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Stationary D-dimensional test branes interacting with N-dimensional Myers-Perry bulk black holes are

investigated in arbitrary brane and bulk dimensions. The branes are asymptotically flat and axisymmetric

around the rotation axis of the black hole with a single angular momentum. They are also spherically

symmetric in all other dimensions allowing a total of Oð1Þ �OðD� 2Þ group of symmetry. It is shown

that even though this setup is the most natural extension of the spherical symmetric problem to the

simplest rotating case in higher dimensions, the obtained solutions are not compatible with the spherical

solutions in the sense that the latter ones are not recovered in the nonrotating limit. The brane

configurations are qualitatively different from the spherical problem, except in the special case of a

three-dimensional brane. Furthermore, a quasistatic phase transition between the topologically different

solutions cannot be studied here, due to the lack of a general, stationary, equatorial solution.
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I. INTRODUCTION

Possible interactions between branes and black holes in
higher dimensions are interesting and important problems
in many fields of modern theoretical physics. One direc-
tion, which has been recently introduced by Frolov [1], is a
spherically symmetric black hole interacting with Dirac-
Nambu-Goto (DNG) test branes [2] in arbitrary brane and
bulk dimensions. This brane-black hole system, beyond the
interest of its own, has also proven to be very useful as a
toy model for various other problems. For example, it
possesses striking similarities in its properties to the prob-
lem of topology changing and merger transitions between
higher-dimensional black solutions [3–5], and also shows a
self-similar behavior, very similar to the Choptuik critical
collapse phenomenon [6]. Furthermore, it also turned out
to be a relevant model in investigating holographic phase
transitions in strongly coupled gauge theories [7,8], via the
gauge/gravity correspondence [9].

Generalizations to the system, by considering small
thickness corrections to the branes, have also been studied
lately by Frolov and Gorbonos [10], and more extensively
(also within a more general framework) by us [11–13].
The motivation for this extension was to consider higher
order, curvature corrections to the thin brane action,
which, in the holographic dual picture, correspond to finite
’t Hooft coupling corrections, and provide a more realistic
description of the phase transition [8].

In the present paper, as a sequel to our previous works on
the subject matter [11–13], we provide another generaliza-
tion of the problem into a different direction. We investigate
the brane-black hole system in the rotating case by consid-
ering aMyers-Perry (MP) black hole in the background with
a single angular momentum. A similar problem has also

been investigated by Kubizňák and Frolov in [14] on a Kerr-
NUT-(A)dS background. The motivation of this work is also
clear; we would like to understand the role that rotational
effects play when a quasistatic, topology changing transition
is considered in the system. The problem is interesting not
only from the geometrical point of view, but also because it
may provide further insights to other topology changing or
merger transition problems in higher-dimensional, classical
general relativity, or to certain holographic phase transitions
in the gauge/gravity dual picture. Furthermore, a quasidy-
namical approach to the evolution of interacting brane-black
hole systems [15,16] provides another interesting direction
which also deals with the same geometric setup.
In constructing the model, we follow the method of [1]

as closely as possible, and define the DNG branes with the
highest possible symmetry properties that the background
allows. By this construction the branes possess a total of
Oð1Þ �OðD� 2Þ group of symmetry, and just as in the
spherical case, the brane action simplifies radically, result-
ing in the problem of an ordinary differential equation
(highly nonlinear though) for the brane configurations.
We present and analyze the general solution of this prob-
lem, first analytically in far distances, and later numerically
in the near horizon region.
As a result, we obtain that due to the coordinate parame-

trization of theMyers-Perry metric, this rotating problem is
not compatible with the spherical results of [1], in the sense
that the latter ones are not recovered in the nonrotating
limit. Although the ideal situation would be to provide a
rotating solution which is the ‘‘corresponding’’ one to the
spherical problem in the above sense, nevertheless we
could not find an appropriate coordinate system in which
this could be done in a natural way as presented by Frolov
in [1], and as we also do it here. Consequently, we conclude
that while the construction of the problem is the closest
possible to the spherical case, the obtained results are*czinner.viktor@wigner.mta.hu
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qualitatively different, except in the special case of a three-
dimensional brane. Furthermore, we also find that station-
ary equatorial solutions do not generally exist for arbitrary
brane dimensions, except again for the case of a three-
dimensional brane, and as a result, we cannot study the
quasistatic phase transition in the geometric setup as we
did in the thickness corrected spherical case [11,12] by
following the method of Flachi et al. [17].

The plan of the paper is as follows. In Sec. II we define
the rotating brane-black hole system analogous to the
spherical case. In Sec. III we obtain the brane equation
and discuss its incompatibility with the results of [1].
In Sec. IV, first we discuss the analytic properties of the
solutions in the near horizon region and derive unique
boundary conditions for the topologically different solu-
tions from regularity requirements. Then, we obtain the far
distance solution in an analytic form and analyze its prop-
erties. In Sec. V we present and illustrate the numerical
results in the near horizon region, and finally in Sec. VI we
draw our conclusions. In addition, we discuss the problem
of the coordinate systems in the Appendix.

II. THE BRANE-BLACK HOLE MODEL

The metric of the N-dimensional Myers-Perry solution
[18] in Boyer-Lindquist coordinates with a single angular
momentum is given by

ds2 ¼ �
�
1� F

�

�
dt2 þ sin 2�

�
r2 þ a2

�
1þ F

�
sin 2�

��
d’2

þ 2a
F

�
sin 2�dtd’þ�

�
dr2 þ�d�2

þ r2cos 2�d�2
N�4; (1)

where

� ¼ r2 þ a2cos 2�; (2)

� ¼ r2 þ a2 � F; (3)

F ¼ �r5�N; (4)

and d�2
N�4 is the line element on an (N � 4)-dimensional

unit sphere. The parameters� and a are related to the total
mass, M, and angular momentum, J, of the black hole as

M ¼ ðN � 2ÞAN�2

16�G
�; J ¼ 2

N � 2
Ma; (5)

where

AN�2 ¼ 2�
N�2
2

�ðN�2
2 Þ (6)

is the area of an (N � 2)-dimensional unit sphere SN�2.
For simplicity, without any loss of generality, we can fix
the value of the mass parameter � to 1.

Test brane configurations in an external gravitational
field can be obtained by solving the Euler-Lagrange equa-
tion derived from the Dirac-Nambu-Goto action [2]

S ¼
Z

dD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det���

q
; (7)

where

��� ¼ gab
@xa

@��
@xb

@��
(8)

is the induced metric on the brane and ��ð�¼0; . . . ;D�1Þ
are coordinates on the brane world sheet. The brane tension
does not enter into the brane equations, thus for simplicity
it can also be put equal to 1. We introduce coordinates in
the bulk as

xa ¼ ft; r; ’; �; #1; . . . ; #N�4g;
and it is assumed that the brane is stationary, spherically
symmetric in the #iði ¼ 1; . . . ; n ¼ D� 3Þ dimensions,
rotationally symmetric in the ’ coordinate, and, if
D<N � 1, its surface is chosen to obey the equations

#D�2 ¼ � � � ¼ #N�4 ¼ �=2: (9)

With the above properties the brane world sheet allows
an Oð1Þ �OðD� 2Þ group of symmetry, and can be com-
pletely defined by the single function � ¼ �ðrÞ. We shall
use coordinates �� on the brane as

�� ¼ ft; r; ’; #1; . . . ; #ng;
where n ¼ D� 3. With this parametrization the induced
metric on the brane surface is given by

���d�
�d��

¼�
�
1�F

�

�
dt2 þ sin 2�

�
r2 þa2

�
1þF

�
sin 2�

��
d’2

þ 2a
F

�
sin 2�dtd’þ�

�
1

�
þ _�2

�
dr2 þ r2cos 2�d�2

n;

(10)

where, and throughout the paper, the overdot denotes
the derivative with respect to the radial coordinate, r. The
Dirac-Nambu-Goto action (7) reduces to

S ¼ 2��tAn

Z
Ldr; (11)

where �t is an arbitrary interval of time, An is the area of
the unit sphere Sn, the 2� factor is obtained from the
integration with respect to ’, and the Lagrangian takes
the form

L ¼ rncos n� sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ� _�2Þ

q
: (12)

III. THE BRANE EQUATION

Test brane configurations are solutions of the Euler-
Lagrange equation

d

dr

�
@L

@ _�

�
� @L

@�
¼ 0; (13)
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which for the Lagrangian (12) reads as

€�þ
�
��þ

_�

2

�
_�3 þ � _�2 þ

�
�þ

_�

�

�
_�þ �

�
¼ 0; (14)

where � and � are

� ¼ n

r
þ r

�
; (15)

� ¼ n tan �� cot�þ a2 sin � cos�

�
: (16)

The horizon of the black hole is defined as the largest
solution of � ¼ 0, and one can consider the nonrotating
problem by taking the a ! 0 limit.

In the case of the nonrotating limit, however, one notices
that the Euler-Lagrange equation obtained from (14) is not
identical to the one that has been obtained and analyzed by
Frolov in [1], and what we also investigated in the presence
of thickness corrections in the spherically symmetric
case [11–13]. After some analysis one can show that the
difference stems from the different coordinate systems
used by the Myers-Perry and Schwarzschild-Tangherlini
(ST) solutions [19], and which disappears in standard four
dimensions in the a ! 0 limit, but remains present in
higher dimensions, even after taking the nonrotating limit.
The detailed calculation to show this is a bit lengthy,
therefore we present it as an appendix at the end of the
paper.

As a consequence, it is very important to emphasize that
the DNG brane defined as �ðrÞ in the previous section is not
the ‘‘corresponding’’ brane to the one that we investigated
in the Schwarzschild-Tangherlini case, in the sense that it
does not reproduce the spherical results of [1] in the non-
rotating limit. This is because the angular coordinate �,
through which the brane is defined in the Myers-Perry
metric, is different from the one (denoted with the same
letter �) in the Schwarzschild-Tangherlini solution, even
after taking the nonrotating limit. They correspond trivially
only in four dimensions, where we are accustomed to
obtain the Schwarzschild coordinates in the nonrotating
limit of the Kerr solution.

It may be also worth mentioning that we have been
trying to find an appropriate coordinate system for the
rotating case, where those ‘‘corresponding’’ branes, which
would reproduce the solutions of [1] as their nonrotating
limit, could be defined naturally. The problem, however,
turns out to be very difficult, because in those systems
where the limit in the bulk is automatic, either the defini-
tion of the rotationally symmetric brane is problematic, or
the coordinate transformations involve angles from the
extra dimensions of the metric, which cannot be integrated
out from the action in the simple way as we did in (11).
Although we believe that the problem should ultimately be
resolved in one way or another, nevertheless, we were not
able to obtain a satisfactory resolution so far.

Accordingly, in the present paper we are focusing
on those DNG branes which are defined in Sec. II and
are the solutions of the Euler-Lagrange equation (14). The
problem is, of course, interesting in its own right, being the
most naturally defined DNG-brane problem on a rotating
black hole background in arbitrary dimensions, and also
the most natural extension of the spherical problem to the
simplest rotating case. However, we have to keep in mind
that it is essentially different from the one that would
provide back the Schwarzschild-Tangherlini solution of
[1] in the nonrotating limit.

IV. ASYMPTOTIC AND REGULARITYANALYSIS

In this section we present the near horizon and far
distance asymptotic solutions of the brane equation.
From regularity requirements in the near horizon region,
we obtain unique boundary conditions for the problemwhich
will be used for the numerical solution in the following
section.

A. Near horizon behavior

For a brane crossing the horizon (black hole embedding
case or supercritical branch in Frolov’s terminology [1]),
(14) has a regular singular point on the horizon, r ¼ r0.
A regular solution at this point has the following expansion
near the horizon:

� ¼ �0 þ _�0ðr� r0Þ þ � � � ; (17)

where the regularity requirement imposes the condition

_�0 ¼ ��
_�

��������r0

: (18)

Consequently, supercritical solutions are all uniquely
determined by their boundary value �0.
In the Minkowski embedding (subcritical) case, the

brane does not cross the horizon, and its surface reaches
its minimal distance from the black hole at r1 > r0, which,
for symmetry reasons, occurs at � ¼ 0. A regular (but not
smooth or even differentiable, see [11–13]) solution of (14)
near this point has the asymptotic behavior

� ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r1

p þ 
ðr� r1Þ3=2 þ � � � ; (19)

where the regularity requirement on the axis of rotation
imposes the conditions

	 ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ _�

2

q
jr1

; (20)

and
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¼ 16

8� 9	2ð _�þ 2��Þ
�
	

2

�
�þ

_�

�

�
� 1

	�

þ	3

4

�
nþ 1

3
þ a2

a2 þ r21
þ�

2

�
a2ð1þ	2r1Þ � r21

ða2 þ r21Þ2
� n

r21

�

þ 2� _�þ €�

4

��
r1

; (21)

with

� ¼ n

r1
þ r1

a2 þ r21
:

Hence, all subcritical solutions are also uniquely deter-
mined by the single parameter, r1.

B. Far distance solution

Since the Myers-Perry solution is asymptotically flat,
the brane function �ðrÞ has to converge to a constant value,
�1, as r ! 1. The explicit value of �1 is not known for the
moment (in contrast with the spherical case where it was
�=2 for all dimensions), rather it can be obtained by the
following consideration. The far distance solution of (14)
can be searched in a perturbative form

�ðrÞ ¼ �1 þ �ðrÞ; (22)

where �ðrÞ is a first-order small function compared to �1,
and we require that

lim
r!1�ðrÞ ¼ 0: (23)

We shall only keep the linear terms of � in (14) which
yields the asymptotic equation

€�þ nþ 3

r
_�þ 1þ nþ ntan 2�1 þ cot 2�1

r2
�

þ n tan�1 � cot�1
r2

þ a2 sin �1 cos �1
r4

¼ 0: (24)

The general solution of (24) reads as

�ðrÞ ¼ � B

1þ nþ A
� C

ð1� nþ AÞr2
þ r�1�n

2�i
2

ffiffiffiffiffiffiffiffiffiffiffi
4A�n2

p h
pþ p0ri

ffiffiffiffiffiffiffiffiffiffiffi
4A�n2

p i
(25)

with

A ¼ ntan 2�1 þ cot 2�1; B ¼ n tan�1 � cot�1;

C ¼ a2 sin �1 cos�1:

Before running into the analysis of the complex powers in
the solution, we notice that the first term of (25) is a
constant. Thus (25) can only be a good solution of (24) if
B ¼ 0, due to the requirement (23). This implies the
asymptotic constraint

n tan�1 � cot�1 ¼ 0;

and yields the asymptotic value

�1 ¼ arctan

�
1ffiffiffi
n

p
�
: (26)

According to this result, we can conclude that for each
brane dimension, n, the solutions have different asymptotic
behavior, and the asymptotic value �1 coincides with the
Schwarzschild value, �=2, only in the case of n ¼ 0, that
is, when the brane is three dimensional.
It is interesting to note here that three-dimensional

branes tend to behave differently from their higher-
dimensional counterparts in other aspects too. In our pre-
vious works [12,13], we also found that three-dimensional
branes had exceptional analytic properties in the near
horizon region when thickness corrections had been con-
sidered in the nonrotating case.
Another interesting feature to note is that the asymptotic

value does not depend on the rotation parameter of the
black hole; it is determined solely by the number of inner
dimensions of the brane in which it is spherically
symmetric.
After deriving the value for the asymptotic constants, we

can obtain the corresponding asymptotic solutions by plug-
ging back �1 into (24), which results in the asymptotic
equation

€�þ nþ 3

r
_�þ 2ðnþ 1Þ

r2
�þ a2

ffiffiffi
n

p
ðnþ 1Þr4 ¼ 0; (27)

or plugging it directly into (25), and take a bit of time with
the power analysis. In either case, the asymptotic solution
takes the form

�ðrÞ ¼
8><
>:

p sin ½�ðrÞ�þp0 cos ½�ðrÞ�
r
1þn

2
� a2

ffiffi
n

p
2ðnþ1Þr2 ; if n � 4;

pþp0r
ffiffiffiffi��

p

r1þ
n
2
þ
ffiffiffiffi��

p
2

� a2
ffiffi
n

p
2ðnþ1Þr2 ; if n � 5;

(28)

where

�ðrÞ ¼
ffiffiffiffi
�

p
2

ln ðrÞ; � ¼ �n2 þ 4nþ 4: (29)

It may seem, at first sight, that branes with n � 4
dimensions have different far distance asymptotics than
the ones with dimensions n � 5. The real change occurs,
however, at n ¼ 3, as we can see from the following
analysis.
In the n ¼ 0 case, the rotation of the black hole does not

seem to affect the asymptotic behavior directly, and, as we
mentioned earlier, this is the exceptional case of the three-
dimensional brane, when the asymptotic value �1 is �=2,
just as in the Schwarzschild problem.When n ¼ 1, the first
term dominates the solution, because the second one,
which is controlled by the rotation parameter, decays
faster. In the case of n ¼ 2, both terms decay essentially
as r�2. In all other cases, starting from n � 3, the first
terms in the solution decay much faster than the second
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one, which results that all the branes with D ¼ 6 or more
dimensions have an almost uniform convergence to the
asymptotic value in the far distance region, and this is
controlled by the rotation parameter of the black hole.

The coefficients p and p0 in the solutions are continuous
functions of the �0 or r1 boundary parameters that we
obtained previously from regularity requirements in the
near horizon region. On the other hand, because of the
complicated asymptotic behavior, the interpretation of p or
p0 is not so clear as it was in the Schwarzschild case (being
the distance of the brane from the asymptotic value at
infinity [1]).

V. NUMERICAL RESULTS

After obtaining the far distance solution of the problem
in analytic form and also deriving boundary conditions
from regularity requirements in the near horizon region,
we can consider the numerical solution of (14). As it was
shown earlier, the boundary value �0, or the radial coor-
dinate r1, uniquely determines the corresponding super- or
subcritical solutions, respectively. The numerical solution
itself does not require very advanced techniques; we
have performed it by using the MATHEMATICA NDSOLVE

function.
On Fig. 1 we are plotting a sequence of D ¼ 3 (n ¼ 0)

brane solutions from both topologies in the near horizon
region. The asymptotic constant in this special case is �=2
and we have chosen the value 0.4 for the rotation parame-
ter, a. As a result ( just as we expect from the far distance
analysis), the brane configurations are very similar to what
we had before in the spherical case [1,11].

By increasing the brane dimension from D ¼ 3 (n ¼ 0)
to D ¼ 4 (n ¼ 1), and keeping the bulk dimension fixed
(N ¼ 6), we can see the interesting new result on the
asymptotic behavior. We plotted this situation on Fig. 2.
In this case, the asymptotic value �1 is �=4, and it can be

seen that all solutions tend asymptotically to this value
(in good agreement with the far distance analysis)
independent of the near horizon boundary values.
By increasing the number of brane dimensions, n, the

value of the asymptotic constant �1 changes according to
(26), but the qualitative picture of the solutions remains
essentially similar to what we see on Fig. 2. For the sake of
illustration, on Fig. 3, we also plot the D ¼ 5 (n ¼ 2)-
dimensional case with N ¼ 6.
By changing the value of the rotation parameter, the near

horizon configurations are also changing together with the
asymptotic convergence to �1 that we discussed earlier in
the far distance solution. In order to illustrate this change,
we define the function

��ðrÞ ¼ �ðrÞ � �1; (30)

4 2 2 4
R

1

2

3

Z

FIG. 1 (color online). The picture shows a sequence of
(D ¼ 3)-dimensional branes with varying boundary values em-
bedded in a bulk with N ¼ 6 dimensions. R and Z are standard
cylindrical coordinates, and the thick, red lines represent the
value �1 which is �=2 for the present case. The value of the
rotation parameter a ¼ 0:4.

4 2 2 4
R

1

2

3

Z

FIG. 2 (color online). The picture shows a sequence of
(D ¼ 4)-dimensional branes with varying boundary values em-
bedded in a bulk with N ¼ 6 dimensions. R and Z are standard
cylindrical coordinates, and the thick, red lines represent the
value �1, to which the solutions asymptotically converge, �=4
for the present case. The value of the rotation parameter a ¼ 0:4.

4 2 2 4
R

1

2

3

Z

FIG. 3 (color online). The picture shows a sequence of
(D ¼ 5)-dimensional branes with varying boundary values em-
bedded in a bulk with N ¼ 6 dimensions. R and Z are standard
cylindrical coordinates, and the thick, red lines represent the
value �1, to which the solutions asymptotically converge, �1 ¼
arctan ½1= ffiffiffi

2
p � for the present case. The value of the rotation

parameter a ¼ 0:4.
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and compute the ��ðrÞ functions for a sequence of brane
solutions with different boundary values, �0, equally dis-
tributed around the �1 ¼ �=4 value in the �0 2 ð0; �=2Þ
region, just as on Figs. 2 and 3. The corresponding curves
are plotted on Fig. 4 for two different rotation parameter
values, a ¼ 0:1 (left picture) and a ¼ 0:9 (right picture).

In the case of slow rotation (a ¼ 0:1), the ��ðrÞ func-
tions have an almost ‘‘mirror symmetric’’ amplitude dis-
tribution around the �1 ¼ �=4 value (right picture on
Fig. 4), while in the case of a large rotation parameter
(a ¼ 0:9), the picture becomes very asymmetric. The
branes with boundary values �0 2 ð�=4; �=2Þ deviate
strongly from �1 in the near horizon region, while the
branes with �0 2 ð0; �=4Þ approach the asymptotic value
very quickly.

In our previous works [11,12], we also investigated the
problem of a quasistatic evolution of a brane from
the equatorial plane in black hole embeddings, to a
Minkowski embedding topology, through a topology
change transition. The question was very natural there,
following the method developed in [17], because the equa-
torial configuration was a general solution in every dimen-
sion of the spherical problem. In the present rotating case,
however, as we saw above, the equatorial configuration is a
solution of the problem only in the exceptional case of the
three-dimensional brane, and we cannot use this method
for a general discussion. Although we could analyze the
topological phase transition in this special case, neverthe-
less we believe that it would be misleading since the
relevant problems are usually obtained from higher dimen-
sions, like the case of the holographic dual phase transition.
As a consequence, the question remains open in the present
rotating case.

VI. CONCLUSIONS

In the present work, we studied the problem of rotation-
ally symmetric, stationary, Dirac-Nambu-Goto branes on
the background of a Myers-Perry black hole with a single
angular momentum. In defining the interacting brane-black
hole system, we strongly followed the spherical problem
given by Frolov [1]. Although this model is the most

natural extension of the spherical setup to the simplest
rotating case, we found that due to the nonequivalent
coordinate parametrization, the obtained solutions are not
compatible with the spherical solutions in the sense that the
latter ones are not recovered in the nonrotating limit. Our
efforts to find an appropriate coordinate system in which
the rotating problem could be formulated naturally, in a
way that the spherical case could also be reproduced in the
a ! 0 limit, has not succeeded so far. It is an open question
whether it can be done at all.
After clarifying the above situation, we analyzed the

properties of the obtained problem, and presented its solu-
tion both analytically, at far distances, and numerically, in
the near horizon region. In the latter case, we found that the
analytic properties of the test brane solutions, both on the
axis of rotation and on the horizon, are very similar to what
we saw in the spherical case. From regularity requirements
we could obtain unique numerical solutions for each freely
chosen, boundary value in both topologies.
By analyzing the far distance solutions, we obtained a

new interesting result that the asymptotic behavior of the
rotating solutions are qualitatively different from the
spherical problem, except in the special case of a three-
dimensional brane. This difference changes the entire
structure of the brane configurations in the near horizon
region too, because all solutions are attracted asymptoti-
cally to the same constant value, independent of the near
horizon boundary conditions. Furthermore, the asymptotic
value is different for every brane dimension, and it is
controlled solely by the dimension parameter of the brane.
Another interesting result is that the rotation of the black

hole has a direct effect only on how the solutions tend to
the asymptotic value, and we illustrated this phenomenon
in the cases of a small and a large rotation parameter.
One of the motivations of this work was to understand

the role that rotational effects may play in a quasistatic,
topology changing phase transition of the system. As a
negative result, we obtained that the problem cannot be
studied here in the geometrical way that we applied in the
thickness corrected spherical problem [11,12], due to the
lack of a general, stationary, equatorial solution for arbi-
trary dimensions. Consequently, we could not obtain gen-
eral results on the phase transition in this paper, so the
question remains open for the rotating case.
The lack of the equatorial solution has another conse-

quence which is connected to the stability of the rotating
brane-black hole system. It has been shown by Hioki et al.
[20] that equatorial solutions are stable against small per-
turbations in the spherical case. Stability is an important
issue in higher dimensions, and it would be also important
to know whether similar results may hold for the present
axisymmetric case too. Unfortunately, because of the lack
of the equatorial solution, the question of stability cannot
be studied here by using the method of Hioki et al. for the
general case.

10 15 20
r

0.03

0.02

0.01

0.01

0.02

0.03

10 15 20
r

0.06

0.04

0.02

0.02

0.04

FIG. 4 (color online). The picture shows a sequence of ��ðrÞ
functions of (D ¼ 4)-dimensional branes embedded in an
(N ¼ 6)-dimensional bulk. The boundary values are equally
distributed around �1 ¼ �=4 in the �0 2 ð0; �=2Þ region. The
left picture belongs to a slow rotation, a ¼ 0:1, while the right
picture belongs to the a ¼ 0:9 value.
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As another stability issue, in this paper we have not
considered the cases of extremal and ultraspinning black
holes. The reason for this is the fact that ultraspinning
black holes are expected to be unstable [21], and the
instability limit occurs at a surprisingly low value of the
angular momentum, i.e. not far in the ultraspinning regime.
In fact, the magnitude of the critical rotation parameter a
has been estimated by Emparan and Myers for several
dimensions [21], and it turned out that a typical value is
around a � 1:3. According to this, in the present paper we
constrained ourselves to keep the value of the rotation
parameter small enough to stay away from the presumably
unstable regime.
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APPENDIX:THESCHWARZSCHILD-TANGHERLINI
LIMIT OF THE MYERS-PERRY SOLUTION

The N-dimensional Myers-Perry metric with a single
angular momentum in Boyer-Lindquist coordinates is
given in (1), while the Schwarzschild-Tangherlini solution
of the same dimension is given by

ds2 ¼ �fdt2 þ f�1dr2 þ r2d�2
N�2; (A1)

where

f ¼ 1� �

rN�3
: (A2)

In both formulas d�2
k is the metric of a k-dimensional

unit sphere Sk, which is parametrized with the polar coor-
dinates k defined by the following recursive relation:

d�2
kþ1 ¼ d2

kþ1 þ sin 2kþ1d�
2
k: (A3)

By taking the limit of a ! 0 in the MP metric, the ST
solution has to be reproduced. In order to check this, after
taking the limit in the coefficient functions, one arrives at
the following equation for the metric on the (N � 2)-
dimensional unit sphere,

d�2
N�2 ¼ d�2 þ sin 2�d’2 þ cos 2�d�2

N�4: (A4)

Applying the recursive relation given in (A3) we can
rewrite (A4) into the form

d2
1 þ sin 21d

2
2 þ sin 21sin

22d�
2
N�4

¼ d�2 þ sin 2�d’2 þ cos 2�d�2
N�4: (A5)

From (A5) it is clear that if N > 4, the angular parametri-
zation of the two-sphere in question is different from that
of the ST metric of the same dimension. This difference,
however, disappears in standard four dimensions since the
last terms are zero on both sides yielding the equivalence

� ¼ 1; ’ ¼ 2: (A6)

In order to see the ST limit of the MP metric for N > 4,
one needs to verify that the angular parametrization given
in (1) is equivalent with the Schwarzschild parametriza-
tion. To show this, we need to find the transformation laws
from the spherical coordinates defined by the polar angles
1 and 2, to the coordinate system defined by the angles �
and ’. The transformation rules are the solution of the
following system of equations obtained from (A5),�

@�

@1

�
2 þ sin 2�

�
@’

@1

�
2 ¼ 1; (A7)

�
@�

@2

�
2 þ sin 2�

�
@’

@2

�
2 ¼ sin 21; (A8)

@�

@1

@�

@2

þ sin 2�
@’

@1

@’

@2

¼ 0; (A9)

sin 21sin
22 ¼ cos 2�; (A10)

where � ¼ �ð1; 2Þ and ’ ¼ ’ð1; 2Þ. This system can
be integrated in a closed form with the solution

� ¼ arccos ½sin1 sin2�; (A11)

’ ¼ arctan ½cos2 tan1�; (A12)

or equivalently the inverse transformations are

1 ¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2’sin 2�

q �
; (A13)

2 ¼ arcsin

"
cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos 2’sin 2�
p

#
: (A14)

To see how the angles � and ’ parametrize the unit
two-sphere let us utilize the standard Cartesian coordinates
x, y, z given by

x¼ sin1 cos2; y¼ sin1 sin2; z¼ cos1: (A15)

Here the polar angle 1 2 ½0; �� is measured from the
positive z direction, and the azimuthal angle 2 2 ½0; 2��
runs in the x-y planemeasured from the positive x direction.
Expressing now x, y and z as functions of � and ’ through
the transformation formulas (A13) and (A14) we get

x¼ sin’sin�; y¼ cos�; z¼ cos’sin�: (A16)

It is thus clear that � and ’ are also spherical polar
coordinates of the unit two-sphere in a way that the polar
angle � 2 ½0; �� is measured from the positive y direction,
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and the azimuthal angle ’ 2 ½0; 2�� runs in the z-x plane
measured from the positive z direction.

According to this, we observe that in standard four
dimensions the axis of rotation of the Kerr black hole is
orthogonal to the x-y plane (corresponding to the labeling
of the standard Cartesian coordinates above), however, in

dimensions N > 4, the axis of rotation ‘‘switches’’ to be
orthogonal to the z-x plane instead. One has to be thus very
careful in taking the Schwarzschild-Tangherlini limit of
theMyers-Perry solution in higher dimensions, because the
angular parametrization of the two solutions remains
different even in the nonrotating limit.
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