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In this paper we argue the possibility that fermion masses, in particular quarks, originate through the

condensation of a fourth family that interacts with all of the quarks via a contact four-fermion term

coming from the existence of torsion on the spacetime. Extra dimensions are considered to avoid the

hierarchy problem.
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I. INTRODUCTION

Recently, ATLAS and CMS experiments at the CERN
Large Hadron Collider (LHC) found a signal consistent
with the standard model Higgs boson, with an approximate
mass of 125.6 GeV [1–3]. This discovery will shed light on
the mechanism behind electroweak symmetry breaking
(EWSB). Although the establishment of the quantum
numbers of the discovered resonance is a pending task, it
is crucial to determine whether the EWSB is produced by
weak or strong coupled dynamics.

The standard model (SM) of weak and strong interac-
tions has proved itself to be remarkably consistent with the
experimental measurements, including the high-precision
tests [4]. However, the lack of compatibility with the
gravitational interaction has driven the community to be-
lieve that the SM is a low-energy effective framework of a
yet unknown fundamental theory. One of the problems that
points in that direction is the hierarchy problem, which
indicates that new physics should appear at a few TeV in
order to stabilize the Higgs mass at scales much lower than
the Planck scale �1019 GeV.

Alternatively, strong coupled scenarios of EWSB could
solve the hierarchy problem as long as no fundamental
scalars turn nonperturbative above the electroweak (EW)
scale, while the breakdown of the electroweak symmetry is
caused by condensed states in the vacuum [5–11]. On
several of thesemodels, the EWsymmetry is broken through
the condensation of fermions, generating a composite scalar
which acts as a Higgs boson [12–14]. Even if these theories
are successful in breaking the EW symmetry, they should be
extended for giving masses to fermions [15–32].

Recently, a mechanism for breaking the EW symmetry
through the condensation of a fourth family of quarks
within the framework of extra dimensions has been
proposed [33].

In this model, the condensation is mediated by the
exchange of Kaluza-Klein (KK) analysis gluons, while a
four-fermion interaction is added in order to communicate
with the SM sector. In the effective theory, the four-fermion
interaction will give origin to the Yukawa interaction of
the composite Higgs. Although the construction of the
four-fermion term is based on symmetry and universality
àrguments, it has still been arbitrary. In this respect, the
situation is similar to the SM where the Yukawa couplings
are arbitrary and unrelated to the gauge sector.
Although this model gives origin to masses and mixing

on the quark sector due to the underlying four-fermion
interaction on the bulk, a good reproduction of the
Cabbibo-Kobayashi-Maskawa matrix requires certain level
of nonuniversality [34].
The aim of this paper is to study the possible gravita-

tional origin of the four-fermion interaction, in the context
of the Cartan-Eintein theory in five dimensions, where
the presence of torsion gives rise naturally to a term
with the desired characteristics. In this type of scenario,
extra dimensions are considered because in four dimen-
sions the gravitational scale—Planck’s mass—is huge,
and phenomenological effects are heavily suppressed
(see for example Refs. [35–37]).
This paper is organized as follows. In Sec. II a review

about the induction of a four-fermion contact interaction
from the coupling of Cartan-Einstein gravity with fermions
is shown. In Sec. III a brief derivation of the effective
model is presented and the fermion condensation of the
set up is performed. Finally, a discussion of results and
conclusions are given in Sec. IV. For completeness, a series
of appendixes has been included: In Appendix A the
notation is explained; in Appendix B the equivalency
between the gravitational and Dirac’s actions written in
differential forms and their customary form is proven.
Additionally, in Appendix C a set of useful Fierz identities
is stated.

II. CARTAN-EINSTEIN GRAVITY

Cartan generalized the gravitational theory of Einstein,
by considering connections which are not necessarily
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torsion free. This generalization is easily worked out using
the first order formalism of gravity.

The information of the spacetime geometry is then
encoded in a pair of fields, the vielbein, defined through

ĝ�̂ �̂ ¼ �â b̂ê
â
�̂ê

b̂
�̂; (1)

and the spin connection, ð!̂�̂Þâb̂, which encipher the same

information as the Levi-Civita connection plus an addi-
tional term referring to the presence of torsion.

After defining the vielbein 1-forms, êâ ¼ êâ�̂dx
�̂, and

the spin connection 1-form, !̂â
b̂
¼ ð!̂�̂Þâb̂dx�̂, the curva-

ture of the spacetime is found through the structure
equations

dêâ þ !̂â
b̂
^ êb̂ ¼ T̂

â
; (2)

d!̂â
b̂
þ !̂â

ĉ ^ !̂ĉ
b̂
¼ R̂ â

b̂; (3)

where T̂
â
and R̂ â

b̂ are the torsion and curvature 2-forms,

respectively.
Finally, the gravitational action is

Sgr ¼ 1

2�2

Z �â1���âD
ðD� 2Þ! R̂

â1â2 ^ êâ3 ^ � � � ^ êâD : (4)

The difference between this action and the one of Einstein-
Hilbert is that the curvature tensor has contributions due to
the torsion.

The action shown in Eq. (4) is the minimal extension of
gravitation due to torsion. More general theories can be
built out of curvature and torsion; however, there are
ambiguities on the procedure, which are bypassed by
restricting oneself to the minimal construction [38–41].

When considering pure gravity, the equation of motion
from Eq. (4) are the usual Einstein’s equations, because the
equations of motion for the spin connection implies a
vanishing torsion. However, the previous statement is not
valid in the presence of fermionic fields.

A. Cartan-Einstein gravity coupled to fermions

The Dirac action can be written in terms of differential
forms as

S� ¼ �
Z �â1���âD

ðD� 1Þ!
��êâ1 ^ � � � ^ êâD�1�âDD̂�

�m
Z �â1���âD

D!
��êâ1 ^ � � � ^ êâD�; (5)

with D̂ the exterior derivative twisted by the spin connec-
tion (see Eqs. (A5) and (A6).

Therefore, the equations of motion for the whole system
are,

R̂m̂
â3 �

1

2
R̂�m̂

â3
¼ �2 ��½�m̂D̂â3 � �m̂

â3
ðD̂þmÞ��; (6)

K̂â b̂ ĉ ¼ ��2

4
���â b̂ ĉ�; (7)

where K̂â b̂ ĉ is the contorsion, and it is expressed as a

function of the torsion by

K̂â b̂ ĉ ¼
1

2
ðT̂ b̂ ĉ â þ T̂ b̂ â ĉ þ T̂ â b̂ ĉÞ:

Equation (7) is a constraint and it can be substituted back
into the action. It is possible to express !̂â

b̂
as the sum of

the torsion-free connection and the contribution of the
contorsion,

!̂â
b̂
� !̂â

b̂
þ K̂ â

b̂; (8)

where K̂ â
b̂ ¼ K̂�̂

â
b̂dx

�̂.

Substituting this into the total action given by Eqs. (4)
and (5), one obtains

S ¼
Z

dVD

�
1

2�2
R̂� ��ðD̂þmÞ�

þ �2

32
���â b̂ ĉ�

���â b̂ ĉ�

�
; (9)

which is a torsion-free theory of gravity coupled to a
fermion with a four-fermion contact interaction.
In order to compare a model with experimental data, it

must contain all of the fields representing the particles of
the standard model. Therefore, the whole spectrum of
fermions should be added. However, possible modifica-
tions of gauge interactions won’t be considered. In the
case of several fermions, the whole action would be

S ¼
Z

dVD

�
1

2�2
R̂� X

n2flav

��nðD̂þmÞ�n

þ X
m;n2flav

�2

32
��m�â b̂ ĉ�m

��n�
â b̂ ĉ�n

�
; (10)

where indices m and n represent flavor. Note that coupling
constants differs by a factor two depending of whether the
four-fermion interaction includes a single or a couple of
flavors [42].

III. FERMION CONDENSATION

In this section a model containing the four-fermion
interaction in Eq. (10) is constructed. It is assumed that
the dimensionality of the spacetime is five. Therefore, the
effective theory in four dimensions should be found.
Although a brief derivation of the effective theory is shown
below, a more detailed analysis can be found in Ref. [45].
The interest in this kind of five-dimensional models has

grown recently because they could explain the appearance
of quark masses and mixing, induced by the condensation
of fermions of a fourth family, whenever a special type of
four-fermion interaction term exists [34].
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A. Effective theory in four dimensions

First of all, using the fact that the irreducible representation
of the gamma matrices in five and four dimensions are the
same, the antisymmetric product �â b̂ ĉ is decomposed into

ð�â b̂ ĉÞð�â b̂ ĉÞ ¼ ð�abcÞð�abcÞ þ 3ð�ab�Þð�ab�Þ: (11)

Additionally, in the last term the product of gamma
matrices can be decomposed further, thus

ð�â b̂ ĉÞð�â b̂ ĉÞ ¼ ð�abcÞð�abcÞ þ 3ð�ab��Þð�ab��Þ (12)

¼ 6ð�a�
�Þð�a��Þ þ 3ð�ab�

�Þð�ab��Þ; (13)

where the definition �� ¼ {�0�1�2�3 has been used.
Next, using the decomposition of the five-dimensional

fermions in terms of chiral four-dimensional ones,

�mðx; �Þ ¼ fmþð�Þc mþðxÞ þ fm�ð�Þc m�ðxÞ; (14)

and the chirality condition ��c m� ¼ �c m�, the currents
involved on Eq. (10) are

ðJmÞa� ¼ ��m�
a���m

¼ jfmþj2 �c mþ�ac mþ � jfm�j2 �c m��ac m� (15)

and

ðJmÞab� ¼ ��m�
ab���m

¼ �f�mþfm� �c mþ�abc m�
þ f�m�fmþ �c m��abc mþ; (16)

where possible Kaluza-Klein excitations have been
dropped. Moreover, in order to evade an overwhelming
notation, define [46]

am ¼ jfmþj2; bm ¼ jfm�j2; (17)

cm ¼ f�mþfm�; c�m ¼ f�m�fmþ: (18)

Now, using the Fierz identities (see Appendix C)
together with the identity for the SUðNcÞ generators,

ðTAÞijðTAÞkl ¼ 1

2

�
�il�kj � 1

Nc

�ij�kl

�
; (19)

the four-fermion interaction terms yield

��m�
a���m

��n�a�
��n ¼ þamanð �c mþ�ac mþÞð �c nþ�ac nþÞ þ bmbnð �c m��ac m�Þð �c n��ac n�Þ

� ambnð �c mþ�ac mþÞð �c n��ac n�Þ � bmanð �c m��ac m�Þð �c nþ�ac nþÞ
¼ þamanð �c mþ�ac mþÞð �c nþ�ac nþÞ

þ 2ambn

�
2ð �c mþTAc n�Þð �c n�TAc mþÞ þ 1

Nc

ð �c mþc n�Þð �c n�c mþÞ
�
þ fþ $ �g (20)

and

��m�
ab���m

��n�ab�
��n ¼ cmcnð �c mþ�abc m�Þð �c nþ�abc n�Þ þ c�mc�nð �c m��abc mþÞð �c n��abc nþÞ

¼ 16cmcnð �c mþTAc n�Þð �c nþTAc m�Þ þ 8

Nc

cmcnð �c mþc n�Þð �c nþc m�Þ
þ 4cmcnð �c mþc m�Þð �c nþc n�Þ þ fþ $ �g: (21)

In the following, the discussion will be focused on four-fermion quark-quark interaction given by ð �c mþc n�Þð �c nþc m�Þ
terms, because a dynamical symmetry breaking mechanism as that presented by Bardeen et al. in Ref. [5] is desirable.
However, it is worth noticing that in addition to the quark interaction, there are four-lepton interactions and lepton-quark
interactions. The former would generate effects as discussed in Ref. [47], while the latter would emulate lepto-quark
interactions, and therefore a general model would mimic grand unified theories or supersymmetric scenarios [48].

Therefore, the effective four-fermion action obtained from the five-dimensional spacetime is

S½c 4� ¼ 3�2

16

Z
dVD

�
amanð �c mþ�ac mþÞð �c nþ�ac nþÞ

þ 2ambn

�
2ð �c mþTAc n�Þð �c n�TAc mþÞ þ 1

Nc

ð �c mþc n�Þð �c n�c mþÞ
�

þ 2cmcn

�
4ð �c mþTAc n�Þð �c nþTAc m�Þ þ 2

Nc

ð �c mþc n�Þð �c nþc m�Þ þ ð �c mþc m�Þð �c nþc n�Þ
�
þ fþ $ �g

�
:

(22)
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B. Condensation, masses, and mixing

When two currents J and J0 are coupled, it is equivalent
to introducing auxiliary fields through the substitution

JJ0 � JH0 þHJ0 �HH0; (23)

where the equations of motion for the auxiliary fields are
H ¼ J and H0 ¼ J0. Then, the mean-field approximation
can be used, giving H � hJi and H0 � hJ0i.

Here, currents have the form

J� ¼ �c mr�c ns (24)

with � ¼ f1; �a; TAg, m and n the flavor indices, and r, s
the chirality indices. The condensation will pair only the
fourth generation of quarks. Since Lorentz and color sym-
metries must be preserved, the only allowed condensed
current will be with � ¼ 1.

The flavor sum on Eq. (22) separates into

Lð5Þ
c 4 ¼

X
q;q0

Lqq0 þ 2
X
q;Q

LqQ þ X
Q;Q0

LQQ0 ; (25)

where Q, Q0 represent the fourth quark generation. The
second term will generate quark masses for the first three
generations, with mq � �2h �QQi. The last one provides

masses for the fourth generation of quarks.
After condensation, the mass Lagrangian for the first

three generations of quarks is

Lð5Þ
q2

¼ 3�2

4
cq½cBh �BþB�iþ cTh �TþT�i� �qþq� þ fþ$�g:

(26)

For the fourth generation of quarks we have

Lð5Þ
Q2 ¼ 3�2

4

�
aTbT
Nc

h �TþT�iþ 2
cTcT
Nc

h �TþT�i

þ cBcTh �BþB�iþ cTcTh �TþT�i
�

� �TþT� 3�2

4

�
aBbB
Nc

h �BþB�iþ 2
cBcB
Nc

h �BþB�i

þ cBcTh �TþT�iþ cBcBh �BþB�i
�
�BþB�þfþ$�g:

(27)

Assuming that all profiles are real, one might define the
coefficients

f	
 ¼
Z R

0
d�

ffiffiffiffiffiffijĝjp
ffiffiffiffiffiffijgjp f

	
þf	�f
þf
�; (28)

the masses of the first three generations of quarks,

mq ¼ � 3�2

4
½fqTh �TTi þ fqBh �BBi�; (29)

and the fourth generation quark masses,

mT ¼�3�2

4

��
1þ 3

Nc

�
fTTh �TTiþfTBh �BBi

�
�gTþgT�

M2
KK

h �TTi

(30)

mB ¼�3�2

4

��
1þ 3

Nc

�
fBBh �BBiþfTBh �TTi

�
�gBþgB�

M2
KK

h �BBi;

(31)

where the last terms correspond to the exchange of the
first KK analysis gluon mode, with a mass of MKK. The
inclusion of leptons is straightforward, just adding extra
flavors singlet of color. Their masses are

m‘ ¼ � 3�2

4
½f‘Th �TTi þ f‘Bh �BBi�: (32)

Note that Eqs. (29) and (32) coincide with the shape of
the masses in Refs. [33,34]. Only the fourth family masses
differ due to the TTBB interaction term present in our
model.

IV. DISCUSSION AND CONCLUSIONS

The developed model has been constructed by consid-
ering the quark sector of the standard model coupled to
torsionful gravity. As result, a contact four-fermion inter-
action term appears, coupling at most two different pairs of
quarks, providing a natural arena for symmetry breaking
through fermion condensation and, additionally, fermions
acquire mass.
A fourth fermion family has been included in order to

condense them, and generate all the wanted features of
technicolor, leaving the standard model quarks outside the
condensation scheme. The proposed scenario, as shown
above, takes into account a partial contribution to the
condensation coming from gravitational torsion, although
additional contributions come from the Kaluza-Klein
towers.
Due to the special kind of interaction induced by the

presence of torsion, the effective mass matrix of fermions
is diagonal. This characteristic ensures a simple model, in
the sense that no other sources of freedom are involved.
Nonetheless, it implies that the Cabbibo-Kobayashi-
Maskawa mass matrix has the same status as that in the
standard model.
Additionally, the introduction of extra dimensions is

necessary for the gravitational coupling constant �2 to be
of order TeVn, with n the number of extra dimensions. This
serves to ‘‘solve’’ the hierarchy problem and additionally
assures that the four-fermion interaction is not suppressed
by the four-dimensional Planck’s mass Mpl � 1019 GeV,

but by a much weaker fundamental gravitational scale,
M� � TeV.
Despite the fact that the considered model does not have

the richness of the one presented in Ref. [34], by providing
an explanation of the origin of quark masses and mixing,
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the spectrum of particles is provided by the integration
of the profiles along the extra dimension. Since these
profiles are usually exponential terms, it can be argued
that small differences on the constants that describe them
would generate great mass differences, giving a natural
hierarchy on the quark masses. Moreover, due to its sim-
plicity, the model does not require additional symmetries
or structures.

In the context of Higgs physics, it is still arguable a
composite Higgs with small mass, since fermionic loops
represent a negative contribution to the mass of the boson,
as a binding energy. This argument is essentially the same
as that in walking technicolor models, where the Higgs
resonance is around 125 GeV despite the fact that the
technifermions’ masses could be of order TeV.

Finally, it is worth remarking that fermion masses in the
proposed scenario are similar to those in previous models.
However, the following differences should be highlighted:
(a) This model contains a four-fermion interaction intro-
duced by a minimal generalization of general relativity
due to the presence of torsion, (b) no extra symmetries
have been imposed on the construction of the model,
(c) naturally, fermions are paired in the extra interaction,
and the quark mixing keeps the status as in the standard
model, and (d) although this model starts with a different
current structure (compared with the mentioned models),
the effective theory has the same physical terms; therefore,
condensation for this model is assured by the conditions on
Refs. [33,34].

At the LHC, bounds to the four-fermion interaction
term have been found (See Refs. [50–52]), typically
�� 10 TeV. Additionally, there exist cosmological con-
straints, (See Ref. [35]), where �� 28 TeV. However,
these constraints are in four dimensions, while our model
has one extra dimension. Since the parameters of the
theory depend on the particular construction, no universal
constraints can be imposed. Nonetheless, in a previous
report, we found some constraints to the dimensionality
of the spacetime [45].
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APPENDIX A: CONVENTIONS AND NOTATIONS

1. Spacetime and metric

Throughout the paper, the metrics have a signature that
is mostly positive. Since the vielbein formalism is used
extensively, the distinction between flat and curved coor-
dinates is through latin and greek indices, respectively.

Moreover, hatted indices run over the whole spacetime
(say five-dimensional spacetime) while unhatted ones run
over a hypersurface restriction, i.e., a four-dimensional
spacetime.
The vielbein formalism relies on the definition of a

Lorentzian frame at each point of the spacetime through
the relation

ĝ�̂ �̂ ¼ �â b̂ê
â
�̂ê

b̂
�̂;

where êâ�̂ are the vielbeins, and they encode the geo-

metric information of the curved spacetime when one
‘‘translates’’ into the tangent space. These objects are
invertible, and their inverse are denoted by

Ê�̂
â 	 ðêâ�̂Þ�1:

2. Clifford algebra and spinors

The gamma matrices are defined on the tangent space,
and they satisfy the Clifford algebra,

f�â; �b̂g ¼ 2�â b̂1: (A1)

For the sake of clarity in the following, spacetimes are
considered five and four dimensional. Thus, hatted indices
run over â ¼ 0; . . . ; 4, while unhatted ones run over
a ¼ 0; . . . ; 3.
In even dimensions one can define the chirality matrix

��, satisfying the properties

f�a; ��g ¼ 0; ð��Þ2 ¼ 1;

and the (chiral) projector operators,

P� ¼ 1� ��

2
; (A2)

are both nontrivial.
On the other hand, odd-dimensional Clifford algebras

are constructed by using the gamma matrices of the
codimension-one spacetime, via

�â ¼ ð�b; ��Þ: (A3)

These odd-dimensional Clifford algebras have trivial
projectors P�, and therefore chiral fermions cannot be
defined.
In any dimension one may define a set of generators of

the Lorentz algebra, constructed with the elements of the
Clifford algebra (A1). These generators of the Lorentz
algebra are

J â b̂ ¼ � {

4
½�â; �b̂�; (A4)

which are known as the generators in the spin
representation.

FERMION MASSES THROUGH CONDENSATION IN . . . PHYSICAL REVIEW D 88, 124022 (2013)

124022-5



In curved spacetime the Dirac equation is obtained by
replacing the partial derivative by the derivative twisted
by the spin connection,

@�̂ ! D̂�̂ ¼ @�̂ þ {

2
ð!̂�̂Þâ b̂J â b̂; (A5)

which defines the exterior derivative twisted operator by

D̂ ¼
�
@�̂ þ {

2
ð!̂�̂Þâ b̂J â b̂

�
dx� ¼ dþ {

2
!̂â b̂J â b̂: (A6)

The Dirac-Feynman slash notation must be interpreted
as

D̂ ¼ Ê
�̂
â �

âD̂�̂; (A7)

with Ê
�̂
â the inverse of the vielbein êâ�̂.

APPENDIX B: EQUIVALENCY OFACTIONS

In this appendix the equivalency between the actions in
Eqs. (4) and (5) with their best known form is

Sgr ¼ 1

2�2

Z
dVDR; (B1)

S� ¼ �
Z

dVD
��ðDþmÞ�: (B2)

In order to achieve the goal, one needs a couple of
identities which follow from the signature of the Lorentz
metric and the orientability of the spacetime and the usual
� identities,

êâ1 ^ � � � ^ êâD ¼ ��â1���âDdVD; (B3)

�â1â2���âD�â1â2���âD ¼ �ðDÞ!; (B4)

�m̂â2���âD�n̂â2���âD ¼ �ðD� 1Þ!�m̂
n̂ ; (B5)

�m̂1m̂2â3���âD�n̂1n̂2â3���âD ¼ �ðD� 2Þ!�m̂1m̂2

n̂1n̂2
; (B6)

where

�m̂1m̂2

n̂1n̂2
¼ �m̂1

n̂1
�m̂2

n̂2
� �m̂1

n̂2
�m̂2

n̂1
:

Theorem 1.

�â1���âD
ðD� 2Þ! R̂

â1â2 ^ êâ3 ^ � � � ^ êâD ¼ dVDR (B7)

Proof. Start by writing the curvature 2-form in the vielbein
basis,

R̂ â1â2 ¼ 1

2
R̂â1â2

m̂ n̂ê
m̂ ^ ên̂;

then from Eq. (B3), one gets

R̂ â1â2 ^ êâ3 ^ � � � ^ êâD ¼ � 1

2
R̂â1â2

m̂ n̂�
m̂ n̂ â3���âDdVD:

Contracting the last expression with �â1���âD yields

�â1���âDR̂
â1â2 ^ êâ3 ^ � � � ^ êâD ¼ ðD� 2Þ!R dVD;

which ends the proof. h
Theorem 2.

dVD
��ðDþmÞ� ¼ �â1���âD

ðD� 1Þ!
��êâ1 ^ � � � ^ êâD�1�âDD̂�

þm
Z �â1���âD

D!
��êâ1 ^ � � � ^ êâD�:

(B8)

Proof. The proof is split in two parts.
First, consider the mass term. Using the identities in

Eqs. (B3) and (B4), it follows that

�â1���âD
D!

êâ1 ^ � � � ^ êâD ¼ dVD; (B9)

which ensures that the mass terms of both sides are
equal.
Next is the kinetic term. One begins by expanding the

exterior covariant derivative in the vielbein basis,

D̂ ¼ D̂m̂ê
m̂: (B10)

Then, using the identities in Eqs. (B3) and (B5), one gets

�â1���âD
ðD� 1Þ! ê

â1 ^ � � � ^ êâD�1 ^ êm̂�âDD̂m̂

¼ dVD�
m̂
âD
�âDD̂m̂ ¼ dVDD̂: (B11)

Therefore, the action in Eq. (5) is in fact the usual Dirac
action written in the language of differential forms. h

APPENDIX C: FIERZ IDENTITIES

Throughout the paper, the spacetime dimension has been
set to be either five or four. Since irreducible representa-
tions of the Clifford algebra on both have the same dimen-
sion, the Fierz identities are equal, and coincide with the
ones stated in the usual text books on quantum field theory,
such as Ref. [53].
Below, the identities used in Sec. III are shown without

proof:

ð �c 1��ac 2�Þð �c 3��ac 4�Þ ¼ ð �c 1��ac 4�Þð �c 3��ac 2�Þ;
(C1)

OSCAR CASTILLO-FELISOLA et al. PHYSICAL REVIEW D 88, 124022 (2013)

124022-6



ð �c 1þ�ac 2þÞð �c 3þ�ac 4þÞ ¼ ð �c 1þ�ac 4þÞð �c 3þ�ac 2þÞ;
(C2)

ð �c 1þ�ac 2þÞð �c 3��ac 4�Þ ¼ �2ð �c 1þc 4�Þð �c 3�c 2þÞ;
(C3)

ð �c 1þc 2�Þð �c 3þc 4�Þ
¼ � 1

2
ð �c 1þc 4�Þð �c 3þc 2�Þ

þ 1

8
ð �c 1þ�abc 4�Þð �c 3þ�abc 2�Þ;

ð �c 1þ�abc 2�Þð �c 3��abc 4þÞ ¼ 0: (C4)
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