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Bubble divergences and gauge symmetries in spin foams
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The divergence structure of spin foam models and its relation to diffeomorphism symmetry has attracted
renewed interest. We will discuss in detail the (nonoccurrence of)) divergencies in the Barrett-Crane spin foam
model, which with our choice of weights can be understood as an integral of delta functions only. We will
present furthermore a simple method to estimate the occurrence of so-called bubble divergencies for general
spin foam models. We expect divergencies in spin foams related to the existence of (diffeomorphism) gauge
symmetries. Thus we have to conclude that such gauge symmetries are not (fully) present in the model we
consider. But we will identify a class of gauge symmetries that occur at special solutions of equations imposed
by the delta function weights. This situation is surprisingly similar to the case of broken diffeomorphism
symmetries in discrete gravity, which are present around flat solutions. We introduce a method to derive (Ward
identity-like) equations for the vertex amplitudes of the model in the case of broken gauge symmetries.

DOI: 10.1103/PhysRevD.88.124021

I. INTRODUCTION

Spin foam models arose as a path integral approach
to quantum gravity [1]. One of the first specific four-
dimensional gravity models constructed was the Barrett-
Crane (BC) model [2], a more modern alteration of which
is [3]. The Engle Pereira Rovelli Livine/Freidel Krasnov
(EPRL/FK) spin foam models [4] were also recently pro-
posed due to arguments that the Barrett-Crane model fails
certain tests to be a viable model for gravity [5].

All models underly a unifying construction principle [6],
which in our view is quite accessible in the holonomy
representation [7]. There the common starting point is the
use of distributions (delta functions) as weights for the faces
of the two-complex on which spin foam models are defined.
These delta function face weights are altered by edge func-
tions convoluted into the face weights. These edge weights
are in general also distributional. With the appropriate choice
of the so-called edge and face weights for the BC model,
these are again delta functions (for a specific choice of what
is termed edge weight or measure factors), and this will
allow us to evaluate quite explicitly certain configurations.

Given that the models involve distributional objects, one
has to worry about divergences and the question arises
whether there is need for a regularization. This is an
actively studied issue [8—10] relevant for the definition
and behavior of group field theories [11], for which spin
foam models provide the Feynman amplitudes and the
regularization of spin foams in itself.

In this paper we will consider in detail the possible
divergences that can occur in the Barrett-Crane model
(with a specific choice of edge and face weights, which has
not been considered before). We will also present a simple
method to estimate the occurrences of (single bubble)
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divergences in general spin foam models (including EPRL/
FK). This will show explicitly how the choice of face and edge
weight factors influences the divergence properties of the
models. Here it will turn out that one has to choose between
the invariance of the model under certain edge and face
subdivisions and convergence. If one wants to avoid single
bubble divergences (divergences related to diffeomorphism
symmetry would be expected from multiple bubble configu-
rations), one might also take convergence considerations into
account in the determination of these factors [12—-14].

Apart from the possible need for regularization there is
another strong motivation to study the divergence structure of
spin foams. This is the relation between divergences, the
redundancies of delta distributions and diffeomorphism
symmetry [15-19], and the proposal that spin foams act as
projectors onto the Hamiltonian and diffeomorphism con-
straints [20,21]. As diffeomorphism symmetry leads to non-
compact orbits (for vanishing cosmological constants), one
would expect that an anomaly-free implementation [14] of
these symmetries would lead to divergences due to the inte-
grations of amplitudes over the noncompact orbits (on which
these amplitudes are constant). Indeed this relation is well
understood for the three-dimensional Ponzano-Regge model
[15,17], where the diffeomorphism symmetry is implemented
as a translation symmetry on the vertices of the triangulation.
This symmetry also allows the derivation of recursion rela-
tions [22] that can be related to the Hamiltonian [23,24].

The issue is more involved for the four-dimensional
(gravitational) models. Spin foams can be seen as a discre-
tization of the path integral. Thus the question arises
whether diffeomorphism symmetry is preserved under dis-
cretization even on the classical level. The single simplex
amplitudes of the spin foam models approach the Regge
action in the large j limit [25]. The four-dimensional Regge
action, as a discretization of the Einstein-Hilbert action
does however break in general diffeomorphism symmetry
(as opposed to the three-dimensional Regge action) [26].
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This statement, however, has its exceptions [19,26]. The
subdivision of a four-simplex into five simplices by placing
an inner vertex in the inside of the initial vertex leads to a
configuration with vertex translation symmetry. This
also leads to (classical) first-class Hamiltonian constraints
[26-28] for four-valent vertices in a triangulated three-
dimensional hypersurface. Thus one could expect divergen-
ces for the spin foam models at least for these configurations.
The corresponding symmetry (for instance in the form of
redundant delta functions) could then be used to derive
recursion relations and a quantum Hamiltonian.

We will, however, argue that divergences for the BC
model only appear for very special configurations, which
first of all have to include two-valent faces (i.e. faces with
only two edges) and furthermore have to combine these
two-valent faces in a specific way. (Indeed, a gauge sym-
metry can be found for the case that 2 two-valent faces are
glued onto each other. This is the only configuration for
which we found a divergence.) Thus we do not expect a full
gauge symmetry related to the subdivision of a simplex,
which does not involve two-valent faces.

The subdivision of a simplex corresponds to a situation
where all' (classical) solutions are connected by a gauge sym-
metry. Another case is the occurrence of special (i.e. flat)
solutions on more general triangulations. The Hessian around
these solutions will feature null modes, which signifies the
existence of gauge symmetries around these special solutions.

Such symmetries have not been discussed for spin foams
so far. Here we will consider an analogue situation for spin
foams, that is analyze (gauge) symmetries that occur
around special solutions. This is also the reason for con-
sidering mostly the BC model in this paper, as (with our
choice of edge and face weights) it can be rewritten as the
integral over a space of flat connections, i.e. a partition
function with only delta function weights. The special
solutions are special points in the space of flat connections.
In this paper we will present a method to derive recursion
relations for the vertex amplitude of the BC model, the 10;
symbol, which are derived from these special solutions.

The structure of the paper is as follows. After introduc-
ing the Barrett-Crane model with our choice of face and
edge weight factors in Sec. II, we will switch to a group
integral formulation in Sec. III. This will introduce

|
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effective face weights that capture the possible divergences
of spin foam models. For the BC model these effective face
weights can be evaluated explicitly, and we find them finite
for faces with more than two edges (modulo divergences
which occur on measure zero sets). After considering the
square of such effective weights, showing that the measure
zero set divergences do not matter in this case, we continue
with a discussion of so-called bubble divergences in
Sec. IV. The methods used there can be generalized to
other models as well. As we will show in Sec. IV C this
allows for a simple estimate of possible divergences occur-
ring in spin foam models. We then discuss the multiple
bubble case, in particular the four-dipole configuration,
important for group field theories, in Sec. V. To this end
we will reformulate the partition function as an integral
over a space of flat connection. This technique will be
essential for the consideration of gauge symmetries, which
for the BC model occur around special solutions. We will
use this technique in order to discuss these gauge symme-
tries in Sec. VII and use these symmetries in order to derive
recursion relations for the 10j symbols. We close with a
discussion and outlook in Sec. VIII. In the Appendix
includes some necessary basics on the group SU(2).

II. THE BARRETT-CRANE MODEL

A. Presentation

In this section we will shortly introduce the model we
will be considering in the rest of the paper.

Let I' be a two-complex, and I'; its set of i cells. We call
O-cells vertices, 1-cells lines and 2-cells faces. The spin
representation of the Barrett-Crane (BC) model is as fol-
lows. A state is an assignment of spins {j; € N/2},¢cr, to
faces. To simplify, assume I' is the two-skeleton of the dual
to a four-dimensional triangulation. Each vertex is dual to a
four-simplex and each line to a tetrahedron. A four-simplex
has five boundary tetrahedra, so that a vertex in I" has degree
5. The faces of I" are dual to triangles. Consider a vertex in I"
and denote the incoming lines a = 1, ..., 5. There are ten
faces that are identified as the pairs of lines, (a, b) for 1 =
a <b =5 (and corresponding to the ten triangles of the
dual four-simplex). Each vertex receives a weight, known as
the 10j symbol, labeled by the ten spins of the faces

2

ey

"Here we assume that all classical solutions for this case are flat. There could be some special solutions which correspond to

discretization artifacts however [26].
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Here x; is the SU(2) character in the representation of
spin j, x;(e®"7) = ——j e™m? = sin (d;0)/ sin 0, with A
a normalized three-vector, ¢ = (o, 0y, 0,) the vector
formed by the Pauli matrices and the notation d;=2j+1.

The partition function of the model is a state sum,

Zee= > 1A/ 1A [T{10 )

{igkrer, fET2 €€t vEl,

Several choices can be found in the literature for the
measures on faces A, and lines A,. We will stick to the
following choice:

Ap=d3, and A, =——. 3)

This choice, which has already appeared in [29,30], leads
to a partition function that can be written with delta
functions on the group only and among other things allows
us to apply the techniques of Sec. V, which discusses the
contribution of multiple bubbles.

B. Finiteness

The above choice of measure makes the model quite
convergent. This can be found as follows. There are as
many sums as faces in I'. First we collect the factors d , for

each sum. The face measure brings d]2- for any face. For a

face with n vertices, dispatching the line measure A, on the
faces yields a factor d; . Next we have to deal with the 10j

symbols. Previous studies strongly suggest a bound of the
type

{1034 = k[ Ta;~ )
f

for some positive «. In [31], numerical evidence gives
a = 1/5. Therefore,

Zsel= Y [14;," TTH0}

{strer, F€ verl,
2—ny—an
=K'[] [Zdjf ! f]. (5)
fE- jr

As a result, if all faces have at least n F= 3 vertices, the
partition function is finite. However, this result is far from
satisfying as it does not provide any insight for quantum
gravity. Here are some questions that it leaves unanswered.
(i) The above arguments fail in the presence of faces
with two vertices only. Such faces appear in gener-
alized triangulations, in particular in the melonic
sector which dominates group field theories. We
would like to be able to treat them and understand
why they are more likely to bring divergences from

the quantum gravity point of view.
(i1)) Any spin foam model can be made finite (or arbi-
trarily divergent) by adding negative (positive)
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powers of d; in the face and line measures.
Several such different versions of the Barrett-
Crane model exist [8,29]. We will have to justify
our choice (3).

(iii)) We would like to formulate the model on arbitrary
two-complexes, not only those two-skeleta dual to
regular triangulations. This is necessary to under-
stand bubble divergences (when only part of I is
taken into account).

(iv) In the BF model, the Wilson loops are constrained
to be trivial, and typical divergences come from
redundancies in the set of constraints. When turning
it to the BC model, are there constraints left? Is
the above finiteness result related to absence of
constraint redundancies?

(v) These redundancies in the BF model are associated
with the existence of gauge symmetries which sur-
vive on the lattice (and are not gauge-fixed). Does
the above finiteness result imply the absence of such
gauge symmetries in the BC model?

We will answer these questions in the remainder of the
paper through a group integral formulation of the model,
where sums over spins are traded for group integrals.”

III. GROUP INTEGRAL FORMULATION
A. Effective face weights

There exists a group integral representation of this
model, which comes out quite naturally as a derivation of
the model from a path integral for discretized general
relativity [30]. To each pair line-vertex (e, v) (where v
is a vertex of e), we associate an SU(2) element #,,
(they equivalently live on half-lines). They have the
following geometric meaning. Each four-simplex of the
triangulation (dual to a vertex) is flat and equipped with a
local Euclidean frame in R*. Each boundary tetrahedron,
which is dual to a line adjacent to the vertex, spans a three-
dimensional subspace of R?*, determined by the normal to
it in the frame of the simplex, denoted N,,, (with notations
on I'). This is a unit vector, hence an element of the three-
sphere. Using the isomorphism between the three-sphere
and SU(2), the normal N,, is represented’ as the element
he, of SU(2).

The interest of such a representation of the normal is that
geometric quantities can be expressed through the group
law. The dihedral angle between two tetrahedra e, e, in a
four-simplex v is the scalar product between their normals
which can be written

ey = ~theyhe,,, (6)

in the fundamental matrix representation of SU(2).

cos @

Not surprisingly, integrals are easier to evaluate than sums.
?The map is N!, = tr(h,, o), for I =0, 1,2, 3, ¢ =1, and
o' the Pauli matrices.
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A face f € I', can have an arbitrary number 7 of lines
and vertices on its boundary. We divide the face into
wedges, where a wedge is a pair (f, v) or, equivalently, a
pair of half-lines attached to v. There are n wedges
Wig, ..., Wy around f. The product of group elements
entering (6) is canonically associated to a wedge w and
to simplify notations we write

My = hgyhey. (7)

The class angle of h,, is therefore the dihedral angle
between the tetrahedra dual to the half-lines. We can now
rewrite the partition function as

Zpc = /l‘[dhm [Tet, ... hy,) @)

(e,v) fer,

The function w has n arguments and is called the effective
face weight. 1t is fully determined by our choice of mea-
sures Af, A, to be

w(hy, ..., hy,) =/ [Tdvid(hivahayst - vy h),

€))

where 6 is the Dirac delta over SU(2).

To prove the equivalence between the spin representa-
tion (2) and the group representation (8) of the partition
function, we start by expanding @ onto the SU(2) modes,
|
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using 8(h) = Y ;en/odjx;(h). A few more formulas are
needed in order to integrate the elements 7y; in (9). They
are given in the Appendix. The character of products of
group elements expands onto the Wigner matrices DY) as
xj(hihy) =37 DY)(h)Di(h,y). Combining this

mn=-—j
with the orthogonality of the matrix elements of the

Wigner matrices (A4), we get

J

then

Zgc =, [ [Tdr. [ dff_”f [Tx), (). an

U (ev) fEr, wCf

The factor dff gives the face measure A s the factors dj_f"f

are associated to pairs (e, f) and can be rearranged as
the line measure A,. Finally the product of characters
over faces can be reorganized as a product over vertices,
yielding (2).

A first outcome of this formulation is that it directly
makes sense on arbitrary two-complexes, not necessarily
dual to a regular triangulation.

The effective weight w is obviously well defined as a
distribution. Let us integrate w with some regular test
function,

f]'[dhifl'[dy,-w(hl,...,hn)amhmlnhm‘ e yahnyi )
i=1 i=1

n—1 n
= fl_[ dh [Tdvivr(h - B v Yty v, 1) - (vihy Yy D)
i=1 i=1

n—1

n—1
= fl_[ dgi [1aviv i1y Vo 18n1 Yot ¥ 80t o 817 ). (12)
i=1 =1

In the first equality, we have used the Dirac delta to
integrate 1, = v, ' (y,—1h, Ly, 2 ) o (vik oy Dy, In
the last line, we have changed variables to g; = y;h;y; !,
using the translation invariance of the Haar measure (this
line simply is a rewriting).

This choice of effective face weight is natural from the
way spin foam models are built from BF theory. Indeed, the
effective face weight for BF theory is wgp(hy, ..., h,) =
8(hy -+ - h,). The insertion of the group elements 7y is due
to the simplicity constraints that break the topological
nature of the theory. The way this is implemented in our
version of the BC model is interesting because it does not
change the functional form of the face weight: it is still
formulated with a Dirac delta. A change in the face and line
measures (3) would change the Dirac delta to some other
distribution. Moreover, the form of w allows us to directly
draw the following two conclusions:

(1) Just like in the BF model, the potential divergences
would come from the fact that multiplication of
deltas may not even be defined as a distribution.
More precisely, some deltas may be redundant: their
arguments are automatically the identity of SU(2)
once the other deltas are satisfied. Having Dirac
deltas in w makes this choice quite convenient to
study. In particular, the fact that wgg is a delta is the
reason why divergences in spin foams are called
bubble divergences (because typically there is a
redundancy for each ‘‘bubble,” i.e. independent,
spherical, closed surface, so to speak). We will thus

“In the third reference of [18], it was noticed that even in the
absence of redundancies, the amplitude may not be finite in BF
theory, due to singularities on the set of solutions to the con-
straints. This issue will also be discussed later in the paper.
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be able to compare the contributions of bubbles in
this model with the BF case.

(i) The expression (9) further indicates why the model
is more likely to be convergent that the BF model,
and even why faces with two vertices are the most
dangerous with respect to divergences. Since SU(2)
has three real dimensions, the Dirac delta in the
effective weight (9) has three real components.
Because the definition of w integrates them (over
the conjugacy class of each £;), w is expected to be
more regular, less distributional so to speak, than
the SU(2) delta. The more regular w is, the more
likely it is that products of w are well defined,
removing divergences. Moreover, there are as
many integrals in (9) as vertices around the face.
Therefore, w certainly becomes quite regular for
faces with a sufficient number of lines, and only
faces with few lines are expected to be dangerous.
We expect this feature to hold more generally in
spin foam models for quantum gravity, as the
simplicity constraints always amount to smearing
the SU(2) deltas of BF theory, with one integral per
line around each face.

B. Analysis of the effective face weights
1. Support and geometric interpretation

To understand the support of @ and the content of the
constraint in (9), we need a bit of spherical geometry.’
A spherical n-gon is a loop of n geodesic segments on the
two-sphere, with lengths in [0, 7] (note that it can be
degenerate and have self-intersections).

Let Ay, ..., h, € SU(2) with class angles 6, € [0, 7]
defined as Jtrhy = cos6;. Then there exists SU(2)
elements vy,, ..., vy, such that

hyyahayyy eyt = (13)

if and only if there exists a spherical n-gon with lengths
(64, ...,0,). The fact that the constraint implies the exis-
tence of a spherical polygon is proved in [32] and we will
not repeat it. We will prove the reverse. The case n = 2 is
trivial. We proceed by induction on n starting with n = 3.

Write h;, = exp i0,7 - fi; with 8, # 0, 7, and consider a
spherical triangle with lengths (6, 6,, 65). The angles
between the sides of the triangles are given by the spherical
law of cosines,

cos 6 — cos f;cos 6;

cos ¢;; = (14)

sin @, sin 6

Set y, € SU(2) such that R(y,)A, = i, with i, being any
unit vector satisfying

fll . ﬁz = — COS ¢12. (15)

The authors are grateful to W. Kaminski for pointing this out.
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The SU(2) element y,h,y; ! has the same class angle as
h,, but its axis is f,, i.e. y2hyy; ! = expif,7 - il,. Then
Eq. (14) for i = 1, j = 2, k = 3 exactly reads

trhl'yzhz')’z_l = trh;l, (16)

which implies that the matrices on both sides are
conjugated to each other by, say, y; € SU(2). In other
words, there exist y,, y3 € SU(2) such that h;y,hyy; ! =
yshy vyl

Completing the induction is easy. Assume there is a
n-gon with spherical lengths (6, ..., 6,). By splitting
iton its (n — 2)th vertex, we get a (n — 1)-gon with lengths
(64,...,60,-5,00) and a spherical triangle with lengths
(60, 0,,—1, 0,,). The induction hypothesis ensures the exis-
tence of SU(2) elements such that hyy,h,y; L.
7n_2hn_27,;12h0 =1[, where h, has class angle 6.
As for the triangle the above proof of the case n =3
shows that there exist SU(2) elements such that
hoFn—1hy17, 1 Fuha ¥yt =1, where hy has also class
angle 6. Therefore h, and /, are conjugated and we can
write for the triangle iy 'y, —1h,— 1V, Vuhny, b = 1. This
completes the proof.

Furthermore, existence of an n-gon is equivalent to the
spherical polygon inequalities on (6, ..., 6,,). This means
that those inequalities provide the support of the effective
face weight. They read

D6;—>6,—m(Pl-1)=0 (17)
i€ep iEP
for any subset P C{l,...,n} with |P| odd, and
P ={1,...,n}\P.

In summary the effective face weights are supported on
configurations of group elements #, ..., h, for which the
corresponding class angles define a (possibly degenerate)
spherical n-gon. We will find this constraint again in the
explicit expression of the face weights.

2. Explicit expression of the face weight

From the bound (5), we see that only faces with two
vertices are dangerous, suggesting that the effective face
weight of faces with at least three vertices are quite regular.

(a) Face with two vertices, n = 2. In that case, w(h, h,)

is actually well known to be the one-dimensional
delta constraining h; and h, to lie in the same
conjugacy class (i.e. to have the same rotation
angle),

w(hy, hy) = fd75(h17h27_1) = > xj(h)x;(hy)
J

1
L — E sink@; sink6#,.  (18)
sin 0, sin 6, ‘=,

(b) Face with more than two vertices, n = 3. Since
n =2 has only a one-dimensional delta function,

124021-5
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and there are more integrals over conjugacy classes
for n = 3, w does not contain any delta anymore
and is regular almost everywhere. To make this
precise, the expression of the character in terms of
the class angle is inserted into (10),

')hn)

- 1
kZl kn—2

1 1 € "€,
- (Zi)" Z kn*Z Z :
€

= e ysin 0,---sinf,

0)(1’[1, .

sin (k@) - - - sin (k6,,)
sinf; - - -sinf,

X [eik(o,+z;;2 €b) 4 (_1)ne—ik(01+z;’:2 €67,

19)

If one group element is setto h; = =l (i.e. #; = 0, 7), then
o reduces to the face weight with simply one argument
less, n — n — 1 (which is the weight for a face with one
line and one vertex less). Therefore we assume that all
h; # =1

This allows us to evaluate the sum over k for all terms
independently,

1 &1 .
(zl)n Z kn72 [elkG) + (_l)ne—tk@)]
k=1
1 1 T 2 0
=— kO —n—)=-——B, ,(—)
2",;1&*2 COS( ”2) 8(n—2)! " 2(277)

(20)

where we have recognized® the Fourier expansion of
the Bernoulli polynomial B, _,, which holds for ® €
[0,27]. If O is outside this interval, we need to shift it
back to be in [0, 277], using that the left-hand side has to be
periodic in ©.

Notice that (20) is absolutely convergent for n = 4. For
n=3 we get 3 sin(k®)/k which gives the Fourier
expansion of the sawtooth wave, i.e. a finite function which
is not continuous. This applies to each configuration of €,
appearing in (19), with Oy = 6, + Y/, €,6, mod (2).
Thus we have

2 1

“8(n—2)!sinf, ---sin6,

O
€ ean*2< 2;_}) (21)

a)(hl, ey hn)

The Bernoulli polynomial B,(x) has a monomial
of highest order x". However, the sum over the signs
€; = * may lead to simplifications.

®We could also recognize the real and imaginary parts of the
polylogarithm n(z) = ¥, z*/k*.
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Let us focus on the case n = 3. There, we need the
polynomial B(#*2™) = £ + N —1/2, where N € Z
has to be chosen such that 6 + 27N € [0, 27]. Assume
that 64, 8, 65 satisfy the spherical triangle inequalities, i.e.
0, +6,+6; =27 and 0, = 0, + 6, for any permuta-
tion of a, b, ¢ = 1, 2, 3. Of the four combinations of €,, €3,
three arguments 6; + Y/, €,0, are in [0, 277]. However
for e, = €3 = —1, we obtain a negative argument. For this
last summand we need to shift the argument back to [0, 277]
by choosing N = 1. Then in the sum over the €,, €3, all the
linear terms in 6, vanish and we are left with a constant

Bl(el + 02 + 03) _ Bl(GI + 02 - 03)
2T 27

6, —0,+86 0, —0,—6;+2
_Bl(l 2727 3)"‘31(1 22773 77):1

(22)

Hence if the spherical triangle inequalities are satisfied, the
effective face weight reduces to

T 1
hy, by, h3) = = = : - .
(. hy, hs) 8 sin f sin 8, sin 6,

(23)

Consistently with the support found in Sec. III B 1, one can
check that violations of the triangle inequalities lead to
o = 0. Thus the face weight for a three-valent face is
simply

T 1
C()(h], hZ: h3) =3

H(6,, 0, 05), (24
8 sin 6, sin 6, sin 6, (01,02, 65). 24)

where H(6,, 6,, ;) = 1 if the spherical triangle inequal-
ities are satisfied and vanishing otherwise.

For higher-valent faces, with n edges, the Heaviside-like
function H in (24) is replaced by some piecewise
polynomial of order (n — 3) so that the support is on
configurations satisfying the spherical triangle inequalities.

As a conclusion, the face weight is a function of the class
angles only. The face with two vertices is the most singular,
and the weight becomes smoother as the number of verti-
ces per face increases. This is expected because the number
of group averages in the expression (9) for w is precisely
the number of vertices. As the group averaging comes from
the simplicity constraints, we expect this feature to also
hold for the EPR/FK model. We will provide evidence
(which will depend on the choice of certain edge weight
factors) in Sec. IVC.

Let us note that possible divergences of the models can
also be analyzed with the help of microlocal analysis [33].
Wave front sets are a refinement (or extensions to cotan-
gent space) of the singular support of a function. The wave
front sets for the effective face weights for the BC model
are nonempty and indeed reflect the configurations at
which the effective face weights are nonsmooth [34].
Thus wave front sets in spin foam models do not neces-
sarily correspond to divergences but could also just
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signify nonsmooth behavior. In this case there is no need
for regulating the models.

C. Two faces glued together:
The square of the face weight

Although pretty explicit, the effective face weights are
functions of the dihedral angles, which involve in their
definition the product of two group elements: cos 6, ,, =
—trh, Lh, ,v- Thus if we glue faces together we would have
to disentangle these group elements again, as the &, , and
he,, will in general be shared by different sets of faces.

Also, even for effective face weights with valency
larger than two, the sets where some h; are *=[ might
lead to (delta function-type) singularities (this is what
prevents @ from being a standard function), and they
may contribute, though having zero measure. Therefore,
for practical calculations, we would rather use the expres-
sion (9) and deal with products of SU(2) delta functions.

We have already emphasized that typical divergences
might show up because the products of deltas are a priori
ill defined, due to redundancies of the enforced constraints.
Such redundancies typically are expected when some
faces are glued in a way that creates closed surfaces in I
(boundary of 3-cells if I" is the two-skeleton of a higher
dimensional cell complex). In the BF spin foam model, it is
easy to check that the presence of 3-cells is associated to a
redundant Dirac delta, whose argument is automatically
the unit of the group whenever the deltas on the other
faces are satisfied.” In the following subsections, we
will focus on these typical situations and argue that there
is no divergence, expect in one case where two faces with
exactly two vertices are glued together.

The first step to study this type of situation is to look at
the square of w. Geometrically, that corresponds to a
closed surface in I' made of two faces with the same
boundary lines and vertices. In the BF case, @ = 6 and
its square is obviously not well defined, because the two
deltas impose the same constraint twice. The question is,
therefore, is w a distribution that can be squared?

Consider that there are n lines around the two faces.
There are also other faces which may share boundary lines
with the two faces. Therefore the amplitude on I' reads

Z(F)=[lildha[w(hl,...,hn)]zf(hl,...,hn), (25)
a=1

where f is the result of integrating all the group elements
herin I" at fixed wedge group elements 4, ..., h, on the
boundary of the two faces. f is typically a distribution, or it
might itself contain divergences. However, our aim is to

"The full evaluation of divergences in the BF spin foam
models requires us, in addition, to take into account the reduc-
ibility of the gauge symmetries and global, topological effects
(see [35]).
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isolate the contribution of the two faces glued together, and
therefore we consider f as a regular function. The integral
is on a compact manifold which implies

Z() = Kfl_[ dh[w(hy, ..., h,)T% (26)
a=1

where the constant K is the maximal value of f on SU(2)".
It is possible to calculate the integral of w? exactly.
Going through the steps of Eq. (12),

j]‘[ dhJw(hy, ... h)P
a=1

n n—1
= [TT v, [Tdzo(Brri eimbi)
a=1 b=1
X (B2yy'8272B7") - Buvn ' &nti 87 vaBa Y.
272 8272P2 nYn 8n—1 81 YnPn

(27)

Reabsorbing y; ! on the right of B; gives

/]‘[ dhfo(h, ..., h,)P
a=1

n n—1
= [T146.TTdesd(Brei7)
a=1 b=1

X (3282351) e (3;1718n713117—11)3;zg;—11 e g;IIBZI)
(28)

We then use the character expansion and explicit integra-
tion of Wigner matrices. Doing so yields

[]‘[ dhow(hy, ... 1)
a=1

1 n—1 n—1
> Wf dgxi(gr gnt) [ xi(80):
a=1 a=1

JEN/2 7]

1
= > 2 {(2n — 4). (29)

jeny2d;

This is obviously finite as soon as n = 3. One concludes
that Z(I') is finite for regular enough f.

The above result is identical to the partition function of
two-dimensional BF, i.e. two-dimensional Yang-Mills at
zero coupling, on a surface of genus n — 1. This is no
coincidence since (28) can actually be rewritten in the
typical two-dimensional YM form. We first abostb S,
into the other B, — B, 'B,. Then we proceed to the
change of variables (g, B,) — (k, a,) step by step
starting with a = 1,
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g1 =8 guiki'g gyt

g =83 gtk 'g,t gyt

8n—2 = gn—lk;—l2g;—ll

This recasts (28) in the form

and B =g,
and B, = g3--

— -1
and Bn—2 = 8n-1%-28,-1>

PHYSICAL REVIEW D 88, 124021 (2013)

. -1 ...,71
8n-1%18,-1 82

. i SR
gn*la2gn—1 g3 ’

— -1 —
8n—-1 = kn—l and Bn—l = &y-1-

n n—1
[n dha[w(hl’ LR hn)]2 = [l_[ daadka 6([kl’ al][kZ’ a2] o [kn*h an*l])’ (30)
a=1 a=1

where [k, @] = kak™'a ™! is the group commutator. The
argument of the delta function in the above equation
is recognized as an SU(2) version of the presentation of
the fundamental group of the surface of genus n — 1, as
expected [36-38].

IV. FINITENESS OF SINGLE BUBBLE
CONTRIBUTIONS

The calculation performed in the case of two faces glued
along their boundaries generalizes to any single bubble of
arbitrary shape. The same way we had found the partition
function of two-dimensional BF on a surface of genus the
number of boundary lines minus 1, we will see that the
calculation goes through in the case of a single bubble
thanks to the well-known fact that lattice gauge theories are
trivial in two dimensions.

A. Single bubble contribution as
two-dimensional spin foams

Suppose we can identify in I" a closed surface X of
arbitrary Euler characteristic y = V — E + F. Itis usually
referred to in the quantum gravity literature as a
(not necessarily spherical) bubble. It is such that each
line is shared by exactly two faces. The partition function
on I reads

Z(I) = f [Tdhe [T, - Ay

s IR
X [Tdheo [To(B,yo - -0 ) 31)
PR

Integrating all the group elements %,, where e does not
belong to % produces a function depending on the group
elements on 3,

fﬁ({hev}e,vcz) = [ndhev l-[ w(hwlfr s hw,,f ) (32)
by e

It is a sort of Hartle-Hawking wave function on 3, but it is,
clearly, not well defined a priori. However, to isolate the
contribution of 3, we will consider that fs is a regular
function. Because it is defined on a compact space, we

assume it is bounded by some constant K. Therefore, Z(I")
is bounded by K times the partition function where f is set
to 1. This is exactly the partition function of the Barrett-
Crane model on the two-dimensional surface . Therefore

Z(I') = KZ(2), (33)

with

Z(3) = f [Tdre [Ty, .. by ). (34)
sges

To evaluate the potentially divergent contribution of 3, C
I', we will calculate Z(2.) instead of Z(I"). This amounts to
ignoring the faces external to X. In the usual spin foam
language, this is simply setting the spins of the external
faces to zero. This has already been used in the literature to
isolate divergent contributions. In [9], it was argued to yield
a fair evaluation of the divergences, just like in ordinary
quantum field theory the loop divergences are often eval-
uated by setting the momenta of the external legs to zero.

However, it seems to have gone un-noticed that when
doing so on a single bubble, the remaining part Z(2) is just
a two-dimensional version of the initial model. Thinking of
spin foam models as generalized lattice gauge theories, and
given that two-dimensional lattice gauge theories are solv-
able, this gives us hope to calculate Z(3) exactly. This is
what we do now, in the Barrett-Crane case in Sec. IV B, and
for generic spin foam models in Sec. IV C (the BC case is
just a particular case, but we treat them separately because
the BC model is our working example in this paper).

B. The Barrett-Crane model on
two-dimensional surfaces

To compute Z(2,), we use the character expansion of w,
(10), to get

29 = 3 [Tl 1d, "k 00,)x; )

{Urbres ”’é’z fcx

ev

(35)

where the sum is over all possible assignments of spins to
faces, ny is the number of lines on the boundary of f, and
h,, is the wedge holonomy. Remember that a wedge is
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identified by a pair “vertex-face,” or equivalently the two
lines along that face which meet at that vertex. We denote
these two lines e,,, e!,. To perform the integrals explicitly,
we notice that they actually factorize onto vertices,

z<z>=%ud§;"f[[[[ndhevnx,, e |

eDJv wDv
(36)

Around each vertex with n,, lines, there are also n, faces
(or rather wedges), and since each line is shared by exactly
two wedges, we can label the lines and the wedges, say in
clockwise order. At each vertex we have

J im0 g 5 ), )

= []‘[5 i ,.f,]d]?*”v. 37)

Lr

We have used the formula (A6) n, — 1 times to integrate
products of characters. As a result, all spins around v are
must have the same value which we have denoted j. Since 2
is connected, the spins of all faces must be identical, so that
the sum over all spin assignments reduces to a single sum.
The summand is obtained by gathering all powers of d,

z3)= Y [14 "f]'[d2 K
JEN/2 f
2F+2V— an va
= > 4, ! : (38)
JEN/2

On the triangulation of a surface, 3 n; = 3, n, = 2E,
hence

Z3)= Y d* " (39)

JEN/2

Remark 1—Finiteness. The result is divergent if £ < y
Since y = 2 and we want at least £ = 2, we find that the
only divergent case is £ = y = 2, meaning a spherical
bubble with only two lines. This is the case of two faces
with two boundary lines glued together already seen in
Sec. III C. Any other bubble is finite,

Byp— ) (2m)*EX

23) = 202E — 2y)!

LQE —2p) = (~DFx

(40)

Here { is the Riemann zeta function and B, a Bernoulli
number.

Remark 2—Invariance. In the BF case, the partition
function on a surface of Euler characteristic y is {(—y)
and is therefore independent of the triangulation. Here Z(3))
depends on the triangulation only through the number of
lines and not its particular shape. It means that Z(3) is
invariant under homeomorphisms of the triangulation

PHYSICAL REVIEW D 88, 124021 (2013)

which preserves the number of lines. In particular, the 2-2
Pachner move does so and therefore leaves Z(2)) invariant.

Remark 3—4-2 Pachner move. Section II1 C is obviously
a particular case, with y = 2 and E = n the number of
boundary lines of the two faces. A more interesting case for
quantum gravity is the 4-2 Pachner move. As a Pachner
move, it is a change of triangulation which preserves the
topology of I'. In the dual of I, one changes a configuration
of two 4-simplices which share a common tetrahedron and
thus have eight boundary tetrahedra, with four 4-simplices
each contributing to two boundary tetrahedra. The four
4-simplices are glued together in a specific pattern such
that two 4-simplices share exactly one tetrahedron. In the
two-complex I', we find four vertices completely con-
nected by six lines which form four triangular faces. This
pattern corresponds to the boundary of a tetrahedron and
this is precisely the surface X, with y = 2, E = 6. Thus the
contribution to the partition function from the bubble in the
4-2 Pachner move configuration is finite.

C. Single bubble contributions for general models

Spin foam models in two dimensions reduce to
two-dimensional (standard) lattice gauge theories [7],
implying that the above calculation for a single bubble
can be extended to generic models. A wide class of models
(including BC with generic choices of edge and face
weights and the EPRL/FK model) [7] is given by

f l‘[dhefl'IC({hef}pe)l‘[wwelf chy ). (@41

(e.f) e

Here we integrate over group G elements associated to
edge-face pairs (ef). For every edge we have an edge
weight C that depends on the group elements h,f, for
which e is an edge in the boundary of f. For each face
we have a (“bare’”) face weight w, which is a class function
and evaluated on the holonomy around the face.

For a two-dimensional surface, there are always two
faces adjacent to a given edge. The edge weights C have
also to satisfy a certain invariance property, which means
that for the two-dimensional case, we can expand C as
follows into irreducible unitary representations p of G,

Clhy, hy) = Y C, dim (p)x,(hyhy ). (42)
p

The face weights are expanded as

w(h) = Y@, dim (p) x,(h). (43)
P

Using these expansions in (41) for the two-dimensional
case, one notices that the sums over the representation
labels p reduce to one sum as the group integrations
impose Kronecker deltas between representation labels.
Taking care of all the dimension factors that come from
the expansions (42) and (43), the group inner product
between representation matrix elements, as well as from
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the contractions of Kronecker deltas (which gives traces
around vertices), we obtain

Zop = D (C,)E(@,)F (dim p)¥ ~E+F
= > (C,)E(@,)F (dim p). (44)
p

For (standard) lattice gauge theory we have C , =1,and
we recover the corresponding two-dimensional partition
function. For the BC model we have G = SU(2) X SU(2)
and with our choice of edge and face weights,

- 1\2
o, =1, ¢, = 5p,(j,j)<d_) , (45)
J

so that we recover (39). However, we see that changing
edge weights, for instance introducing a factor d; per edge
so that C » = 0,(;,j)» would lead to a triangulation invariant
but divergent result for a spherical bubble.

For the EPRL model [G = SU(2) X SU(2)] with
Barbero-Immirzi parameter vy, leaving the face weights
@, free for the moment, we have for the edges [7],

_— dim (j)
~ dim (‘*T7 j)dim(“;zyl j)

C,=
< 5(p (HTYJ - 7'j))(de(p)>2. (46)

Here d,(p) is an edge weight factor that is left undeter-
mined. We obtain a nonvanishing coefficient only if the
SU(2) X SU(2) representation p = (j/, j") is of the form
(524 157):

We have two free functions, the face weights @ o and the
edge weight factors d,(p). The choice of these factors will
heavily influence the convergence properties of the model.
Different requirements have been proposed to fix these
weights [12-14]. With the simple arguments put forward
here, we can comment on how these requirements will
influence the convergence of single spherical bubbles.

(i) We can require that the model is invariant under edge
subdivisions (here for edges that are shared by only
two faces) and face subdivisions. To achieve this we
choose @, = 1 and d,(p) such that C ,» equal to one
or is vanishing (if p is not admissible). This will give a
triangulation-invariant two-dimensonal model. In this
case spherical bubbles will diverge (assuming that
there are infinitely many admissible representations).

(i1) A weaker requirement is invariance under subdivi-
sion of faces.® Dividing one face into two, we raise

8Here we mean that a face is subdivided by a two-valent edge
which goes between two already existing vertices; i.e., we do not
create new vertices. We should point out that there exist other
notions of face subdivisions which create new vertices and hence
a larger number of additional edges.

PHYSICAL REVIEW D 88, 124021 (2013)

the number of faces and the number of edges by
one. Thus invariance requires @, = (C’p)*1 for ad-
missible representations p. The convergence then
depends on the difference between the number of
faces and edges. If we consider the square of an
effective face weight, it forms a spherical bubble
with two faces. As long as C‘p scales with some
negative power of dim p, we obtain a more conver-
gent result with growing number of edges, where the
specifics again depend on the edge weight factor.
If @,= (C ,)"' we have a divergent partition
functions for all spheres where the number of edges
and faces are equal to each other. This includes
the bubbles that appear in the four-dipole
configurations.

(iii)) One can also adjust the face weight and edge
weight factors to obtain convergent results for
specific families of bubbles.

Thus we see that we can get an estimate (as we ignore
the contribution of faces that connect to but are not part of
the bubble) on the behavior of bubbles and the behavior of
effective face weights by quite simple methods. This al-
lows us to choose the edge weight factors and face weights
according to the divergent or convergent behavior one
wants to achieve. We have seen, however, that requiring
triangulation independence in two dimensons (i.e. invari-
ance under face and edge subdivisions) comes at the cost of
divergent spherical bubbles and distributional effective
face weights for arbitrary number of edges.

V. MULTIPLE BUBBLES: THE FOUR-DIPOLE

Next we will discuss a configuration with multiple
bubbles, known as the four-dipole. In particular, it arises
in discussions of group field theories, as configurations that
include such dipoles are the most divergent ones [39]. For
the BC model, the four-dipole could be divergent due to the
appearance of two-valent faces, which glue to (multiple)
spherical bubbles. These bubbles have three faces and three
edges—thus, the single bubble contribution as discussed in
Sec. IVA, do converge. The assumption of this section was
to ignore faces external to the bubble. Thus, this is also a
test whether this assumption holds in this case. Indeed, we
will find that divergences do not occur—at least no diver-
gences due to redundancies of delta functions. (There are,
however, singularities on a measure zero set, and we leave
the integrability of these singularities open.)

An expansion in spin variables for this case is not
sufficient to determine convergence. We will therefore
switch to the group representation and basically show
that no redundancies arise if we solve for all the delta
functions appearing in the partition function for this
configuration (the method is detailed in [18]).

Let us describe the four-dipole configuration. We
consider a piece of triangulation with two 4-simplices
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that are glued together along four of their five boundary
tetrahedra. These four internal tetrahedra have six
triangles and four edges in total, which are thus shared
by the two 4-simplices. The boundary of the gluing
consists of two tetrahedra. Notice that their triangles
are shared with internal tetrahedra (in a four-simplex, a
triangle is shared by exactly two tetrahedra). Therefore,
each triangle of a boundary tetrahedron is identified
with a triangle of the other boundary tetrahedron. This
means that the two 4-simplices actually share all their
triangles.

To write the spin foam amplitude, it is easier to work in
the dual of the triangulation, depicted in Fig. 1. It is called
the four-dipole because it has two vertices (of degree 5)
connected by four lines, with one external line hanging out
of each vertex. The vertices are labeled A, B and the
internal lines 1, 2, 3, 4. The two external lines are denoted
0A and OB. The lines 1, 2, 3, 4 create six internal faces,
labeled by the pairs of lines, (ij), 1 =< i < j = 4, since each
face goes along two lines only. The four edges shared
by the two 4-simplices correspond to four bubbles in I’
whose boundary are the faces (ij), (jk), (ki), for 1 =i <
Jj <k =4, glued two by two. The surfaces of the bubbles
are therefore spherical.

The triangles of the boundary tetrahedra are dual to
external faces. As the two 4-simplices share these triangles,
the external faces actually go along both A and B. There are

|

Z4—dipolc(j15,723,737j4) = Z

Jij
1<i<j<4

There are no d; factors because each face only goes along
two lines.

To estimate the potential divergence of these sums, it has
been proposed in [9] to set the spins of the four external
faces to zero. With j; = 0, each 10j reduces to the square of
a Wigner 6j symbol (this can be seen in (1) which directly
reduces to the group integral formulation of the square of
the 6j symbol). Therefore, the amplitude is

Z4—dipole(0’ O’ O’ O) =

12713714
723:724:34

{]:12 J:13 J:14 }4‘ 48)
J3a J2a J23

We consider the large spin behavior of the summand, when
all spins are homogeneously scaled by A > 1. The
Ponzano-Regge asymptotics of the 6j symbol states that
{6} ~ 1/A%2. The summand thus behaves like 1/A°® and
as there are exactly six sums to perform, it is not possible
to conclude about the convergence/divergence of the
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1
AAB
0 3 0
4

FIG. 1. The vertices A, B are dual to four-simplices, which are
glued together by four tetrahedra here represented as the lines 1,
2, 3, 4. The lines 0A, OB stand for the two boundary tetrahedra.

four external faces, all going along the line OA, then
choosing an internal line i = 1, 2, 3, 4, and then all going
along the line OB. Note that these faces are broken (they are
not closed, because the dual triangles are on the boundary
of the gluing).

In the spin representation, the amplitude for the four-
dipole has two 10j-symbol, one associated to the vertex A
and the other to B, and they depend on the spins associated
to the faces. Since the corresponding four-simplices share
all their triangles, it means that the spins on the faces are all
common to the two 10j-symbols (there are actually only
ten faces in the four-dipole). We thus get the square of a
10j-symbol. Moreover, the spins of the six internal faces
must be summed, while the spins on the external (broken)
faces are fixed to j;, i = 1, 2, 3, 4. The partition function
for this piece of triangulation is a function of the four
external spins,

(47)

amplitude. This shows that the choice of measure in our
version of the BC model requires a more subtle analysis.
However, if gauge symmetries, or redundancies of delta
functions in the group integral formulation, were present, a
positive exponent of A would certainly be expected. It
means that the simple power-counting argument still sug-
gests the absence of redundancies and gauge symmetries.
This is what we will show below.

This is done by moving first to the group integral
formulation with effective face weights. The faces (ij),
for 1 =i <j = 4, have effective face weights

w;; = jd?’ijfs(hiAhj_Al%J‘thhi_Bl?’i}l) (49)

As the external faces are not closed, we cannot use effec-
tive face weights. But using the definition (1) for the two
10j symbols, it is easy to see that
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Zs-gipote U1, J2 J3 Ja) = fl_[d%, l_[ dhiadhig[ ]

i<j i<j

X 8(hiahy vijhishig vi;")

4
X l_!Xj[(hOAhi:xl)Xj[(hOBhi_Bl)~

(50)

In other words, in the character expansion (10) of the
external faces, only the characters on the wedges of A
and B appear. Since there are no delta functions on the
external faces (the reason being that we work at fixed
external spins), the bubble divergences can only come
from the product of delta functions on the internal faces.
Therefore, we simplify the analysis by removing the con-

tribution of the external faces, as in Sec. IVA, which here
|

Zy- dlpole(o 0,0,0) = [dhzdh3dh4l_[d%,3(712h2712 7’13h3 Y13 "ya3hshy 723)

i<j
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amounts to simply ignoring the oscillations of the charac-
ters y;, by setting j; = 0, like in [9].
The partition function we want to evaluate is

Z4dipote(0,0,0,0) = fl_[dylj l_[dh adhip[ ]

i<j i<j
X 5(hlAth 71/ /thB 71] ) (51)

By a redefinition of the elements h;z < h;gh;) and
hip — highid, i =2, 3, 4, the elements &, h4 are trivi-
ally eliminated. Then the faces (12), (13), (14) are used to
integrate h;,, i = 2, 3, 4, which are constrained to be

hia = y1:higyii' i=12734. (52)

Only three delta functions remain, which impose
constraints between the elements y;; and hyp, h3p, hyp.
Dropping the subscript B,

(53)

8(yihay 2 viahy 'y i vashahy Yy )6 (v ishsy 5 vishy Ly vaahahy P yad).

Y12 can be completely absorbed into a redefinition of the other v;;

Zi-tipoe(0,0,0,0) = j dhydhydhydyysdyradysdysdysy

— ¥12 vij- We obtain

(54)

S(hyyi3hy 'y i3 vashahy y33 )8 (hayiahy Yy i vashahy v ) 8(y by 5 yiahy Yy i vashahs 3.

Notice that when a group element appears in one delta, it
also appears with its inverse in the same delta. It means that
it is now necessary to study the remaining constraints in
depth. Let us look at the constraint on the face (23),
appearing in the first line of the above equation. It reads

Yashah3 vy (55)

We write h; = cos f; + isin0;#i; - & and take the trace
(in the fundamental representation) on both sides. Using
the fact that tr(hg)=cos6),cosf, —sinf,sinf, (i, i,), it
becomes when 6,, 85 # 0, 7,

hyyihy'y =

iy - R(y13)ity = iy - 7, (56)

where R(7y;3) is the matrix of 5 in the three-dimensional,
vector representation. The solution of this equations are
easily found for arbitrary 7,, 73,

Vi3 = e—i¢]3ﬁ2~ﬁ'eiearccos(iz2~ﬁ3)(iz2Xiz;)'ﬁ'eiamﬁy&' (57)

The angles ¢ 3, 0,5 are totally free and parametrize arbi-
trary rotations around 7i,, 7i3. Notice that e =0, 1 is a
discrete ambiguity due to the fact that 7i3 can be rotated in
the plane spanned by 7i,, 713 by an angle which is twice the
angle between 7, and 7i; without changing the scalar
product 7i, - 7i3. Since it is a discrete ambiguity, we can
restrict attention to the case € = 0. Inserting this solution

in the initial constraint, we find that s, 53 ! has to commute
with e®13%2°7 v, Two commuting SU(2) elements must lie
in the same U(1) subgroup generated by their common
rotation axis. As a result,

Vo3 = e—i¢|3’72'5ei323ﬁ23'5, (58)

where i3 is the rotation axis of i,/3 . The constraint (55)
thus admits solutions for arbitrary generic h,, k3, where
among the six real degrees of freedom of 3, y,3, only
@13, 013, 0,3 are left undetermined. It means that three real
parameters have been fixed by the three real constraints.

The same reasoning applies to the constraint
hyyuhy 'y = yahohly5)'. Tt leads to solutions for
arbitrary h,, hy and

Yia = e*i¢14ﬁ2'&65914ﬁ4'5" Vou = e*id’mﬁz'&eiez‘tﬁzf&’

(59)

up to some discrete ambiguity, where the angles
b4, 014, 0,4 are free. The final step is to insert these
solutions into the last set of three real constraints,
')’13}137(31')’141’1;1')’1741')/34}14]’151')/3741 = [], and see whether
none of them are trivially satisfied. The following projec-
tion of the constraint,

try13h3y i3 vishy 'yl = twhahy!, (60)

124021-12



BUBBLE DIVERGENCES AND GAUGE SYMMETRIES IN ...

gives R(e ¢»™2'9)jiy - R(e™1%um2 %), = iy - i, which is
solved by

el P3— )iy 6 = e7i¢34ﬁ3'&€i¢34ﬁ4.&, (61)

for some angles ¢34, ¥4, up to some discrete ambiguity.
For generic h,, hj, hy, the rotation axes 7i,, fi3, iy are
linearly independent. Therefore, there is no nontrivial so-
Iution in the neighborhood of the trivial solution ¢ 3 =
b4, P34 = W3, = 0. It means that (60) indeed removes
one degree of freedom by setting ¢35 = ¢ 4. Finally, the
constraint imposes that 3/, ' commutes with e!®1372 7y,
|

PHYSICAL REVIEW D 88, 124021 (2013)

This fixes the two real degrees of freedom of the rotation
axis of e/?13%2'7 ., and leaves one angle, denoted -, free,

Vag = e*i¢13ﬁ2'565934ﬁ34'5” (62)

where 7is4 is the rotation axis of h3h;1. The last set of
constraints has thus eliminated three real parameters,
meaning that we did not meet any redundancies while
solving the constraints.

The parameters left undetermined are h,, hs, hy, @3,
013, 03, 014, 024, 034, and the set of solutions is

_ — 1 Ay F — 1 iy F — 1 i — 1 by G
F =A{hy, ha, hy, y13 = kpe'?3"5°0, y = kpe'1974°7, yyy = kye'0"5°0 yyy = kye!PuMhi 7, ysy

= kye!?»7°9; with h,, hs, hy arbitrary and k, = e'®1372°7}, (63)

This is a fifteen-dimensional space, while there were 8 SU(2) elements to integrate in (54), i.e. 8 X 3 = 24 real variables.
Therefore, the constraints have put restrictions on 24 — 15 = 9 variables, corresponding to the number of constraints.
This means that there are no divergences coming from the product of delta functions. Defining the map H: SU(2)® —

SuU(2)?

H(hy, h3, hy, Y13, Y14 V230 Your V34)

= (hyyi3hs "y i3 vashshy 'yt hayiahy "y vashahy " yod s vishsy s viahy Yy id vashahy Y yih), (64)

the above analysis reveals that for a generic solution ¢ €
F, dim ker dHy = 15 and tk dHy = 9. Therefore the
tangent space at ¢ decomposes as T4SUQ2)® =T, F &
Ny F, where the normal space N, F is the orthocomple-
ment of the tangent space to the space of solutions. The
restriction dH gy, 7 to the normal space is an invertible
map from NyF to T(;;SU(2)°. The integral over the
normal directions corresponds to the parameters that are
fixed by constraints. The partition function becomes

1
Z-ioe(0,0,0,0>=[ dp—
4-dipol F ¢|deth¢,|N¢f|

(65)
For generic solution ¢, this determinant is nonvanishing,
but it may happen that it actually vanishes on a subset of
measure zero in F. Such singularities are well-known to
arise in BF theory [18]. In two-dimensional BF, there are
such singularities on the moduli space of flat connections
[40], but it can be shown that these are integrable
(as expected since the partition function can be exactly
calculated using the character expansion as ((2g — 2)
on a surface of genus g). However, there is absolutely no
generic result on such singularities beyond the two-
dimensional case, meaning that one has to deal with
them case by case. In the present case, this is quite com-
plicated because of the number of variables involved. We
will not discuss further the possibility that the integral is
divergent due to such singularities. Instead, we conclude
this section by emphasizing the fact that there are no

redundancies in the initial product of delta functions, re-
moving the expected source of divergences in spin foams.

VI. GENERIC EVALUATION OF THE BC
PARTITION FUNCTION

The technique used in the last section was developed in
[18] to integrate over the representation variety of finitely
presented fundamental groups. It can also be applied to the
BC model on generic two—complexes.

Combining (8) with (9), we see that the partition func-
tion writes as an integral over

A={A= ({hev}eEFI,UEFO’ {’}/vf}vE)/O,fEFz)}’ (66)
subjected to the constraint
H(A) ={H; = vy, fhe,,hey,
X Vorr " Voushew, hew, Vo prer,
=1, (67)

where vy, ..., v, and ey, ..., e, are the vertices and lines
around the boundary of each face f € I',. H is a map from
A to SUQ)™2! and

Z(T) = fﬂ dA  S(H(A)). (68)

8(H) is the 3|I",|-dimensional delta function over the target
space SU2)I™2!, 8(H) = [1;6(Hy). Thinking of the group
elements as holonomies of a gauge field, and of H as the
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corresponding Wilson loops, the integral corresponds to a
lattice gauge theory on a two-complex at zero coupling.
The integral localizes on the set F = H~'(I) (which is
the set of flat connections in the lattice gauge theory
interpretation).

Therefore, we have to solve the constraints, meaning
that we need to find among the real degrees of freedom of
A € A those which are free and parametrize the set of
solutions F, and those which are functions of the free
parameters as determined by the constraints. Because
(Hy = D)fer, is a set of polynomial equations on SU(2),
the set of solutions F is a real algebraic variety whose
dimension is the number of free parameters. For generic
solutions ¢ € F, this turns out to coincide with the
dimension of the kernel of dH . This is because

as expected.

Now we can understand the potential divergences
coming from the product of delta functions. Notice that
the rank of dH is tk dH s = 3|I';| — kerdH and corre-
sponds to the number of directions spanned by dH b in the
target space SU(2)"2!, If rk dH 4 is strictly less than dim
SUQ)"2l = 3|I,| for generic ¢, then it means that some
directions are not explored whatever the variations around
¢ are. Therefore the components of the delta functions
along these directions are trivially satisfied and the
amplitude is divergent.

It is actually possible to describe the divergence rate,
following [18,35]. If the delta functions are regularized
with a thin width 1/A (using a heat kernel for instance),
then the divergence degree is rk A3!"21=4"s In the case
of BF theory on a two-complex I, it is possible to relate
this divergence rate to the topology of I' (and even to
the spacetime topology if I" is the two-skeleton of a cell
decomposition of a four-dimensional manifold). However,
in the Barrett-Crane model, we have not found a simple
topological interpretation of the divergence rate rk
3I,| — dH,.

When rk dH, is exactly the dimension of the target
space for generic ¢, one can conclude that there is no
divergence coming from the product of the delta functions,
i.e. all the constraints are independent. This was the case
for the four-dipole. Moreover, the integral Z(I") rewrites as
an integral over F(I'), and for each ¢ € F(I'), an integral
over the directions orthogonal to 7, F(I'), denoted Ny F
for “normal space.” The directions of the normal space are
those along which the constraints fix the variations around
¢ to vanish. Therefore, the integral becomes

2(T) = fm b []w dad(dH 4(a))

1
= dp———. (70)
,[f(r) deth¢|N¢f
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dH gy, 7 1s the restriction of dH, to the normal space
(intuitively, its kernel has been removed).

VII. SOME GAUGE SYMMETRIES
AND RECURSION RELATIONS
ON THE 10J SYMBOL

A. Existence of gauge symmetries at certain solutions

Gauge symmetries around a solution ¢ € F correspond
to directions which are not spanned by dH,. To see their
action, let us rewrite the 8(dH 4(a)) of (70) as

8(dH 4(a)) = /

dbexp b, dH 4(a)), (71)
su(2)r!

where (-, ©) = ¥ (-, -); is the sum of the invariant inner
product over the different copies of 31(2). The variable
b={bs}ser, is a Lagrange multiplier imposing the con-
straint. A gauge symmetry is a ¢-dependent, nonzero varia-
tion & ,b which leaves the action (b, dH ,(a)) invariant,

(84b, dH 4(a)) = 0, (72)

for any variation a € T, A. Typically, we want a
gauge symmetry to involve nontrivial d4b, # 0 on several
faces.’

When the constraints are independent, dH, has maxi-
mal rank and there is generically no gauge symmetry. We
have seen this is the case for the four-dipole, and single
bubble contributions are finite so they have no gauge
symmetry either. This is expected in theory of discretized
gravity such as spin foams, because going on the lattice
breaks diffeomorphism invariance [26]. There is, however,
a special class of triangulations, which only admit flat
solutions and for which one would expect diffeomorphism
symmetry also in the discrete case [41]. Physically, the
gauge symmetry in the flat space case means that vertices
of the triangulation can be moved around without changing
the physics. Such a vertex translation symmetry arises for
instance for the 5-1 move configuration (arising from a
subdivision of a four—simplex into five simplices), where
the inner vertex can be moved in four directions without
changing the flatness of the configuration. While these
symmetries have been observed and (canonically) ana-
lyzed in detail in Regge calculus [27] and shown to lead
to Dirac’s hypersurface deformation algebras [28], the
(quantum) spin foam case remains mostly unexplored

°In BF theory on the torus,

Zagseoms = [ dsdydly Y

the constraint forces x and y to lie in the same U(1) subgroup,
say generated by & - /. Then it is quite easy to see that the
linearized constraint d(xyx~'y~!) never spans the direction & -
A € 311(2). However, this is clearly not a phenomenon we want
to call gauge symmetry.
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(with the exception of three-dimensional gravity and BF
theory in higher dimensions [17,23,24]. Assuming such
symmetries did exist, we could derive Hamiltonian con-
straint operators for the boundary wave functions defined
by the spin foam transition amplitudes. This would lead to
a canonical theory describing the amplitudes defined by
spin foams and thus to a connection between canonical
loop quantum gravity and spin foams. The case of BF
theory, where the symmetries are not broken, has been
discussed in [22-24]. For the BC model we found only
one configuration where such a symmetry occurred—the
case of 2 two-valent faces glued to each other. Indeed this
constitutes the only bubble divergence we found. Hence we
do not expect a divergence (and hence no full symmetry)
for the 5-1 move configuration.

In addition to the special class of triangulations that only
support flat solutions, such vertex translation symmetries
might arise around special (i.e. flat) solutions in more
general triangulations. The Hessian evaluated on such
solutions will have zero modes corresponding to infinitesi-
mal vertex translation symmetry [42]. Again such symme-
tries have not been discussed in the spin foam case yet.
Here we ask whether a possible similar phenomenon exist
for spin foams, i.e. symmetries which occur only at special
solutions.

Indeed we will show that some solutions ¢ € F to
the constraint have gauge symmetries. We have already
mentioned that even when the constraints are independent
for generic solutions, there may be some solutions ¢
(a set of measure zero in F) which are singular because
detdH SN TF = 0, meaning that ker de, becomes larger
than T,F and not all directions of the target space
SU(2)™! are spanned. Some of these singularities may
be interpreted as the appearance of gauge symmetries
(72) (but not all singularities correspond to gauge symme-
tries, since the phenomenon of footnote 9 can also occur in
singularities).

The condition (72) has to hold for any variation, in
particular when applied to a variation &, of a group
element v, ,

<8¢bf: Ad(')’vlfhelvlheobl')/;f 'yvl 1fh€l 11 €v17v lf)

There are two obvious situations where this is true:

(i) when all the group elements #,,, are the same around
each vertex h,, = h,, because the operator 1 —
Ad(yy,fhesh,! v, ) is then identically zero, for
any elements 7y, ;, (below we will need in addition
that the elements 7, ; only depend on the face)

(ii) when all group elements ., h,, lie in the same
U(1) subgroup of SU(2), say generated by & - /i, and

0 b are variations in this direction. This is because
[1 — Ad(ei*"9)](7 - 3) = 0.

PHYSICAL REVIEW D 88, 124021 (2013)

In both cases, we can exhibit gauge symmetries, when I
is a d-dimensional cell complex, with d = 3, using cellular
homology. The chain spaces C;(I") are real vector spaces,
C; =~ RI'l (hence we identify chains and cochains), with
boundary operators 9; and coboundary operators &,
0=2CD)=d (D)= G =g =8 Cy (D) =0.

(75)

The boundary and coboundary operators satisfy 9, ; o
9, =0and & o 8! =0, and they are dual to each other.

The operator 6' sends lines to faces: if v = {v,},er,
then &' (v) = {8'(v)/}ser, with
8l () = D ecgve, (76)

eCf

where €,, = * denotes the relative orientation between e
and f.
In the case where the elements 4,, only depend on the
vertices,
hev = hv’ and 7vf = yf’ (77)

and on the faces, the differential of H reduces to

AH Y, =1, y,=y)lf
= Ad(Yf)(dhelvlhe_ILI - dhezvlhezljl
+ T + dhenvnhe_nhn o dhelvnhe_l}-}n ’

= ~Ad(y) X, eer(dhesiorhfy

eCf

— dhohyly).  (T8)

Here s(e), t(e) denote the source and target vertices of the
line e. Therefore, §' and dH are simply related. Denote
®, = dhh™': T,SU(2) — 31(2) the Maurer-Cartan form
which maps the tangent space at & to the Lie algebra. It
becomes

dH g, =h, v,y (aen})

= _8} ® Ad(’yf)®hl, (aes(e) - aet(e))’ (79)

for any tangent vectors a,,, € T;, SU(2). The adjoint action
by v on each face can be absorbed into a redefinition of the
Lagrange multipliers b, «— Ad(yj?l)b > so that dH is basi-
cally the cellular coboundary operator 8'. We notice that

(b + 93 ® idsy(p)(c), dH 4(a))
= (b, dH 4(a)) + {c, (82 ® idsy(z)) © dH4(a)), (80)

using (93 ® idsy()(c), x) = (¢, 6% ® idg(p)(x)). Thanks to
the identity 62 o 8! = 0, we see that

b— b+ (93 ® ldﬂu(z)(c) (81)

for any ¢ € C3(I') ® 31u(2) is a gauge transformation. This
is the same gauge symmetry as in the topological BF theory
with structure group R3. The reason is that the solution we
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are looking at is up to local rotations (at the vertices)
equivalent to the trivial solution where all group elements
are the identity, and in the neighborhood of the identity,
SU(2) looks like R3.

In the case where all group elements are generated
by a single direction, & - /i, the gauge symmetry is the
same as in a U(1) BF theory. Let us parametrize the group
elements as

hev — eiﬂwﬁ-&, Yor = eia,,fﬁ-&. (82)

The constraint H ;(A) = [ then reduces to a U(1) constraint,

D Oese) = Oy =0 mod (27), (83)
eCf
making the contact with U(1) BF theory obvious. The
privileged direction & -7 induces a natural splitting of
3u(2) = u(l), ® g, where u(1); = span{c - A} and g
is its orthocomplement. This also gives a natural basis in
T,,SU(2),

T;,,SUQ) = Ry, @ Gyl (84)

where @, is spanned by the derivatives with respect to
the two components of the rotation axis 7,, of h,, eval-
uated at 7, = 7. A similar decomposition T, SU(2) =
Rd,,, @, holds.

Some straightforward algebra shows that dH sends dg_
to u(1);, and g,,; as well as g, to g, and that it
J

Li-dgipote (18> J28> J3B> Jans 235 J24> J34)

4 4
:jndhiAdhiB n d')’ijl_[5(h0Ah,'741)inB(hOBhi781)
i=0 !

I1=i<j=4 i= j=2,

and proceed to evaluate /4 gipo1c in two different ways to get
recursion relations on the 10j symbol, which can be inter-
preted as a (constraint) equation on the vertex amplitude.

But first let us point out the difference between Zy-gipoie
and I4-gipole- First, note that the integration variables are the
same, only the integrands and the boundary variables
differ. We have changed by hand the characters of the
external faces at vertex A in (50) like

4 4
l_[ X (hoahiy!) — l_[ 8(hoahiy)
i=1 i=1

4
= Z l_[djiAinA (hoAhi;Xl)' (88)

J1a2a i=1

J3A:74A

This allows us to satisfy the special condition (77) on the
elements #,,, at the vertex A. Notice that the delta functions
have an expansion onto characters similar to the initial
characters of (50). However, in Z4_gyo1e, the spins of the
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vanishes on 9, ;- Moreover, the restriction of dH to the
subspaces d, = basically reduces to the cellular coboundary
operator 8!,

dl_]f({xevaﬂw}) = _5}({xe‘v(e) - xez(e)}) ® G - il (85)
Therefore, the action is left invariant by the transformation

b—b+ (93 ® idgn(z)(C), Vce C3(F) ® u(l)ﬁ (86)

Since these gauge symmetries rely on cellular homol-
ogy, they are reducible as soon as d = 4. Indeed, the gauge
parameters c¢ are not independent. If two of them differ by
d4(y) for y € C4(I') ® 311(2) in the first case and y €
C,(I") ® u(1); in the second case, then they induce exactly
the same gauge transformation (because d3 o d4 = 0).
This reducibility is well known in BF theory [17].

B. Recursion relations on the 10j symbol
1. Using the four-dipole

We consider the four-dipole configuration as in Sec. V,
where we wrote the partition function (50) with fixed spins
on the external faces. However, in this partition function,
not all solutions are of the form (77). Further, we have seen
that there is no gauge symmetry for generic solutions since
there are no redundancies in the constraints. Therefore,
instead of the partition function Zy-gipele in (50), we will
consider the following quantity:

S(hmhj}l y1jhiphig ijl) n Xj,-j(hmh,]] Yiihiphig ’)’,-;1),

2=i<j=4

(87)

characters x; (hosh;,') at the vertex A and of the characters
X (hophig') at the vertex B are the same, because they
correspond to the same (external) faces going along both A
and B. When putting some additional constraints in
I4-gipote> the equality jj4 = j;p = j; is broken because
more modes are necessary to enforce the condition (77)
at vertex A.

The dipole possesses six internal faces. Combining the
constraint (88) with the effective face weights of the faces
(1i), for i = 2, 3, 4, imposes in turn that s;5 = h;, for any
1 =i<j=4 Indeed,

5(h0Ah1_Al)5(h0Ah;;1)[d71i3(h1Ahi:xl71/h53h1_3171_i1)
= 8(hoahy,)8(hoshi, ) 8(highiy). (89)

As for the three remaining faces (23), (24), (34), the delta
functions of their effective face weights are automatically
satisfied thanks to (89), i.e. hyhjyihighig' vi;' =
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(for any v;;). Therefore, these delta functions become
redundant, confirming in this case the existence of gauge
symmetries. To avoid the divergences associated to these
redundancies, observe that we have not included the effec-
tive face weights of the faces (23), (24), (34) in I4-gipole-
Instead, we have only picked up one mode of their char-
acter expansion [the last line of products in (87)]. Due to
(89), these characters simply evaluate to the dimension of
their representation,

4
[18oahiNo(highi) TT xi,(hiahid vishishis' vi;")

i=1 2=i<j=4
4
i=1

This product of dimensions is the sole dependence of
I4-gipote in the SPIns j»3, jos, jz4- If these spins were summed

8(hoahi)8(highi) T1 d;,

2=i<j=4

(90)

— l l A Li=1%ji
Ligipoe = . 7 d d [ f l_[ dh
J1A24-73404A 77 J23 7" J24 7 T34

J12:J13:714

[ f l_[dh,B [T xj,(hish

l=i<j=4
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(with measure d; ) to form the effective face weight as in
Z4-dipole» WE would get Y ;. a?2 " which is obviously diver-
gent (it is the formal expanswn of &(1)). The fact that the
dependence of I4-gipoie ON ji; (2 =i <j =4)is just dj,_j is
the signature of the gauge symmetry, similar to the case of
spherical bubbles in BF theory [22]

Therefore, the only nontrivial contribution to /4-gipole 18
the product of characters on the external faces at the vertex
B. With the change of variable h = hygh;;' (this quantity is
independent of i = 1, 2, 3, 4), we finally get

I4-dipole J23 124 /34fdhn/\//3(h) oD

The second way to evaluate /4-gipoe is through a charac-
ter expansion of all the delta functions, and integrating the
variables ;;. This leads to

iA l_[ X] (htAhJA l_[X],A hOAhlA)

I=i<j=4 ]

4
DT, ot | 92)
i1

The two quantities in square brackets are 10j symbols, according to the definition (1). Equating this formula with (91)

leads to

4 4
E E [dem
J12,J13,J14 | J1a,J24 Li=1
J3A,J4A

[d723 d724 d]34 /dh H Xii B h

93)

This is a new sum rule for 10j symbols. The summand is not the square of the 10j symbol as in the spin foam representation
(54) of Z4gipote because of the constraints (88), which implies j;4 # j;z. Moreover, the spins j;4 are summed here while the
boundary spins j; in Z4-gipole are fixed. The final difference is that the spins j,3, ja4, j34 are arbitrary but fixed, instead of
being summed, to avoid the divergences due to the gauge symmetries.

Our formula can be specialized to specific values of the free spins j;g, i =
= (0, the 10j symbol in the second bracket collapses to a squared 6j symbol, and the integral on the right- hand side is

JiB
trivialized as yq(h) = 1

1,2, 3,4, j»3, joa, ja. For instance, setting
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. . . 2 4

J12 J13 Ji14

2 : ; ; ; E dem
= J34 J24 J23 = .
J12,J13,J14 Jia,jza Li=1
J3A,J4A

PHYSICAL REVIEW D 88, 124021 (2013)

= [d]és dj24 dj34]2 : 94)

Another interesting way to use our main formula (93) is to sum over one of the spins j;z, say jp, with measure d; .

Then the integral on the right-hand side simplifies,

J1B

Therefore,

> | ¥ [

J12,J13,J14 | j1a,j2a Li=1
J3A,J4A

_ [d’ d. d.

J23 )24 ]34

]2 djzn d.jsl? dj4n'

One can then further specialize the values of the remaining
free spins.

To conclude this section, we compare briefly our
calculation with the four-dipole in the SU(2) BF case.
Instead of 10j symbols, the vertex weight is a 15j symbol
(one additional degree of freedom per tetrahedron). As this
is a topological case, three delta functions are redundant in
the group integral formulation, exactly like in our calcu-
lation. The amplitude can thus be regularized the same
way, by fixing the spins on three internal faces. Once all
delta functions are taken into account, the special solutions
(77) hold at the vertices A and B. Therefore, there is no
integral like in the right-hand side of (93). This integral is
really the remnant of the way the BF theory is modified to
get the BC model (i.e. imposing the simplicity constraints
in a specific way), which survives even when the amplitude
is restricted by hand to the special BF-like solutions (77).

2. Using the tetrahedral graph

We consider a piece of triangulation formed by four four-
simplices, labeled 1, 2, 3, 4, connected to one another. The
tetrahedra they share (called internal) are therefore labeled
by pairs (ij), 1 =i < j =< 4. The boundary has eight tetra-
hedra, each four-simplex contributing to two, denoted iA,
iB. The two boundary tetrahedra of the simplex i share a

4
Sy, [ an Ty = [ anotu,, 00, 003 0 = s, ©5)

(96)

[

triangle labeled (AiB), for i = 1, 2, 3, 4. The boundary
tetrahedra of the simplices i, j share two triangles, one
belonging to the tetrahedra of type-A and one to the tetra-
hedra of type B. We label these triangles (ijA) and (ijB)
and notice that they also belong to the internal tetrahedra
(ij). The internal structure has four triangles, which are all
shared by three 4-simplices, and are therefore labeled (i jk),
for 1 =i <j<k=4. The triangle (ijk) belongs to the
three internal tetrahedra (ij), (jk), (ik).

In the dual picture, four-simplices are vertices, tetrahe-
dra lines and triangles faces. The two-complex, denoted
I'y, is depicted (as a graph) in Fig. 2. It has four vertices
i=1, 2,3, 4, connected to one another by six (internal)
lines (ij), for 1 =i<j=4. The tetrahedra on the

A A
1 2
B B
B B
—
4 3
A A

FIG. 2. There are four 4-simplices (represented as vertices), all
connected to one another by a tetrahedron (represented as a
edge).
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boundary of the gluing are represented by eight half-lines
labeled (iA), (iB) for i = 1, 2, 3, 4, each vertex i having
two of them. The external faces are broken faces dual to the
boundary triangles. The external face (AiB) goes along the
half-lines (iA) and (iB), and there are four of them. There
are twelve other external faces, labeled (ijA) (six of them),
and (ijB) (six others), for 1 =< i < j < 4. The face (ijA)
goes along the half-line (iA), then the internal line (ij)
which connects the vertices i to j, and continues along the
half-line (jA) (similarly for (ijB)). The internal faces all

PHYSICAL REVIEW D 88, 124021 (2013)

have three vertices, which allows to have them labeled
(ijk) and there are four of them.

To write the spin foam amplitude on I'y, we fix the spins
of the external faces: j; for the face (AiB), j;;4 and j;;p for
the faces (ijA), (ijB). The internal faces are closed with
three lines, and thus carry effective weights of faces with
n = 3. The line (ij) has two group elements h;;, hj;,
respectively associated to the half-line connected to i and
to j. The external half-lines have group elements A4, h;p.
The partition function is

Zy, it ijab Uisd) = /ndthdthndhu n [d'yk(ij)de(ki)(s(hijhi;l'}’k(ij)hkih/;jl Yﬁgj)yj(ki)hjkhﬁlYﬂ;li))]

i#j I=i<j<k=4
Xl_[)(, (hia'his) [T X hiahi DG, (Riihiah) X (hishis D, (i 97)
i= 1=i<j=4

Notice that the internal faces form a spherical bubble, identical to the boundary of a tetrahedron. Therefore, the
contribution of this bubble can be evaluated as an application of the result in Sec. IV. We ignore the external faces
(putting their spins to zero), and use the formula (40) for the BC model on a surface of Euler characteristic y = 2 with
E = 6 lines, to get

8

{B®) = (98)

Zr,(0,0,0) = 9450

This is obviously finite, meaning that the four deltas in (97) are all independent. However, if we could project onto the
special configurations (77), there would be a gauge symmetry of the BF type, which in the case of I'y corresponds to one
redundant delta (like for any spherical bubble in the BF model). To project onto solutions of the form (77), we proceed like
in the four-dipole case. We change some of the characters of the external faces with deltas.

Let us consider

4
Ir, = [ [Tdrindhis[Tan; 11 dm,)dy,(k,)l'[x, (hia'his) T1 X hishi )X, (ks
i=1

i#j 1=i<j<k=4 I=i<j=4

X Xion(h3ahi) x,, (haahg ) X, (haahl! )[ l—[ 5(hiAhi_j1)]5(h3Ah3_11)6(h3Ah3_41)

i=1,2 j=1,2,3,4j#i
X 8(hgphy)8(hyah i3 yaaahsi by 737(%2) Yainhashsy! 7;(_%1))5(h13hf41 Yaa3yharhis 7&}3)73(41)h34h§11 737(}11))
X 8(hihiy vaaoyhathyy 72({2) Yaunhaahy! 72_(41;1)))( s (M3 h3) Y aoayhashiy 72&3) Yaunhaahs) 73_(};2))' (99)

The group variables we integrate are the same as in (97), and the products of these group elements appearing in the
integrand are also the same. Only the functions differ. The four external faces (AiB) are untouched, as well as the six
external faces (ijB). The characters y; along the wedges of the external faces (ijA) have almost all been replaced with
deltas, except for the wedge of the face (23A) at the vertex 3, the wedge of the face (14A) at the vertex 4, and the wedge of
the face (24A) at the vertex 4. Finally, the delta on the internal face (234) has been changed with a single mode y; iyaas b
avoid a divergence due to a gauge symmetry as we will see.

Now let us consider the effects of all these new deltas in I,. We have hy, = hy3, hy; = hy3. Therefore, the constraint on
the face (123) simplifies to h3; = hs3,,

8(h1ahi)8(hiahi3h) (o)) 8 (hoahys ) 8(hiohis vaua a1 hsy Viiy) Yaen hasha) vaay)

= 8(hiahi3)8(h1ah13)8(houhs,") 8(hoshy)8(hsy  h3,)). (100)

Similarly, we have i3 = hy4, h3; = h3y, which means that the constraint on the face (134) simplifies to iy = hys,
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8(hyahi3)8(hyahi)8(haahy ) 8(haahiy) (hyshis vaqzyharhyy 7&]13)73(41)}134}13_11‘}’3_(}“))
= 8(hiahi3)8(h1ahi})8(h3ah3,") 8(h3ahy))S(hy b)), (101)

and for the face (124), we get hyy, = hyy,

8(hyah1))8(hyahi)8(hoahs") 8(houhsy ) 8 (hynhis Yagayhar hyy 72(%2) Yaunhaahy! 72_(‘1;1))
= 8(hiahiy ) 8(hyah1)8(houhs,") 8(hoghy))S(hyy hyyb). (102)

As a result of all the deltas in (99), we find the set of solutions of the constraints,
.7:F4 ={hiy = hi3 = hyy = hig hoy = hos = hoy = hoy, hay = hyy = hyy = hyy, hyy = hyy = hyz = hyal, (103)
and the s can take arbitrary values. The character on the fourth face, (234), is thus simply evaluated on the identity,
X s (h23hoy vaayhashyy 72&3) Y3a2hsahi' ‘}’3_(}12))| Fr, = D (104)

Clearly, a delta on that face would have been redundant and caused a divergence of the type 6(I) = 3. . df ., This is the
sign of the gauge symmetry which exists when projecting onto FT,.
The other characters going along the half-lines (iA) simplify,

Xjsoa (h3Ah3T21)XJ'41A (h4Ah4711)Xj42A (h4Ah121)|fr4 = d/32Adj41A d/42A' (105)

The only remaining nontrivial part is the integrals over ;5. Performing the changes of variables h; = h;gh;;! 5, 1t finally
becomes

d]234 J324 ]41A ]42A [fdh i Xji (h l_[)(j iB h )] (106)

JFi

where we recognize these integrals as the same as the ones on the right-hand side of (93).
A second way to evaluate Ir, is by expanding all deltas as 6 = }_;d; x; and integrating the group elements 7y using the
orthogonality relation (A4). For each vertex i = 1, 2, 3, 4, we get a 10j symbol,

fdhtAdthl—ldth], (hlAhlBl)l—[X]uA (htAhljl)X],,B lthjl)l_[XJ”k(hl] ik ) (107)

JFi JFi jk#

Equating the two ways to evaluate I, finally gives

124021-20



BUBBLE DIVERGENCES AND GAUGE SYMMETRIES IN ...

d dj32A dj41A dj42A

(2

4
J234

/ dhi x5, (1) T s ()

1 j#i

X E : djle djle deA
J124,J13A
J14A

X Z dj:nA dj34A

J31A,j34A

In summary, as in the case of classical discrete gravity,
there are special solutions to the delta function con-
straints describing the BC model around which gauge
symmetries occur. By changing the partition functions
appropriately, we can enforce a projection onto these
special solutions. These altered partition functions
will have gauge symmetries, and this can be used to
derive equations involving the vertex amplitude of the
BC model.

VIII. DISCUSSION

We discussed possible divergences in spin foam
models, in particular in the Barrett-Crane model. The
reason for considering this model is that the relation of
divergences to gauge symmetries is easily found in such
a model for which the partition function can be rewritten
as an integral over a space of flat connections. This also
explains our choice of edge weight factors and face
weights.

We presented a simple method to determine the
(single bubble) divergences for general spin foam models.
We argue that, to this end, one just needs to evaluate the
spin foam model on a two-dimensional surface, and we
gave an explicit formula for a large class of models,
encompassing BC and EPRL/FK. This allows us to deduce
the influence of the edge and face weights on the conver-
gence of the models very easily. We noticed that requiring
invariance under face divisions and in addition under
(two-valent) edge subdivisions leads to triangulation-
invariant two-dimensional models, which have, however,
divergent spherical bubbles.
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1 1
= Z - -

J284 jio3,j134,5124 J123 124 TJ134

- 2A -

§ dj21Adj23A dj24A
J21A,J23A
J24A

(108)

We discussed in detail the effective face weights as they
capture the basic, possibly distributional, building blocks
for the models. We found that for the BC model the
effective face weights (for faces with more than two edges)
are (almost everywhere) regular functions. For the EPRL/
FK models, finiteness depends on the choice of edge and
face weight factors. However, applying our arguments on
how to evaluate spherical bubbles, one can consider the
square of the effective face weights. This will identify a
distributional character of the effective face weights also
for these models. The (Lorentzian) EPRL/FK model has
been argued to be finite for the 1-5 move and have only a
logarithmic divergence for the four-dipole [10]. This sug-
gests that the effective face weights for faces with more
than two edges might also be finite functions and not be
distributional in this case.

For spin foams, recent work [33] suggested the notion of
wave front sets, which specifies the nonsmooth part of a
distribution, in order to study the large spin limit and
regularization issues. The wave front sets have been iden-
tified for both the Barrett-Crane and the EPRL models in
[33]; thus, there is clearly the potential for divergent be-
havior. Indeed if the wave front sets correspond to diver-
gences, regularization is needed (to define products of
distributions). In that case, the conclusions of [33] for the
large spin limit regime would have to be reconsidered, as
this work assumed that products can be formed from the
distributions that occur as amplitudes in spin foams. Here
we found that (for higher than two-valent faces) the wave
front sets for BC correspond to noncontinuous or non-
smooth but also nondivergent behavior (modulo sets of
measure Zero).
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Furthermore we analyzed in detail the four-dipole case
for the BC model. With our choice of edge and face weight
the spin picture does not allow for a definite conclusion
regarding finiteness. We therefore used the fact that the BC
amplitudes can be rewritten as integrals over some sets of
flat connections, which renders the problem accessible
through the method of [18]. We showed that no redundan-
cies of delta functions arise, thus excluding divergences
due to this reason (another possible source are the measure
zero singularities though).

Redundancies of delta functions would be the sign
of gauge symmetries. As such redundancies are not
occurring—and in addition we found convincing argu-
ments that the BC model is finite on a regular
(i.e. involving only faces with more than two faces)
triangulation—we have to conclude that gauge symme-
tries, which could be connected to diffeomorphisms, are
not present. This even seems to hold for configurations,
for instance the 5-1 Pachner move, for which the symme-
tries exist on the classical (Regge) level [19].

There are however special solutions (of measure zero)
for which delta function redundancies can be identified.
Similarly there are measure zero solutions in gravity (the
flat solutions) around which (linearized) gauge symmetries
can be found. We discussed those special solutions and
described the related gauge symmetries for the BC model.
We developed a method to derive associated Ward identity-
like equations on the vertex amplitude. This is the first
proposal that enables us to extract constraints from a
quantum theory with broken gauge symmetries, i.e. equa-
tions that have to hold for the boundary wave function
(which modulo measure factors can be identified with
the vertex amplitude), extending in this way the tools
introduced [22] for topological theories.

The question arises whether those special symmetries
can be the seed for the occurrence of more general sym-
metries, which might emerge under coarse graining [43].
The heuristic argument is that coarse graining leads to an
effective description of the coarse model on a much finer
triangulation. On this fine triangulation, the curvature per
building block is very small, so that one is near the flat
case, that is on the special solutions around which gauge
symmetries do exist.

This mechanism actually works for classical systems
[44] as well as for one-dimensional quantum systems
[45]. In this case the amplitudes might become more and
more divergent under coarse graining, as is indeed the case
for one-dimensional discretized quantum systems [45]. We
will leave this question for future work.

Another interesting question is whether the wave front
analysis performed in [33] can be used to analyze the
gauge symmetries around special solutions also for more
general spin foam models. Wave fronts are a refinement of
the singular support to the cotangent space. We also used
the cotangent space in (71) to define the notion of gauge
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symmetries we applied in this work. This might make the
methods presented here applicable to other spin foam
models as well.
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APPENDIX: SU(2) CALCULUS

We parametrize group elements as h = "7 =
cos Ol + isin 07 - &, where /A € 8% is the rotation axis
and 6 € [0, 7w] is the class angle. The vector o =
(o, ay, 0-,) is the 3-vector formed by the Pauli matrices,'©
which transforms as a covector under the adjoint action

goig = 3 R(g o, (A2)

J=xy.z

R(g) being the rotation matrix in the vector representation,
g € SU(2). From this, the orbit of the adjoint action on the
group is found,

ghgfl — cos 0] + isin H(R(g)ﬁ) - = ei@(R(g)ﬁ)-&, (A3)

meaning that g rotates the rotation axis of & without
changing its class angle.
The matrix elements in the irreducible representation of
spin j € N/2 satisfy the orthogonality relation
1

(1) Gy N
js i DA DD ) = 83,8081

4 (A4)

Here dh is the normalized Haar measure, d; = 2j + 1 is
the dimension of the representation and D) the Wigner

matrices. A useful property is D%L(h_l) = D%(h) for any
h € SU(2). The character in the representation of spin j is
the trace

sind ;6

J
xi(h) = x;(h™") = Z eml = sind

m==j

(A5)

It satisfies x;(I) = d;. The convolution of characters is

1
X, (hi ' hy).

g (A6)

fdngl(h(‘g)x,-z(g"hz) =6

Functions in L?(SU(2), dh) admit expansions over the
Wigner matrices, f(h) = ¥ jenys 21— -\/d_jf%LD%)n(h)’

1(’They read

o ) N () WO (R N
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which is the Fourier expansion. Class functions are the
functions invariant under the adjoint action, so that
they only depend on the conjugacy class, i.e. the class
angle. Characters provide a basis of class functions. The
Dirac delta over SU(2) is the distribution such that

Jsuw) dg8(g)f(g) = f(I), and it has the expansion

(1]
(2]
(3]
(4]

(5]
(6]
(71

8(g)= > dix;(g).

JEN/2
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The delta over the conjugacy class of angle ¢ is

8y (h) = [SU(Z) dys(hygyy™) =D xi(gy)x(h)
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