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If space-time is emergent from a fundamentally nongeometric theory it will generically be left with

defects. Such defects need not respect the locality that emerges with the background. Here, we develop a

phenomenological model that parametrizes the effects of nonlocal defects on the propagation of particles.

In this model, Lorentz invariance is preserved on the average. We derive constraints on the density of

defects from various experiments.
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I. INTRODUCTION

Reductionism has been tremendously successful. It is
thus only consequential to question whether the basic
ingredients of today’s theories are truly fundamental and
to devise tests. To make headway on a theory of quantum
gravity, it has long been suggested the seemingly smooth
space-time we experience might be an emergent feature of
an underlying, nongeometric theory that unifies general
relativity with quantum mechanics. While the full theory
is still unknown, it is nevertheless possible to investigate
the phenomenology of specific features it is expected to
have. Many of these investigations in the area of quantum
gravity phenomenology have been reviewed in [1–3].

We will here focus on the question which observational
consequences can be expected from space-time imperfec-
tions of nongeometric origin. Since Lorentz-invariance
violation is probably the most extensively studied area of
Planck-scale physics [4,5], we will here turn our attention
to the case where Lorentz invariance is maintained, at least
on the average.

If space-time is not fundamental, but emergent from a
nongeometric theory described by graphs, then we live to-
day in a period in which the graph approximates to excellent
precision a locally connected manifold of dimension four
with Lorentzian signature and a metric tensor whose dy-
namics is determined by Einstein’s field equations. This
smooth background however will still have defects owing
to its nongeometric origin. One expects some defects to
prevail simply because in such a scenario perfection begs
for additional explanation. This expectation that space-time
is left with defects is generic and independent of the details
of the underlying theory making it an ideal opportunity to
test quantum gravity phenomenology. We will in this paper
make as few assumptions as possible about the origin of the
defects and work towards a parametrization of possible
effects that is as model independent as possible.

Unlike defects one normally deals with (e.g., in crys-
tals), the defects under consideration here occur on space-
time points and do not have world lines. One can then

distinguish two different types of defects: local ones and
nonlocal ones. Local defects respect the emergent locality
in the space-time manifold. A particle that encounters a
local defect will scatter and change direction, but continue
its world line on a continuous curve. Nonlocal defects on
the other hand do not respect the emergent locality of the
space-time manifold. A particle that encounters a nonlocal
defect continues its path in space-time elsewhere, but with
the same momentum.
In principle a space-time defect could cause both, a change

of position and momentum. But before making things more
complicated by combining these two effects, it seems pru-
dent to first study the simpler cases. In this paper, we will
develop a model for the nonlocal type of defects. An accom-
panying paper [6] deals with the local type of defects. A
differentmodel for local space-timedefects has recentlybeen
put forward in [7] (see also the discussion in [6]).
The nonlocal defects that we are interested in here cause

a particle to discontinuously jump between two points
that have a long distance according to the metric of the
approximate manifold.1 This distance can potentially be
macroscopically large. This is not unlike transversable
wormholes, except that the connection between the points
is not described by geometry itself.
It has been demonstrated explicitly by Markopoulou and

Smolin in [8] that spin networks are prone to develop such
defects. This finding, aptly dubbed ‘‘disordered locality’’
in [8], was further studied in [9] as to its consequences for
the cosmological constant and in [10] for its modifications
of the dispersion relation. The approach in these papers
however breaks Lorentz invariance by introducing a
preferred timelike slicing and is thus not of immediate
relevance for the following considerations, though it has
served as a motivation.
The picture we will investigate here is what modifica-

tions a homogeneous space-time distribution of nonlocal
defects causes, depending on the density of the defects and
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1This can be given meaning without referral to the metric of
the emergent space-time by instead considering the lengths of
closed curves that the two points are part of according to some
distance measure of the underlying structure.
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the probability of a particle to interact with the defect. We
will see that massless particles are stochastically deviated
from the light cone. This deviation can be such that the
average speed remains the usual speed of light and only
stochastic fluctuations around the mean occur. But there
are also cases in which the photon’s average speed can
decrease or increase. These modifications become more
relevant for long distances and small energies, in stark
contrast to other scenarios where the modifications become
relevant for large energies, as in the cases where Lorentz
symmetry is broken or deformed. In the scenario with
nonlocal defects, the photon acquires an effective mass
that can, for the case when the photon’s average speed
exceeds the usual speed of light, potentially be a tachyonic
mass. If we want to include the case in which deviations
from the light cone can be spacelike, special attention has
to be paid to causality, which we will discuss in Sec. VI.

The effects of nonlocal space-time defects that we con-
sider here are not perturbative in the sense that they do not
constitute a small deviation from flat space (or some other
background metric). A flat space remains flat in the pres-
ence of nonlocal defects. The deviation that the nonlocal
defects cause can best be understood as a topology change.
Space-time defects give rise to deviations that are small in
the sense that we assume the defects are sparse.

We use the unit convention ℏ ¼ c ¼ 1. The signature of
the metric is ðþ;�;�;�Þ.

II. THE DISTRIBUTION OF DEFECTS

To develop our model for nonlocal defects, we will
assume that the emergent background space-time is flat
Minkowski space, i.e., we will here not take into account
background curvature. Since violations of Lorentz invari-
ance have been thoroughly studied, and been ruled out to
high precision already, we will further only consider the
case in which Lorentz invariance is maintained, at least on
the average. We first discuss the classical point particles
(Sec. III) and include quantum uncertainty later (Sec. IV).

The only presently known probability distribution for
points in Minkowski space that preserves Lorentz invari-
ance on the average is the result of a Poisson process
developed in [11,12]. With this distribution, the probability
of finding N points in a space-time volume V is

PNðVÞ ¼ ð�VÞN exp ð��VÞ
N!

; (1)

where � is a constant space-time density.
The average value of points that one will find in some

volume is the expectation value of the above distribution
and given by

hNðVÞi ¼ X1
N¼0

PNðVÞN ¼ �V: (2)

The variance that quantifies the typical fluctuations around
the mean is�N� ffiffiffiffiffiffiffiffi

�V
p

, and the corresponding fluctuations

in the density of points are �ðN=VÞ � ffiffiffiffiffiffiffiffiffiffi
�=V

p
. In other

words, the density fluctuations will be small for large
volumes.
We will use the distribution (1) to seed the nonlocal

defects with an average density �. In the following, we
will not be concerned with fluctuations in the density as our
aim here is to first get a general understanding for the size
of effects caused by nonlocal defects and using the average
will suffice for this purpose. The probability is a density
over space-time � ¼ Ldþ1, where L is a length scale and d
is the number of spatial dimensions. With this, we have
introduced a small dimensionless parameter � ¼ lP=L,
where lP is the Planck length, that one expects to determine
the size of effects.
The nonlocal defect causes a jump of the particle to

another point. The two points have a nonvanishing distance
according to the Minkowski metric. In addition to sprin-
kling the points, we then also have to identify the orienta-
tions at the begin and end of the jump, to prevent that
direction from being twisted. We will assume that the
tangential space at the entry point of the defect is mapped
to the parallel-transported tangential space at the exit point.
In flat Minkowski space this means simply that the direc-
tion of a particle is not changed and its momentum stays
the same while it seems to jump from one point to another.
If the probability distribution of nonlocal defects is

constant through space and time, then, to preserve Lorentz
invariance, we further have to make sure that the distribution
of points to which the particle jumps depends only on
Lorentz-invariant quantities. To parametrize this distribution
of end points we will now consider one single defect and
without loss of generality assume it is located at (0, 0).
The only four-vectors that we have and that can be used to

construct a Lorentz-invariant distribution are the particle’s
momentum before encountering the defect, p�, the particle’s
momentum after encountering the defect, p0�, and the
space-time distance between the defect and the point where
the particle will continue its path, y�. By assumption, the
momenta before and after encountering the defect are iden-
tical p� ¼ p0�, so we have only two four-vectors left.
The first thing that comes to mind is to distribute the end

points for the particle’s jump according to the same
Lorentz-invariant distribution as the defects. If space is
infinitely extended, this means that the particle with proba-
bility one jumps infinitely far away and essentially disap-
pears. It also means that it gets replaced with another
particle at a rate depending on the probability of any
particle to encounter such a defect elsewhere. This then
effectively describes a local defect, and we will not further
consider this case here; see however the discussion in [6].
To describe the case where the end point of the jump is

determined by Lorentz-invariant quantities constructed
from the particle’s trajectory, we will for now focus on
the case with 1þ 1 dimension and generalize to higher
dimension later. In 1þ 1 dimensions, � has dimensions of

S. HOSSENFELDER PHYSICAL REVIEW D 88, 124030 (2013)

124030-2



one over length squared. We first consider a massless,
right moving particle with momentum p�p

� ¼ 0, i.e.,
p� ¼ ðE; EÞ.

In 1þ 1 dimensions, curves of constant distance from a
point are hyperbolae in Minkowski space. The first
Lorentz-invariant quantity at our disposal is thus the length
of y�,

y�y
� ¼ ��2; (3)

where � is a (positive, real) constant of dimension length.
In 1þ 1 dimensions, the hyperbolae in quadrant I (see
Fig. 1) can be parametrized as

y
�
I ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �2

p
; x

�
: (4)

Timelike vectors of length �2 ending on the hyperbola in
quadrant II can be parametrized as

y
�
II ¼

�
t;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ �2

p �
: (5)

(In the following we write y to refer to both yI and yII
together.)

The second Lorentz-invariant quantity that we can con-
struct is the contraction of p� with y�ð�Þ. We parametrize
this contraction as

ðyIÞ�p� ¼ ��; (6)

in quadrant I, and

ðyIIÞ�p� ¼ ��� (7)

in quadrant II. Here, � is a (real, positive) parameter of
dimension mass. For any given pair of� and�, this singles
out a point on the hyperbola, which is where the particle
that hit the defect at (0, 0) will continue its path. Any
normalizable function of � and� will be Lorentz invariant
and is thus suitable to parametrize the probability distribu-
tion for end points of the particle’s jump. The vectors yI
and yII are thus functions of �, �, and p.

When the particle is deviated from the light cone to the
hyperbola in quadrant I it will be slowed down. We will
thus refer to this case as subluminal. Correspondingly, the
case where the jump goes to quadrant II we will refer to as
superluminal.
In the superluminal case we can eliminate the explicit

dependence of yII on t and express it through the particle’s
energy which gives

yIIð�;�; pÞ ¼ �

2

E=���=E

E=�þ�=E

 !
: (8)

For the subluminal case, one has similarly

yIð�;�; pÞ ¼ 0 1

1 0

 !
yIIð�;�; pÞ: (9)

The probability distribution, PNLð�;�Þ, for the end
points of the particles’ jumps has to be normalizable to
unity,

R
PNLð�;�Þd�d� ¼ 1. We will denote average

values with respect to this distribution with brackets that
carry the index ‘‘NL,’’ for example

hyIðpÞiNL ¼
Z

yIð�;�; pÞPNLð�;�Þd�d�: (10)

We will in the following only roughly quantify the
probability distribution by the average values h�iNL and
h�iNL as well as the corresponding variances �� and ��.
The former determine the average distance the particle will
jump when it hits the defect, the latter the width of the
distribution around that average value.
In summary, for the particle with momentum p�, the

requirement Eq. (7) singles out one point yIIð�;�; pÞ on
the hyperbola to �, this is the end point of the jump starting
in (0, 0). The probability that the particle makes a jump to
this point is then PNLð�;�Þ. This construction is entirely
Lorentz invariant. The distribution PNLð�;�Þ parametrizes
the effects of the nonlocal defects in causing a sudden
translation. One may say that the defect resembles a
beamer rather than a wormhole.

III. WORLD LINES IN THE PRESENCE OF
NONLOCAL DEFECTS

We have now parametrized the distribution of nonlocal
defects in the density, �, of the Poisson sprinkling, and the
typical deviation from the light cone that the defect causes,
quantified in the average values h�iNL and h�iNL together
with the widths �� and ��. These are the free parameters
of the model.
From Eq. (8) we see that the particle is deviated as

follows:
(i) In the limit E � �, y becomes parallel to (1, 1), i.e.,

the right forward light cone. In this limit, one jump
of the particle skips a distance of L1j � E�

� .

(ii) In the limit E � �, yII becomes parallel to ð1;�1Þ,
i.e., the right backward light cone in the superluminal

FIG. 1 (color online). Location of yI and yII in Minkowski
space.
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case, and yI becomes parallel to ð�1; 1Þ, i.e., the left
forward light cone in the subluminal case.

(iii) In the case E � �, yII becomes parallel to (0, 1) in
the superluminal case, and yI becomes parallel to
(1, 0) in the subluminal case.

Since we see that the direction of the jump gets closer to
the light cone for large energies and the deviation becomes
noticeable for energies close to � and below, we conclude
that � is a modification in the infrared, rather than in the
ultraviolet. We thus expect � to be a small energy scale.
Roughly speaking, � is the energy at which a massless
particle jumps a distance of �, or h�iNL on the average.

Note that the particle’s momentum, whenever one mea-
sures it, remains ðE; EÞ. However, the tangential vector of
the average trajectory is no longer parallel to the momen-
tum vector. If we parametrize the particle’s trajectory x
with �, such that xð0Þ ¼ 0, then the trajectory would now
be x ¼ �ð1; 1Þ þ�ð�Þyð�;�; pÞ.

This particle can be assigned a pseudomomentum, ~p,
and pseudomass, ~m, which is the four-momentum and
mass of a particle that moved straight from the defect to
the end point of the jump in the background manifold.
In the superluminal case this pseudomomentum and pseu-
domass will be that of a tachyon. Requiring that ~p be
proportional to yð�;�; pÞ but not be a function of � itself,
and ~p ! p for � ! 0, one finds

~p ¼ 2
�

�
yð�;�; pÞ; ~m ¼ i�; (11)

in the superluminal case. The speed the particle would have
if it would constantly jump with parameters � and � is,
from Eq. (8),

~csup ¼ E=�þ�=E

E=���=E
: (12)

For �=E � 1, the speed of light with the first correction
term is ~csup � 1þ 2ð�=EÞ2. For the subluminal case, one

finds the same way ~m ¼ �, ~csub ¼ 1=~csup, and for large

energies it is ~csub � 1� 2ð�=EÞ2.
Now that we have described one jump caused by a

nonlocal defect, let us join several. Consider the photon
makes a sequence of NI timelike translations with �i,
i 2 1; . . . ; NI, and NII spacelike translations with �j,

j 2 1; . . . ; NII. Measured in the background manifold the
trajectory of the photon, instead of having zero proper
length, will appear to have length

P
i�i þP

j�j. The

corresponding pseudomomentum, h~pi, assigned to the pho-
ton encountering the sequence of defects is the average
over the joined jumps. Thus,

h~pi ¼ 2
�

N

�XNI

i

1

�i

yIð�i; p;�Þ þXNII

j

1

�j

yIIð�j; p;�Þ
�
; (13)

h ~mi ¼
ffiffiffiffiffiffiffiffiffi
h~p2i

q
; (14)

where N ¼ NI þ NII,
2 and the sums are taken only over

those end points in the respective quadrant. The average
speed the photon would appear to have moved with is

h~ci ¼ h~pxi
h~pti : (15)

The average speed can be equal to one if there are lightlike
and spacelike translations, and will be strictly larger
(smaller) than one if there are only spacelike (timelike)
translations.
The pseudomomentum is proportional to a sum of

four-vectors and thus Lorentz covariant. Thus, the speed
assigned to the particle transforms under the usual special
relativistic laws. We note that since the pseudomomentum
does not depend on �, the average pseudomomentum does
also not depend on the probability distribution for �.
Inserting Eqs. (8) and (9), one finds

h~piNL ¼ E

�
1þ h�2iNL

E2

NII � NI

NI þ NII

; 1þ h�2iNL
E2

NI � NII

NI þ NII

�
:

(16)

As one expects, if we have a distribution of nonlocal
defects that is the same for timelike and spacelike trans-
lations (NI ¼ NII) then one will initially have some fluc-
tuations, but for a large number of jumps NII � NI and so
h~piNL ! p. Note that the number of jumps between two
nodes on the curve is an invariant.
In the case NI � NII, for example, when jumps happen

exclusively into one quadrant, the average of the path
deviates from the light cone. If NI ¼ NII � N, the average
of the path remains the light cone, but the variance is still
nonvanishing. In other words, even if the average remains
on the light cone, a representative path will deviate from it.
Since the particle’s jumps constitute a random walk in one
dimension, we can estimate that the average deviation in
this case scales like

�y�
ffiffiffiffi
N

p
E

�ð��Þ (17)

in the direction perpendicular to the direction of propaga-
tion, i.e., y0 � yx. Assuming that the variables � and � are
uncorrelated, we could further rewrite

�ð��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�i2NLð��Þ2 þ h�i2NLð��Þ2

q
: (18)

However, we are not interested in a direct sequence of
translations, but in a sequence of translations interrupted
through propagation on the light cone in the background
manifold that respects locality. To model this local process
we have to understand the background as discretized, even
though the details will not matter in the following. The
reason is that a locally finite distribution of points,3 as we

2This is not the same N as in (1).
3This means finitely many points in all causal diamonds.
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are using here for the nonlocal defects, has measure zero
in a continuous background, and the probability of any
particle’s world line to hit such a defect in a continuous
background would be zero.

We will thus consider the local propagation as a
sequence of jumps, just that these are shorter (in the sense
that it takes many of them to achieve the same as one
nonlocal translation). For illustration, see Fig. 2. We will
here not attempt to develop an equation of motion for this
local process of normal propagation; this is territory of
the underlying theory of quantum gravity. Instead, we just
use our existing knowledge and assume that the massless
particle to good precision moves on the light cone, and
whatever its equation of motion looks like, it does not
deviate too far from it. It is possible that the fundamental
discreteness has other observable effects besides those
caused by defects, but the aim of this paper is to focus on
the nonlocal defects, exactly because evidence for a perfect
fundamentally discrete structure is hard to come by.

However, a concrete example for how such a propaga-
tion might look like has been developed in the causal sets
approach [13–15] in which the dynamical process is de-
scribed by ‘‘chains’’ (sequences of points) that are gener-
ated iteratively [16]. In this case the momentum undergoes
random fluctuations, called ‘‘swerves.’’ These swerves are
however unobservably small if the fundamental length
scale of discretization is the Planck length [17,18].

One may have this concrete example in mind, but the
details do not matter in the following. The only thing we
need is that the probability to encounter a defect is not zero
as it would be in a continuous background which contains
an uncountably infinite amount of points.

We then describe the motion of the photon as a sequence
of n short, local jumps with �k, k 2 1; . . . ; nI for quadrant
I, �l, l 2 1; . . . ; nII for quadrant II, and n ¼ nI þ nII. The
probability distribution is PLð�; �Þ and the same in both
quadrants. Here, � plays the same role for the local jumps

that � plays for the nonlocal jumps. The parameters are the
average values taken with the distribution PLð�;�Þ and its
variances.Wewill assume henceforth that this short-distance
structure is at the Planck length h�iL � 1=h�iL � lP.
In the large n limit with the symmetric distribution of �,

one then consistently has h~pi ¼ p. Now combining both
local and nonlocal translations, one gets for the pseudo-
momentum

h~pi ¼ 2

N þ n

�XNI

i

�

�i

yIð�i; p;�Þ þXNII

j

�

�j

yIIð�j; p;�Þ

þXnI
i

�

�i

yIð�i; p; �Þ þ
XnII
j

�

�j

yIIð�j; p; �Þ
�

¼ E

�
1þ�2

E2

NII � NI

N þ n
þ �2

E2

nII � nI
N þ n

;

1þ�2

E2

NI � NII

N þ n
þ �2

E2

nI � nII
N þ n

�
: (19)

In the case nI ¼ nII � n, the average deviation from the
lightlike path remains the same as (17) because the short
jumps do not contribute by assumption.
Let us then turn our attention to the superluminal case

where PNL � 0 in quadrant I, and take the average of the
distribution of nonlocal and local jumps. We take the limit
of an infinitely long curve with N, n ! 1, nI � nII ! 0,
while the ratio N=n :¼ J � 1 is held fixed. One then gets

h~piNL ¼ E

�
1þ J

h�2iNL
E2

; 1� J
h�2iNL
E2

�
: (20)

In other words, the particle resembles one with effective

mass h ~mi ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�2iNLJ

p
. In the subluminal case, one gets

similarly h ~mi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�2iNLJ
p

.
Note however that for the case in which the photon

travels only a short distance, it might be N ¼ 0, and as

FIG. 2 (color online). Averaging of the particle’s trajectory. Left: The solid lines are on the light cone, the dotted lines indicate the
translations caused by the nonlocal defects. The long-dashed (red) line is the effective speed of the particle. Right: Zoom in on the box
in the left picture. Looking close, it turns out that the particle’s trajectory is a series of short translations (solid) that average to a
lightlike curve (dashed).
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long as N is small the effective mass will make discon-
tinuous jumps. The question is then what is ‘‘short
distance?’’

IV. PARTICLES WITH SPATIALWIDTH

To quantify short distance, we leave the image of the
point particle and instead consider a massless particle that
covers some volume in space-time, a natural image when
taking into account quantum uncertainty (see Fig. 3, left).
This particle has a typical width �x and travels for a time
T. The width and time depend on the reference frame, but
the space-time volume covered V ¼ T�x does not. Instead
of using the spatial width of the world line and its temporal
extension, we could consider a causal diamond (see
Fig. 3, right). The former is more intuitive to think of,
the latter is more convenient to analyze Lorentz invariance.

The average number of defects the quantum particle
encounters on its travel is�T�x. Now we need an assump-
tion for the interaction probability, Pint, that cannot follow
from our previous, entirely kinematic, considerations. We
will assume that the strength of the interaction is deter-
mined (as in the local case, see [6]) by the typical volume
of the defect over the typical volume in which to find the
defect. In two dimensions, this means just Pint ¼ �2.

Then in two dimensions the average number of defects
the particle interacts with scales as

�N2 ¼ Pint�T�x ¼ l2PT�x

L4
: (21)

This means that the average time it takes until the particle
encounters a defect is

hT1di � L4

l2P�x
: (22)

The limit T � hT1di is then, for a massless particle, the
‘‘short’’ distance we are looking for, in which the particle is
unlikely to have encountered any defect.

A word of caution: �x is here the length of the baseline
of the parallelogram in Fig. 3, left. It is only identical to the
width of the particle if the baseline is at constant time,
which is not a Lorentz-invariant statement. This means
when interpreting �x in terms of the width of the wave
function, we best do so in a rest framewhere the baseline of
the parallelogram is parallel to the x axis, or otherwise first
have to derive the relation between both. We will later, in
Sec. V, identify the width from the experimental setup.
If hT1di � T the particle is unlikely to have made a

jump. If T � hT1di, on the other hand, the particle is likely
to have encountered many nonlocal defects already. If that
is so, then the time T that enters the volume that the particle
sweeps out in space-time is no longer the same as the
apparent time ~T that one would measure upon arrival,
because the volume does not increase while the particle
jumps from one point to the other.
The relation between the apparent time ~T and T is

~T ¼ T

�hT1di þ hT1ji
hT1di

�
; (23)

where hT1jiNL is the average time the particle jumps at each

defect. Note that ~T could be zero or negative in the super-
luminal case. From Eq. (8) one finds

hT1jiII ¼ 1

2

�
Eh�=�iNL � h��iNL

E

�
(24)

for the superluminal case and

hT1jiI ¼ 1

2

�
Eh�=�iNL þ h��iNL

E

�
(25)

for the subluminal case. The corresponding distances that
the particles jump are hL1jiII ¼ hT1jiI for the superluminal

case and hL1jiI ¼ hT1jiII for the subluminal case. Since the

particle is massless hL1di ¼ hT1di.
This means if the measured time ~T is large enough so

that T � hT1di, then the particle jumps over a fraction

x

t

T

Tx x

t

T

T

x

FIG. 3. To describe quantum particles, we consider world lines of finite width. While the width and the propagation time depend on
the rest frame, the space-time volume that is swept out by the quantum particle is Lorentz invariant.
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hT1ji=hT1di of this propagation time ~T and the correspond-

ing distance. This can reduce the probability of it interact-
ing with other particles. We will examine the observational
consequences of this in Sec. V.

For a plane wave, the stochastic deviations of the world
line (17) become fluctuations in the phase of order ���
E�y. This can be calculated from (8), or (9) respectively,

and comes out to be just ��� ffiffiffiffi
�N

p
�ð��Þ. This means

that the wave acquires a random phase shift of size �ð��Þ
at each defect, as one could have expected already from (6)
and (7), and the phase thus acquires the blurring from the
distribution PNLð�;�Þ. It is only the part of the jump
perpendicular to the direction of propagation that blurs
the phase. With the understanding that �x is identified as
explained above, we can then express the random phase
shift for a plane wave as

�� ¼ �

ffiffiffiffiffiffiffiffiffiffi
T�x

L2

s
�ð��Þ; (26)

where the variance can further be rewritten by Eq. (18) so
that the phase shift is expressed in the five parameters we
had chosen initially.

We can also use the above considerations to take the
limit to classical particles and to connect to the discussion
in the previous section. The average speed of light is, in the
superluminal case, given by ~c ¼ ðhT1di þ hL1jiIIÞ=ðhT1di þ
hT1jiIIÞ. In the limit where the deviation is small,

hL1jiII=hT1di � 1, one finds ~c � 1þ h��iNL=ðEhT1diÞ.
With �x� 1=E, we can then identify

J ¼ �2
h�iNL
L

1

h�iNLL
h�i2NL
h�2iNL

: (27)

The first factor in this expression is the density of the
defects over the density of the fundamental structure. The
second factor is the ratio of the typical distance the particle
jumps to the typical distance of defects. The larger this
factor, the more the jumps matter, though we would expect
it to be of order 1. The third factor is the ratio of ℏ (set to
one) over �L. It takes into account that when the particle
jumps it misses a certain amount of steps of the fundamen-
tal structure, which is why the ratio N=n is not just lP=L.
The last factor tells us that the point particle is more
strongly affected than a particle with spatial spread if the
distribution is wide, which enters through the difference
between the square of the average and the average of the
square. Note that this identification of J however only can
be made this way in the limit of small jumps. One could
turn these steps around and start with generalizing J for
quantum particles, and then obtain Pint from it.

Of course describing a quantum particle means more
than giving a particle a finite width and a quantum field
theoretical description of the nonlocal defects would be
desirable. However, in this present work we aim at first
estimating the effects of nonlocal spacetime defects to see

if they are of interest and if they justify the development of
a more sophisticated model.

A. Massless particles in 3þ 1 dimensions

For massless particles, the extension of the previously
constructed model to 3þ 1 dimensions, while maintaining
Lorentz invariance, necessitates that we use additional
information about the particle that encounters the defect.
Naively, what we want is that on the average the spatial
direction of propagation remains unchanged, i.e., devia-
tions from the direction are uniformly distributed and do
not single out a preferred direction.
However, to make sense of this requirement (i.e., to

make sense of the meaning of direction of travel for a
massless particle), we need to take into account the finite
spatial width of the photon’s wave function in two direc-
tions perpendicular to the (mean) momentum. For simplic-
ity we will take the width to be the same in both directions
and denote them with �x? :¼ �x1 ¼ �x2. We then as-
sume that these spatial widths remains unchanged when
the particle jumps, i.e., the mean value of y in the perpen-
dicular direction y?ð�Þ is zero, hy?i ¼ 0 and�y? ¼ �x?.
The need to use additional information about the inci-

dent massless particle goes back to the structure of the
Lorentz group. This is explained in more detail in Sec. 3.3
of [6], but can also be seen as follows.
The reason we cannot introduce jumps into directions

transverse to the direction of propagation without taking
into account the width of the photon’s wave function is that
we would have only two quantities y� and p� at our
disposal to construct the end point of the jump. If the total
number of dimensions is higher than two, fixing the length
of y� and the product of y� and p� will not single out a
point, but a hypersurface. This hypersurface will include
arbitrarily large distances. Lorentz invariance would then
require a homogeneous probability distribution on an infi-
nite interval, which is no longer normalizable. We essen-
tially assume that this non-normalizable distribution arises
because a particle with sharply defined momentum is in-
deed spatially infinitely extended. Thus, taking into ac-
count that in reality the wave function has a finite
extension takes care of the infinite volume.
In 3þ 1 dimensions we do moreover expect the scaling

of the densities to have different powers than in 1þ 1
dimensions. The volume that is swept out by a particle is
now T�x1�x

2
?, and the average number of defects the

particle encounters is T�x1�x
2
?=L

4. Pint now scales with

the fourth power of epsilon. This means that in 3þ 1
dimensions the average number of defects that a photon
moving in direction x1 interacts with is

�N � �4
T�x1�x

2
?

L4
; (28)

i.e., the same as (21) except for a prefactor of �2 and a
volume factor stemming from the two additional perpen-
dicular dimensions.
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Consequently in 3þ 1 dimensions the average time the
particle travels until encountering a defect [compare to
(22) in 1þ 1 dimensions] is

hT1di � L8

l4P�x1�x
2
?
; (29)

and the acquired phase shift is [compare to (26) in 1þ 1
dimensions]

��� �2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�x1�x

2
?

q
�ð��Þ: (30)

Note that the distribution in the transverse direction does
not contribute to the phase uncertainty because all points
on the hypersurface cut out by y�p

� for a given value of �
have the same phase.

Retracing our earlier steps, we can identify J in 3þ 1
dimensions as (compare to (27))

J ¼ �4
h�iNL
L

1

�L

h�i2NL
h�2iNL

�x2?
L2

; (31)

i.e., we gained a factor � per each additional spatial
dimension and a factor that compares the perpendicular
extension to the spacing of defects; the larger the perpen-
dicular spread, the more defects can be hit. This expression
is not Lorentz invariant because taking the limit E � �
is not.

B. Massive particles in 3þ 1 dimensions

The notion of a direction transverse to that of propaga-
tion is meaningless for massive particles, but for massive
particles one can instead use reference to the particle’s rest
frame. The requirement that the particle jumps spatially
equally far in each spatial direction leads for a massive
particle to a homogeneous distribution on a compact
hypersurface. The requirement ‘‘equally far’’ however is
not Lorentz invariant and valid only in one reference
frame. For the massive particle, it is natural to choose
this reference frame to be the one in which the particle is
in rest. Since the distribution of end points PNLð�;�Þ
depends on the properties of the ingoing particle, it could
be different for massive particles.

There is however some ambiguity in how to generalize
the model to massive particles because massive particles
endow us with an additional scale, the mass of the parti-
cle, m. We could either use this scale instead of �, or use
it in addition to�. This leads to two different possibilities
for massive particles that we will discuss below, referred
to as massive case 1 and massive case 2, respectively.

In massive case 1 the parametrization (6) for the
subluminal jumps reads

ðyIÞ�ð�;�; pÞp� ¼ �m; (32)

with (3) unchanged. Going into the rest frame of the
particle, one notes that y0 ¼ �. There is only one such

point on the hyperbola with�, that with y1 ¼ y2 ¼ y3 ¼ 0.
Thus, the particle continues its path in the same direction
while being absent for part of its travel, and there is no
spatial deviation. If we apply a boost with 	-factor E=m in
the y1 direction, the world line of the massive particle will
tend towards �E=mð1; 1; 0; 0Þ and fit with the massless
case when identifying m with the parameter �.
For the superluminal jumps

ðyIIÞ�ð�;�; pÞp� ¼ ��m (33)

leads, in the rest frame of the particle, to y0 ¼ �� and

j ~yj ¼ ffiffiffi
2

p
�. This too defines a compact two-dimensional

submanifold, and assigning a uniform probability in the
rest frame is possible. This case will however not tend
towards the massless case under large boosts, unless one

alters the normalization of y2 to absorb the
ffiffiffi
2

p
.

In massive case 2, we can require that in the limit of
large boosts, when the massive particle becomes ultrarela-
tivistic, we find in the direction of the boost the same
average jumps as for the massless particle. This fixes the
requirement for subluminal case 2 to

ðyIÞ�ð�;�; pÞp� ¼ m2 �

�
: (34)

In the particle’s rest frame, this means y0 ¼ m�=� and

j ~yj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm=�Þ2 � 1

p
. Again, this is a compact space on

which we can normalize a probability distribution. We note
that the particle can only be translated by the defect if its
mass m � �. The average of the distribution in the rest
frame is at ðy0; 0; 0; 0Þ. A boost with 	-factor E=m in the y1
direction then moves the average to �E=�ð1; 1; 0; 0Þ, i.e.,
the same as for the massless particle that moves in the y1
direction, provided m � �. This determines the factors in
(34), though there could be terms in higher order of �=m.
In superluminal case 2 we have similarly

ðyIIÞ�ð�;�; pÞp� ¼ �m2 �

�
: (35)

In the particle’s rest frame, this means y0 ¼ �m�=� and

j ~yj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm=�Þ2 þ 1

p
. The average is again at ðy0; 0; 0; 0Þ

and a boost in the y1 direction will on the average repro-
duce the massless case for the particle moving in this
direction. As in the case of massless particles, we will
assume that the transverse width of the particle is preserved
as it jumps, which means �y1 ¼ �y2 ¼ �y3 ¼ �x?,
where �x? is the spatial width of the massive particle in
its rest frame as it encounters the defect (for simplicity
assumed to be the same in all three directions). In other
words, we assume that the nonlocal defects do not cause
additional spatial dispersion.
We will in the following only consider massive case 2,

where the average longitudinal jump fits well with the
massless case in the ultrarelativistic limit.
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V. OBSERVATIONAL CONSEQUENCES
AND CONSTRAINTS

In this section we will look at constraints on nonlocal
defects from existing experimental data. To that end, we
will take the so-far anonymous massless particle to be a
photon.

There is no direct way to apply to this model existing
constraints on the photon mass because these constraints
depend on the way the mass is generated. In the model
discussed here the photon does not actually acquire a mass.
It is just that, if the average trajectory of the photon
deviates from the light cone because of nonlocal defects,
then we can assign an effective mass to the photon, which
is the mass that would have caused the same deviation as
the scattering on the defects. So we will have to look for
other constraints.

At this point we will reduce the number of parameters in
this model by assuming that it contains only one new
typical length scale, h�iNL � ��� L in both quadrants.
We will also assume that there is only one new mass scale
and thus h�iNL � ��. We are then left with two parame-
ters, h�iNL and L. For the rest of this section we will drop
the brackets and denote the average value with just �. In
the following, we further only consider the pure super-
luminal and subluminal cases. The purpose of this section
is to gauge the promise of various observables to roughly
constrain the abundance of nonlocal defects and factors of
order 1 will be omitted. Since we have considered only the
case of a flat background state, the estimates in the follow-
ing will be good only so long as the gravitational effects
can be neglected. This is a suitable approximation for Earth
based laboratories and for intergalactic propagation as long
as redshift is negligible.

A. Constraints from single photons in a cavity

An experiment that delivers good constraints on this
model is the tracking of single photons in an ultrahigh-
finesse optical cavity [19]. In this truly amazing experi-
ment, a single photon with a frequency of �� 1=mm (in
the deep infrared) is kept bouncing between mirrors that
are approximately 3 cm apart. The photon can be kept a
typical time of 0.5 seconds, which means it travels in total
more than 100 000 km back and forth between the mirrors.

From this we can derive constraints by noting that a
photon of this energy jumps a distance given by (25) in the
superluminal case and (24) in the subluminal case, and if it
jumps then that distance better be less than 3 cm. For
�x1 � 1=� and �x?� cm we have T�x1�x

2
? � 10 m4,

and the allowed parameter range is either

L � 10�18 m; (36)

or, if L 	 10�18 m, then

L

2

���������

�
��

�

��������<3 cm; (37)

where the upper sign stands for the subluminal case and the
lower sign for the superluminal case. These constraints are
summarized in Fig. 4.

B. Constraints from the GZK cutoff

The Pierre Auger collaboration [20,21] has found a cor-
relation between the directions of ultrahigh energetic cosmic
rays (UHECRs), with energies EGZK * 6
 1019 eV, and
active galactic nuclei (AGN) up to a distance of about
75 Mpc. This correlation decreases when AGNs at larger
distances are included; beyond 100Mpc the correlation is no
longer statistically significant. This is evidence for the
Greisen-Zatsepin-Kuzmin cutoff, which predicts that the
mean-free path of protons in the background of the photons
from the cosmic microwave background (CMB) is of the
order of 100Mpc. Protons of energy high enough to produce
pion pairs when scattering at the CMB photons should no
longer reach us. These results from Pierre Auger thus con-
firm the predictions of the standard model.4

We can use this to derive constraints on the density of
nonlocal defects as follows. If the UHECRs protons would
jump over a significant part of their path from the source to
Earth, then their cross section with the CMB photons
would decrease, and we should have noticed a correlation
with AGNs over longer distances than predicted by stan-
dard model interactions. This means that either the protons
are unlikely to encounter nonlocal defects or, if they do,
they do not jump very far.
Deriving a constraint necessitates to find an estimate for

the world volume swept out by the particles we measure.
On the one hand, the protons are massive particles and
experience dispersion during their travel from the source to
Earth. Standard quantum mechanical time evolution leads
to an increase of the spatial width of their wave function.
On the other hand, if the particle is spread out over a

L

FIG. 4 (color online). Constraints from single photons in a
cavity. Shaded regions are excluded.

4Aword of caution: The statistical significance of these results
has decreased with more recent events taken into account. It will
probably take more time for the situation to become entirely
clear.
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distance much larger than the detector or telescope, one
will only measure the fraction that is collected in the
measurement device. Increasing the spatial width of the
wave function beyond the size of the detector means
the particle will encounter more defects, but at the same
time one is less likely to measure anything at all. This
would mean that the world volume of the particles one
observes is effectively only TVD, where VD is the three
volume of the detector.

For the case of the UHECRs we can take the detector’s
volume to be the volume of the upper atmosphere where
the protons scatter, which means a transverse extension of
about 1014 m2. To estimate the width of the proton’s wave
function upon arrival on Earth, we will assume that it was
emitted at the AGN with a spatial width 
0 determined by
the inverse of the temperature of photoionization equilib-
rium, which is about 1 eV [22]. In the limit of large times, the
width upon arrival is then 
ðTÞ � T=ðm
0Þ in the proton
rest frame, wherem� GeV is the proton rest mass. Boosting
by a 	 factor of �1010, one finds �x? � 105 m and
�x1 � 10�5 m. Thus, the particles fitwell inside the detector
and the world volume is about T�x1�x

2
? � 1029 m4.

This means that either the defects are sparse,

L � 10�14 m; (38)

or, if L 	 10�14, then hL1ji=hL1di & 1=10, where we allow

that there is a 10% modification to the protons’ mean-free
path, which the correlation analysis by the Auger collabo-
ration would not have been sensitive to. This leads to the
bounds

l4P10
5 m3

��������1

�
� �

E2
GZK

��������	 L7; (39)

where again the upper sign stands for the subluminal case
and the lower sign for the superluminal case. These con-
straints are summarized in Fig. 5.

C. Constraints from Airy rings of quasars

Random phase shifts in the propagation of photons have
previously been studied as possible signatures of quantum

gravity in the models proposed in [23–26]. Constraints on
these phase shifts can be derived by noting that images
from distant quasars show interference effects, which
would be washed out if random phase shifts were substan-
tial, ��� 1, at that distance and energy [27,28]. It was
pointed out already in [27] however that modern telescopes
allow one to set much tighter bounds because a telescope
focuses a larger part of the light’s wave front than just one
wavelength 1=�. Since the telescope is sensitive to phase
smearing all over its opening diameter D, the constraints
on loss of Airy rings have more recently been improved to
�� 	 1=ð�DÞ � 10�8 [29].
These constraints on the model [23] can also be used for

the here discussed propagation in the presence of nonlocal
defects, but first it is worthwhile to point out the differences.
In the model going back to [23], the phase shifts also

accumulate by a random walk, but the number of steps of
that walk is proportional to the distance. Here instead, by
the requirement of Lorentz invariance, it is the space-time
volume swept out by the wave front that determines the
number of steps in the random walk, reflected in Eq. (28).
Another difference is that the T which determines �N is

here not necessarily equal to the distance (time) inferred
from the measurement, ~T. If the particle jumps over part of
its path, T is instead only the distance (time) the photon
propagated in the background and generally related to ~T by
(23). Unlike in the case of UHECR it is difficult to tell how
much of its path a photon from a distant quasar might have
omitted due to nonlocal defects. One may speculate that if
it jumps over a significant distance, it would experience less
redshift than normally expected. Alas, to take into account
background expansion, a more sophisticated model would
first be needed (see also the discussion in Sec. VI). The
source would also appear less bright because at any given
time, including the one we take the image, a certain fraction
of photons is missing from space-time. Since this will gen-
erally be the case though, regardless of the distance, we lack
a reference to quantify the relative lack.
Thus, we will consider three cases here. Either the

photons do not encounter any defects at all or they do
and we have hT1ji � hT1di ( jumps are short) or hT1ji �
hT1di ( jumps are long) but too small to blur the interference
rings. Assuming that �x is the coherence time of the light
received from the quasar and typically a few wavelengths,
we have T=�� 1019 m2 for a typical distance of some Gpc
and 1=�� 500 nm as used in [29]. The perpendicular
width is determined by the opening diameter of the tele-
scope D�m (see discussion in Sec. VB).
The photons are unlikely to have encountered any

defects so long as

10�15 m 	 L: (40)

Jumps are long if L 	 10�15 m and

l4P
D2

2�

��������1

�
� �

�2

��������� L7; (41)

L

FIG. 5 (color online). Constraints from the correlation of
UHECRs with AGNs. The shaded region is excluded.
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where the upper sign stands for the subluminal case and the
lower sign for the superluminal case. If L 	 10�15 m and
jumps are short, the requirement that �� 	 10�8 leads to

10�52 m4 	 L3��1: (42)

If the jumps are long one finds

10�35 m�2

�������� 1

�3
� 1

�2�

��������� L: (43)

These constraints are summarized in Fig. 6.
One can try to improve the constraints on phase shifts by

looking for interference rings at longer wavelengths because
this will increase the effective world volume. The most
distant radio pulsar [30] is at a distance of some Gpc and
emits at a frequency of �� 1=m. Astrophysical radio sig-
nals are measured in very large arrays with a baseline of the
order of �104 m. Since coherence over the wave front is
necessary to reconstruct the signal, we can estimate �� 	
10�4. However, the dependence on the space-time volume
enters only with the square root, so one gains a factor
�107 from the volume, while losing about �104 from the
accuracy. This means that the constraint from blurring of
interference rings could potentially be improved with large
area telescopes currently under construction, but the details
require further investigation of achievable experimental pre-
cision and accuracy of image reproduction.

D. Summary of constraints

Finally, we can summarize all the above constraints in
Fig. 7. Roughly speaking, we can take away that nonlocal
defects cannot be denser than one per femtometer.

As noted earlier, we expect � to be a scale in the
infrared, and so we can speculate that it is of the same
order of magnitude as the cosmological constant. This
value is shown in Fig. 7 as the black, dashed line. The
diagonal, dotted (green) line shows the relation �L ¼ �
and the solid (black) line shows �L ¼ 1, which seem the
most natural cases. As we can see the case �L ¼ � with L
being comparable to the cosmological constant is not

compatible with the data. The relevant constraint in this
case comes from the blurring of quasar interference rings.
We see that the constraints considered here are about 10

orders of magnitude too weak to be sensitive to a density of
nonlocal links comparable to the cosmological constant,
which is a natural parameter range in the cosmological
setting. However, the bounds considered here can most
likely be improved with a more sophisticated model which
incorporates background curvature, and by exploiting tech-
nological advances in radio astronomy. It thus may be
possible to reach the interesting parameter range. In fact
it could be that presently existing data harbors so far
unrecognized evidence for space-time defects.

VI. DISCUSSION

Let us first summarize the assumptions we have made.
We have restricted our examination by requiring Lorentz
invariance to be preserved on the average.
We have further fixed the typical length scale for the

underlying microscopic discrete structure to be the Planck
length, and later assumed that the typical distance for the
nonlocal jumps is similar to the length scale of the proba-
bility distribution h�iNL ¼ L. While we did not use a
particular ansatz for the distribution we used its typical
width and assumed that the widths are of the same order
of magnitude as the average values h�iNL � �� and
h�iNL � ��. These are plausible assumptions, but they
could in principle be relaxed.
As mentioned in Sec. II we have here not discussed the

possibility that the end points of nonlocal jumps are distrib-
uted the same way as the entry points because this would
appear like a local defect. The difference between the two
cases can also be understood as the difference between
nonlocal connections that can be passed one way only and
nonlocal connections that can be passed both ways. The case
discussed here is the one-way case. An alternative interpre-
tation of nonlocal defects that suggests itself is that they
cause a translation with a stochastic element.

L

FIG. 6 (color online). Constraints from the observation of
interference patters in images of distant quasars. The red shaded
region is excluded.

L

FIG. 7 (color online). Summary of constraints. The red shaded
region is excluded. The dashed (black) line indicates the value of
the cosmological constant. The dotted (green) line depicts the
case �L ¼ � and the solid (blue) line the case �L ¼ 1.
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Since the nonlocal defects in the superluminal case open
the possibility of particles moving backwards in time in
some rest frames, some words on the issue of causality are
in order. The possibility for curves that are effectively time-
like and closed, even though parts of it are jumped over,
necessitates that we require consistency for the time evolu-
tion in order to prevent causal paradoxa. This is possible, but
only seems natural in the presence of an emergent arrow of
time. For such an arrow of time we have to consider a
background filled with quantum fields of increasing entropy.
The Friedmann-Robertson-Walker (FRW) background then
provides a preferred slicing according to which one can
require jumps to be ‘‘forward.’’

The conservative approach to the causality problem is of
course to just restrict the translations to happen exclusively
into quadrant I, which is a Lorentz-invariant requirement
and does entirely circumvent the issue because then parti-
cles cannot travel over spacelike distances, as normally.
Note that this restriction is a restriction on the distribution
of translations, i.e., on PNLð�Þ and independent of the
distribution of start points �NL.

That having been said, it is clearly desirable to develop
this model to a stage where space-time curvature and
quantum fields can be taken into account. Then it would
be possible to use constraints from cosmology, in particular
from the time evolution of the Universe itself. To take into
account a FRW background, one needs to make a plausible
assumption for how the density of defects evolves with
time. Ideally of course, this time dependence will at some
point be derived from a candidate theory for quantum
gravity. We hope that the here studied case of nonlocal
defects in Minkowski space serves as a good starting point
for such further developments.

VII. SUMMARY

We have developed a phenomenological model for non-
local space-time defects that maintains Lorentz invariance
on the average. We parametrized the effects with the space-
time density of defects and the average distance a particle
jumps when it encounters a defect, which depends on the
ratio of the particle’s energy over a mass scale in the
infrared. The smaller the energy of the particle, the more
pronounced the effect. We then calculated how the average
deviation from the light cone scales with the propagation
distance and used this to derive constraints on the model
from existing data. We have seen that the nonlocal defects
become more relevant in the infrared for two reasons. First,
they create a small effective mass and second, a particle
with large spatial width is more likely to encounter a
defect.
We found that bounds from various available observa-

tions exclude approximately more than one nonlocal defect
in a world volume of a femtometer to the fourth power.
These constraints could be improved by studying the in-
terference patterns of distant radio sources in large array
telescopes. The vanishing of interference rings could
signal a phase distortion by scattering on nonlocal defects.
Finally, we noted that it would be desirable to further
develop the model so that it can be applied to a
Friedmann-Robertson-Walker background which would
open the possibility to analyze cosmological precision
measurements for possible evidence of space-time defects.
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