¼ 5 yr, which sets the lower frequency limit of SeffðfÞ.
Given these parameters, we expect the pulsar timing array
to be operating in the ‘‘intermediate signal limit’’ [24]. We
therefore utilize the scaling laws from Fig. 2 in Ref. [24] to
adjust the power-law integrated curves, since Eqs. (21) and
(22) for � are valid in the weak-signal limit and overesti-
mate the expected signal-to-noise ratio by a factor of�5 for
an observation of T ¼ 5 yr. The power-law integrated
curve for IPTA is given in Fig. 10, bottom panel.
It is interesting to note that the power-law integrated

curves for Advanced LIGO and BBO are relatively round
in shape, whereas the pulsar timing curve is pointy. [The
steep �ðfÞ / f5 spectrum can be understood as follows:
The transfer functionRðfÞ contributes a factor of f2, while
the conversion from power to energy density contributes
an additional factor of f3.] This reflects the fact that the
sensitivity of pulsar timing measurements is mostly deter-
mined by a small band of the lowest frequencies regardless
of the spectral shape of the signal. However, the timing-
model fit mentioned above may round out the pointy shape
of the PTA sensitivity curve. We also note that the stochas-
tic background in the PTA band may exhibit variability.
The power-law integrated curves represent the sensitivity
to energy density observed at the Earth over the course of
the measurement.
Figure 11 is a summary of the results of this section,

showing the power-law integrated sensitivity curves for the
different detectors on a single plot spanning a wide range
of frequencies.
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FIG. 11 (color online). One-sigma, power-law integrated sen-
sitivity curves for the different detectors considered in this paper,
plotted on the same graph. The Advanced LIGO H1L1, BBO,
and pulsar timing sensitivity curves correspond to correlation
measurements using two or more detectors. The LISA sensitivity
curve corresponds to an autocorrelation measurement in a single
detector assuming perfect subtraction of instrumental noise
and/or any unwanted astrophysical foreground.
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IV. DISCUSSION

We have presented a graphical representation of detector
sensitivity curves for power-law gravitational-wave back-
grounds that takes into account the enhancement in sensi-
tivity that comes from integrating over frequency in addition
to integrating over time.We applied this method to construct
new power-law integrated sensitivity curves for cross-
correlation searches involving advanced ground-based de-
tectors, BBO, and a network of pulsars from a pulsar timing
array.We also constructed a power-law integrated sensitivity
curve for an autocorrelation measurement using LISA. The
new curves paint a more accurate picture of the expected
sensitivity of upcoming observations. The code that we used
to produce the new curves is available at https://dcc.ligo.org/
LIGO-P1300115/public for public download. Hopefully,
this will allow other researchers to easily construct similar
sensitivity curves. Required inputs are the noise power
spectral density PnIðfÞ for each detector in the network
and the overlap reduction function �IJðfÞ for each detector
pair. Common default files are available for download with
the plotting code.

Although the above discussion has focused on compar-
ing predicted strengths of gravitational-wave backgrounds
to sensitivity curves for current or planned detectors, one

can also present measured upper limits for power-law
backgrounds in a similar way. That is, instead of plotting
the upper limits for �� (for fixed fref) as a function of the

spectral index � as in [2,25,26], one can plot the envelope
of upper-limit power-law curves as a function of fre-
quency. This would better illustrate the frequency depen-
dence of the upper limits in the observing band of the
detectors.
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