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The divergence structure of spin foam models and its relation to diffeomorphism symmetry has attracted

renewed interest.Wewill discuss in detail the (nonoccurrence of) divergencies in the Barrett-Crane spin foam

model, which with our choice of weights can be understood as an integral of delta functions only. We will

present furthermore a simple method to estimate the occurrence of so-called bubble divergencies for general

spin foam models. We expect divergencies in spin foams related to the existence of (diffeomorphism) gauge

symmetries. Thus we have to conclude that such gauge symmetries are not (fully) present in the model we

consider. But wewill identify a class of gauge symmetries that occur at special solutions of equations imposed

by the delta function weights. This situation is surprisingly similar to the case of broken diffeomorphism

symmetries in discrete gravity, which are present around flat solutions.We introduce amethod to derive (Ward

identity-like) equations for the vertex amplitudes of the model in the case of broken gauge symmetries.
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I. INTRODUCTION

Spin foam models arose as a path integral approach
to quantum gravity [1]. One of the first specific four-
dimensional gravity models constructed was the Barrett-
Crane (BC) model [2], a more modern alteration of which
is [3]. The Engle Pereira Rovelli Livine/Freidel Krasnov
(EPRL/FK) spin foam models [4] were also recently pro-
posed due to arguments that the Barrett-Crane model fails
certain tests to be a viable model for gravity [5].

All models underly a unifying construction principle [6],
which in our view is quite accessible in the holonomy
representation [7]. There the common starting point is the
use of distributions (delta functions) as weights for the faces
of the two-complex on which spin foam models are defined.
These delta function face weights are altered by edge func-
tions convoluted into the face weights. These edge weights
are in general also distributional.With the appropriate choice
of the so-called edge and face weights for the BC model,
these are again delta functions (for a specific choice of what
is termed edge weight or measure factors), and this will
allow us to evaluate quite explicitly certain configurations.

Given that the models involve distributional objects, one
has to worry about divergences and the question arises
whether there is need for a regularization. This is an
actively studied issue [8–10] relevant for the definition
and behavior of group field theories [11], for which spin
foam models provide the Feynman amplitudes and the
regularization of spin foams in itself.

In this paper we will consider in detail the possible
divergences that can occur in the Barrett-Crane model
(with a specific choice of edge and face weights, which has
not been considered before). We will also present a simple
method to estimate the occurrences of (single bubble)

divergences in general spin foam models (including EPRL/
FK).Thiswill showexplicitly how the choice of face andedge
weight factors influences the divergence properties of the
models. Here it will turn out that one has to choose between
the invariance of the model under certain edge and face
subdivisions and convergence. If one wants to avoid single
bubble divergences (divergences related to diffeomorphism
symmetry would be expected from multiple bubble configu-
rations), one might also take convergence considerations into
account in the determination of these factors [12–14].
Apart from the possible need for regularization there is

another strong motivation to study the divergence structure of
spin foams. This is the relation between divergences, the
redundancies of delta distributions and diffeomorphism
symmetry [15–19], and the proposal that spin foams act as
projectors onto the Hamiltonian and diffeomorphism con-
straints [20,21]. As diffeomorphism symmetry leads to non-
compact orbits (for vanishing cosmological constants), one
would expect that an anomaly-free implementation [14] of
these symmetries would lead to divergences due to the inte-
grations of amplitudes over the noncompact orbits (on which
these amplitudes are constant). Indeed this relation is well
understood for the three-dimensional Ponzano-Regge model
[15,17], where the diffeomorphism symmetry is implemented
as a translation symmetry on the vertices of the triangulation.
This symmetry also allows the derivation of recursion rela-
tions [22] that can be related to the Hamiltonian [23,24].
The issue is more involved for the four-dimensional

(gravitational) models. Spin foams can be seen as a discre-
tization of the path integral. Thus the question arises
whether diffeomorphism symmetry is preserved under dis-
cretization even on the classical level. The single simplex
amplitudes of the spin foam models approach the Regge
action in the large j limit [25]. The four-dimensional Regge
action, as a discretization of the Einstein-Hilbert action
does however break in general diffeomorphism symmetry
(as opposed to the three-dimensional Regge action) [26].
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This statement, however, has its exceptions [19,26]. The
subdivision of a four-simplex into five simplices by placing
an inner vertex in the inside of the initial vertex leads to a
configuration with vertex translation symmetry. This
also leads to (classical) first-class Hamiltonian constraints
[26–28] for four-valent vertices in a triangulated three-
dimensional hypersurface. Thus one could expect divergen-
ces for the spin foammodels at least for these configurations.
The corresponding symmetry (for instance in the form of
redundant delta functions) could then be used to derive
recursion relations and a quantum Hamiltonian.

We will, however, argue that divergences for the BC
model only appear for very special configurations, which
first of all have to include two-valent faces (i.e. faces with
only two edges) and furthermore have to combine these
two-valent faces in a specific way. (Indeed, a gauge sym-
metry can be found for the case that 2 two-valent faces are
glued onto each other. This is the only configuration for
which we found a divergence.) Thus we do not expect a full
gauge symmetry related to the subdivision of a simplex,
which does not involve two-valent faces.

The subdivision of a simplex corresponds to a situation
where all1 (classical) solutions are connected by a gauge sym-
metry. Another case is the occurrence of special (i.e. flat)
solutions on more general triangulations. The Hessian around
these solutions will feature null modes, which signifies the
existence of gauge symmetries around these special solutions.

Such symmetries have not been discussed for spin foams
so far. Here we will consider an analogue situation for spin
foams, that is analyze (gauge) symmetries that occur
around special solutions. This is also the reason for con-
sidering mostly the BC model in this paper, as (with our
choice of edge and face weights) it can be rewritten as the
integral over a space of flat connections, i.e. a partition
function with only delta function weights. The special
solutions are special points in the space of flat connections.
In this paper we will present a method to derive recursion
relations for the vertex amplitude of the BC model, the 10j
symbol, which are derived from these special solutions.

The structure of the paper is as follows. After introduc-
ing the Barrett-Crane model with our choice of face and
edge weight factors in Sec. II, we will switch to a group
integral formulation in Sec. III. This will introduce

effective face weights that capture the possible divergences
of spin foam models. For the BC model these effective face
weights can be evaluated explicitly, and we find them finite
for faces with more than two edges (modulo divergences
which occur on measure zero sets). After considering the
square of such effective weights, showing that the measure
zero set divergences do not matter in this case, we continue
with a discussion of so-called bubble divergences in
Sec. IV. The methods used there can be generalized to
other models as well. As we will show in Sec. IVC this
allows for a simple estimate of possible divergences occur-
ring in spin foam models. We then discuss the multiple
bubble case, in particular the four-dipole configuration,
important for group field theories, in Sec. V. To this end
we will reformulate the partition function as an integral
over a space of flat connection. This technique will be
essential for the consideration of gauge symmetries, which
for the BC model occur around special solutions. We will
use this technique in order to discuss these gauge symme-
tries in Sec. VII and use these symmetries in order to derive
recursion relations for the 10j symbols. We close with a
discussion and outlook in Sec. VIII. In the Appendix
includes some necessary basics on the group SU(2).

II. THE BARRETT-CRANE MODEL

A. Presentation

In this section we will shortly introduce the model we
will be considering in the rest of the paper.
Let � be a two-complex, and �i its set of i cells. We call

0-cells vertices, 1-cells lines and 2-cells faces. The spin
representation of the Barrett-Crane (BC) model is as fol-
lows. A state is an assignment of spins fjf 2 N=2gf2�2

to

faces. To simplify, assume � is the two-skeleton of the dual
to a four-dimensional triangulation. Each vertex is dual to a
four-simplex and each line to a tetrahedron. A four-simplex
has five boundary tetrahedra, so that a vertex in � has degree
5. The faces of � are dual to triangles. Consider a vertex in �
and denote the incoming lines a ¼ 1; . . . ; 5. There are ten
faces that are identified as the pairs of lines, ða; bÞ for 1 �
a < b � 5 (and corresponding to the ten triangles of the
dual four-simplex). Each vertex receives a weight, known as
the 10j symbol, labeled by the ten spins of the faces

(1)

1Here we assume that all classical solutions for this case are flat. There could be some special solutions which correspond to
discretization artifacts however [26].
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Here �j is the SU(2) character in the representation of
spin j, �jðei�n̂� ~�Þ ¼

Pj
m¼�j eim� ¼ sin ðdj�Þ= sin �, with n̂

a normalized three-vector, ~� ¼ ð�x; �y; �zÞ the vector
formed by the Pauli matrices and the notation dj�2jþ1.
The partition function of the model is a state sum,

ZBC ¼
X
fjfgf2�2

Y
f2�2

Af

Y
e2�1

Ae

Y
v2�0

f10jg: (2)

Several choices can be found in the literature for the
measures on faces Af and lines Ae. We will stick to the
following choice:

Af ¼ d2jf ; and Ae ¼ 1Q
f�e

djf
: (3)

This choice, which has already appeared in [29,30], leads
to a partition function that can be written with delta
functions on the group only and among other things allows
us to apply the techniques of Sec. V, which discusses the
contribution of multiple bubbles.

B. Finiteness

The above choice of measure makes the model quite
convergent. This can be found as follows. There are as
many sums as faces in �. First we collect the factors djf for

each sum. The face measure brings d2j for any face. For a

face with n vertices, dispatching the line measure Ae on the
faces yields a factor d�nj . Next we have to deal with the 10j

symbols. Previous studies strongly suggest a bound of the
type

jf10jgj � K
Y
f

d��jf
; (4)

for some positive �. In [31], numerical evidence gives
� ¼ 1=5. Therefore,

jZBCj �
X
fjfgf2�2

Y
f2�2

d
2�nf
jf

Y
v2�0

jf10jgj

� K0
Y
f2�2

�X
jf

d
2�nf��nf
jf

�
: (5)

As a result, if all faces have at least nf � 3 vertices, the

partition function is finite. However, this result is far from
satisfying as it does not provide any insight for quantum
gravity. Here are some questions that it leaves unanswered.

(i) The above arguments fail in the presence of faces
with two vertices only. Such faces appear in gener-
alized triangulations, in particular in the melonic
sector which dominates group field theories. We
would like to be able to treat them and understand
why they are more likely to bring divergences from
the quantum gravity point of view.

(ii) Any spin foam model can be made finite (or arbi-
trarily divergent) by adding negative (positive)

powers of dj in the face and line measures.

Several such different versions of the Barrett-
Crane model exist [8,29]. We will have to justify
our choice (3).

(iii) We would like to formulate the model on arbitrary
two-complexes, not only those two-skeleta dual to
regular triangulations. This is necessary to under-
stand bubble divergences (when only part of � is
taken into account).

(iv) In the BF model, the Wilson loops are constrained
to be trivial, and typical divergences come from
redundancies in the set of constraints. When turning
it to the BC model, are there constraints left? Is
the above finiteness result related to absence of
constraint redundancies?

(v) These redundancies in the BF model are associated
with the existence of gauge symmetries which sur-
vive on the lattice (and are not gauge-fixed). Does
the above finiteness result imply the absence of such
gauge symmetries in the BC model?

We will answer these questions in the remainder of the
paper through a group integral formulation of the model,
where sums over spins are traded for group integrals.2

III. GROUP INTEGRAL FORMULATION

A. Effective face weights

There exists a group integral representation of this
model, which comes out quite naturally as a derivation of
the model from a path integral for discretized general
relativity [30]. To each pair line-vertex ðe; vÞ (where v
is a vertex of e), we associate an SU(2) element hev
(they equivalently live on half-lines). They have the
following geometric meaning. Each four-simplex of the
triangulation (dual to a vertex) is flat and equipped with a
local Euclidean frame in R4. Each boundary tetrahedron,
which is dual to a line adjacent to the vertex, spans a three-
dimensional subspace of R4, determined by the normal to
it in the frame of the simplex, denoted Nev (with notations
on �). This is a unit vector, hence an element of the three-
sphere. Using the isomorphism between the three-sphere
and SU(2), the normal Nev is represented3 as the element
hev of SU(2).
The interest of such a representation of the normal is that

geometric quantities can be expressed through the group
law. The dihedral angle between two tetrahedra e1, e2 in a
four-simplex v is the scalar product between their normals
which can be written

cos �e1e2 ¼ �trh�1e1vhe2v; (6)

in the fundamental matrix representation of SU(2).

2Not surprisingly, integrals are easier to evaluate than sums.
3The map is NI

ev ¼ trðhev�IÞ, for I ¼ 0, 1, 2, 3, �0 ¼ I, and
�i the Pauli matrices.
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A face f 2 �2 can have an arbitrary number n of lines
and vertices on its boundary. We divide the face into
wedges, where a wedge is a pair ðf; vÞ or, equivalently, a
pair of half-lines attached to v. There are n wedges
w1f; . . . ; wnf around f. The product of group elements

entering (6) is canonically associated to a wedge w and
to simplify notations we write

hw ¼ h�1e1vhe2v: (7)

The class angle of hw is therefore the dihedral angle
between the tetrahedra dual to the half-lines. We can now
rewrite the partition function as

ZBC ¼
Z Y
ðe;vÞ

dhev
Y
f2�2

!ðhw1f
; . . . ; hwnf

Þ: (8)

The function ! has n arguments and is called the effective
face weight. It is fully determined by our choice of mea-
sures Af, Ae to be

!ðh1; . . . ; hnÞ ¼
Z
SUð2Þn

Yn
i¼2

d�i�ðh1�2h2�
�1
2 � � ��nhn�

�1
n Þ;

(9)

where � is the Dirac delta over SU(2).
To prove the equivalence between the spin representa-

tion (2) and the group representation (8) of the partition
function, we start by expanding ! onto the SU(2) modes,

using �ðhÞ ¼ P
j2N=2dj�jðhÞ. A few more formulas are

needed in order to integrate the elements �i in (9). They
are given in the Appendix. The character of products of

group elements expands onto the Wigner matrices DðjÞ as
�jðh1h2Þ ¼

Pj
m;n¼�j D

ðjÞ
mnðh1ÞDðjÞnmðh2Þ. Combining this

with the orthogonality of the matrix elements of the
Wigner matrices (A4), we get

!ðh1; . . . ; hnÞ ¼
X
j

d2�nj �jðh1Þ�jðh2Þ � � ��jðhnÞ; (10)

then

ZBC ¼
X
fjfg

Z Y
ðe;vÞ

dhev
Y
f2�2

d
2�nf
jf

Y
w�f

�jf ðhwÞ: (11)

The factor d2jf gives the face measure Af, the factors d
�nf
jf

are associated to pairs ðe; fÞ and can be rearranged as
the line measure Ae. Finally the product of characters
over faces can be reorganized as a product over vertices,
yielding (2).
A first outcome of this formulation is that it directly

makes sense on arbitrary two-complexes, not necessarily
dual to a regular triangulation.
The effective weight ! is obviously well defined as a

distribution. Let us integrate ! with some regular test
function,

Z Yn
i¼1

dhi
Z Yn

i¼1
d�ic ðh1; . . . ; hnÞ�ð�1h1�

�1
1 �2h2�

�1
2 � � ��nhn�

�1
n Þ

¼
Z Yn�1

i¼1
dhi

Yn
i¼1

d�ic ðh1; . . . ; hn�1; ��1n ð�n�1h�1n�1�
�1
n�1Þ � � � ð�1h

�1
1 ��11 Þ�nÞ

¼
Z Yn�1

i¼1
dgi

Yn�1
i¼1

d�ic ð��11 g1�1; . . . ; �
�1
n�1gn�1�n�1; ��1n g�1n�1 � � � g�11 �nÞ: (12)

In the first equality, we have used the Dirac delta to
integrate hn ¼ ��1n ð�n�1h�1n�1��1n�1Þ � � � ð�1h

�1
1 ��11 Þ�n. In

the last line, we have changed variables to gi ¼ �ihi�
�1
i ,

using the translation invariance of the Haar measure (this
line simply is a rewriting).

This choice of effective face weight is natural from the
way spin foammodels are built from BF theory. Indeed, the
effective face weight for BF theory is !BFðh1; . . . ; hnÞ ¼
�ðh1 � � � hnÞ. The insertion of the group elements � is due
to the simplicity constraints that break the topological
nature of the theory. The way this is implemented in our
version of the BC model is interesting because it does not
change the functional form of the face weight: it is still
formulated with a Dirac delta. A change in the face and line
measures (3) would change the Dirac delta to some other
distribution. Moreover, the form of ! allows us to directly
draw the following two conclusions:

(i) Just like in the BF model, the potential divergences
would come from the fact that multiplication of
deltas may not even be defined as a distribution.
More precisely, some deltas may be redundant: their
arguments are automatically the identity of SU(2)
once the other deltas are satisfied.4 Having Dirac
deltas in ! makes this choice quite convenient to
study. In particular, the fact that !BF is a delta is the
reason why divergences in spin foams are called
bubble divergences (because typically there is a
redundancy for each ‘‘bubble,’’ i.e. independent,
spherical, closed surface, so to speak). We will thus

4In the third reference of [18], it was noticed that even in the
absence of redundancies, the amplitude may not be finite in BF
theory, due to singularities on the set of solutions to the con-
straints. This issue will also be discussed later in the paper.
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be able to compare the contributions of bubbles in
this model with the BF case.

(ii) The expression (9) further indicates why the model
is more likely to be convergent that the BF model,
and even why faces with two vertices are the most
dangerous with respect to divergences. Since SU(2)
has three real dimensions, the Dirac delta in the
effective weight (9) has three real components.
Because the definition of ! integrates them (over
the conjugacy class of each hi), ! is expected to be
more regular, less distributional so to speak, than
the SU(2) delta. The more regular ! is, the more
likely it is that products of ! are well defined,
removing divergences. Moreover, there are as
many integrals in (9) as vertices around the face.
Therefore, ! certainly becomes quite regular for
faces with a sufficient number of lines, and only
faces with few lines are expected to be dangerous.
We expect this feature to hold more generally in
spin foam models for quantum gravity, as the
simplicity constraints always amount to smearing
the SU(2) deltas of BF theory, with one integral per
line around each face.

B. Analysis of the effective face weights

1. Support and geometric interpretation

To understand the support of ! and the content of the
constraint in (9), we need a bit of spherical geometry.5

A spherical n-gon is a loop of n geodesic segments on the
two-sphere, with lengths in ½0; �� (note that it can be
degenerate and have self-intersections).

Let h1; . . . ; hn 2 SUð2Þ with class angles �k 2 ½0; ��
defined as 1

2 trhk ¼ cos �k. Then there exists SU(2)

elements �2; . . . ; �n such that

h1�2h2�
�1
2 � � ��nhn�

�1
n ¼ I; (13)

if and only if there exists a spherical n-gon with lengths
ð�1; . . . ; �nÞ. The fact that the constraint implies the exis-
tence of a spherical polygon is proved in [32] and we will
not repeat it. We will prove the reverse. The case n ¼ 2 is
trivial. We proceed by induction on n starting with n ¼ 3.

Write hk ¼ exp i�k ~� � n̂k with �k � 0,�, and consider a
spherical triangle with lengths ð�1; �2; �3Þ. The angles
between the sides of the triangles are given by the spherical
law of cosines,

cos�ij ¼
cos �k � cos �i cos�j

sin �i sin�j
: (14)

Set �2 2 SUð2Þ such that Rð�2Þn̂2 ¼ û2 with û2 being any
unit vector satisfying

n̂1 � û2 ¼ � cos�12: (15)

The SU(2) element �2h2�
�1
2 has the same class angle as

h2, but its axis is û2, i.e. �2h2�
�1
2 ¼ exp i�2 ~� � û2. Then

Eq. (14) for i ¼ 1, j ¼ 2, k ¼ 3 exactly reads

tr h1�2h2�
�1
2 ¼ tr h�13 ; (16)

which implies that the matrices on both sides are
conjugated to each other by, say, �3 2 SUð2Þ. In other
words, there exist �2, �3 2 SUð2Þ such that h1�2h2�

�1
2 ¼

�3h
�1
3 ��13 .

Completing the induction is easy. Assume there is a
n-gon with spherical lengths ð�1; . . . ; �nÞ. By splitting
it on its (n� 2)th vertex, we get a (n� 1)-gon with lengths
ð�1; . . . ; �n�2; �0Þ and a spherical triangle with lengths
ð�0; �n�1; �nÞ. The induction hypothesis ensures the exis-
tence of SU(2) elements such that h1�2h2�

�1
2 � � �

�n�2hn�2��1n�2h0 ¼ I, where h0 has class angle �0.
As for the triangle the above proof of the case n ¼ 3
shows that there exist SU(2) elements such that
~h0 ~�n�1hn�1 ~��1n�1 ~�nhn ~�

�1
n ¼ I, where ~h0 has also class

angle �0. Therefore h0 and ~h0 are conjugated and we can
write for the triangle h�10 �n�1hn�1��1n�1�nhn�

�1
n ¼ I. This

completes the proof.
Furthermore, existence of an n-gon is equivalent to the

spherical polygon inequalities on ð�1; . . . ; �nÞ. This means
that those inequalities provide the support of the effective
face weight. They readX

i2P
�i �

X
i2P0

�i � �ðjPj � 1Þ � 0 (17)

for any subset P 	 f1; . . . ; ng with jPj odd, and
P0 ¼ f1; . . . ; ng n P.
In summary the effective face weights are supported on

configurations of group elements h1; . . . ; hn for which the
corresponding class angles define a (possibly degenerate)
spherical n-gon. We will find this constraint again in the
explicit expression of the face weights.

2. Explicit expression of the face weight

From the bound (5), we see that only faces with two
vertices are dangerous, suggesting that the effective face
weight of faces with at least three vertices are quite regular.
(a) Face with two vertices, n ¼ 2. In that case,!ðh1; h2Þ

is actually well known to be the one-dimensional
delta constraining h1 and h2 to lie in the same
conjugacy class (i.e. to have the same rotation
angle),

!ðh1; h2Þ ¼
Z

d��ðh1�h2��1Þ ¼
X
j

�jðh1Þ�jðh2Þ

¼ 1

sin �1 sin �2

X
k2Z

sin k�1 sin k�2: (18)

(b) Face with more than two vertices, n � 3. Since
n ¼ 2 has only a one-dimensional delta function,5The authors are grateful to W. Kaminski for pointing this out.

BUBBLE DIVERGENCES AND GAUGE SYMMETRIES IN . . . PHYSICAL REVIEW D 88, 124021 (2013)

124021-5



and there are more integrals over conjugacy classes
for n � 3, ! does not contain any delta anymore
and is regular almost everywhere. To make this
precise, the expression of the character in terms of
the class angle is inserted into (10),

!ðh1; . . . ; hnÞ

¼ X1
k¼1

1

kn�2
sin ðk�1Þ � � � sin ðk�nÞ

sin �1 � � � sin �n ;

¼ 1

ð2iÞn
X1
k¼1

1

kn�2
X

	2;...;	n¼
1

	2 � � � 	n
sin �1 � � � sin �n

� ½eikð�1þ
P

n
l¼2 	l�lÞ þ ð�1Þne�ikð�1þ

P
n
l¼2 	l�lÞ�:

(19)

If one group element is set to hi ¼ 
I (i.e. �i ¼ 0,�), then
! reduces to the face weight with simply one argument
less, n! n� 1 (which is the weight for a face with one
line and one vertex less). Therefore we assume that all
hi � 
I.

This allows us to evaluate the sum over k for all terms
independently,

1

ð2iÞn
X1
k¼1

1

kn�2
½eik�þ ð�1Þne�ik��

¼ 1

2n
X1
k¼1

1

kn�2
cos

�
k�� n

�

2

�
¼ �n�2

8ðn� 2Þ!Bn�2
�
�

2�

�
;

(20)

where we have recognized6 the Fourier expansion of
the Bernoulli polynomial Bn�2, which holds for � 2
½0; 2��. If � is outside this interval, we need to shift it
back to be in ½0; 2��, using that the left-hand side has to be
periodic in �.

Notice that (20) is absolutely convergent for n � 4. For
n ¼ 3 we get

P1
k¼1 sin ðk�Þ=k which gives the Fourier

expansion of the sawtooth wave, i.e. a finite function which
is not continuous. This applies to each configuration of 	k,
appearing in (19), with �f	g ¼ �1 þ

P
n
l¼2 	l�l mod ð2�Þ.

Thus we have

!ðh1; . . . ; hnÞ ¼ �n�2

8ðn� 2Þ!
1

sin �1 � � � sin �n
� X

	2;...;	n¼
1
	2 � � � 	nBn�2

�
�f	g
2�

�
: (21)

The Bernoulli polynomial BnðxÞ has a monomial
of highest order xn. However, the sum over the signs
	k ¼ 
 may lead to simplifications.

Let us focus on the case n ¼ 3. There, we need the
polynomial B1ð�þ2�N2� Þ ¼ �

2�þ N � 1=2, where N 2 Z
has to be chosen such that �þ 2�N 2 ½0; 2��. Assume
that �1, �2, �3 satisfy the spherical triangle inequalities, i.e.
�1 þ �2 þ �3 � 2� and �a � �b þ �c for any permuta-
tion of a, b, c ¼ 1, 2, 3. Of the four combinations of 	2, 	3,
three arguments �1 þ

P
n
l¼2 	l�l are in ½0; 2��. However

for 	2 ¼ 	3 ¼ �1, we obtain a negative argument. For this
last summand we need to shift the argument back to ½0; 2��
by choosing N ¼ 1. Then in the sum over the 	2, 	3, all the
linear terms in �k vanish and we are left with a constant

B1

�
�1 þ �2 þ �3

2�

�
� B1

�
�1 þ �2 � �3

2�

�

� B1

�
�1 � �2 þ �3

2�

�
þ B1

�
�1 � �2 � �3 þ 2�

2�

�
¼ 1:

(22)

Hence if the spherical triangle inequalities are satisfied, the
effective face weight reduces to

!ðh1; h2; h3Þ ¼ �

8

1

sin �1 sin �2 sin �2
: (23)

Consistently with the support found in Sec. III B 1, one can
check that violations of the triangle inequalities lead to
! ¼ 0. Thus the face weight for a three-valent face is
simply

!ðh1; h2; h3Þ ¼ �

8

1

sin�1 sin �2 sin �2
Hð�1; �2; �3Þ; (24)

where Hð�1; �2; �3Þ ¼ 1 if the spherical triangle inequal-
ities are satisfied and vanishing otherwise.
For higher-valent faces, with n edges, the Heaviside-like

function H in (24) is replaced by some piecewise
polynomial of order (n� 3) so that the support is on
configurations satisfying the spherical triangle inequalities.
As a conclusion, the face weight is a function of the class

angles only. The face with two vertices is the most singular,
and the weight becomes smoother as the number of verti-
ces per face increases. This is expected because the number
of group averages in the expression (9) for ! is precisely
the number of vertices. As the group averaging comes from
the simplicity constraints, we expect this feature to also
hold for the EPR/FK model. We will provide evidence
(which will depend on the choice of certain edge weight
factors) in Sec. IVC.
Let us note that possible divergences of the models can

also be analyzed with the help of microlocal analysis [33].
Wave front sets are a refinement (or extensions to cotan-
gent space) of the singular support of a function. The wave
front sets for the effective face weights for the BC model
are nonempty and indeed reflect the configurations at
which the effective face weights are nonsmooth [34].
Thus wave front sets in spin foam models do not neces-
sarily correspond to divergences but could also just

6We could also recognize the real and imaginary parts of the
polylogarithm nðzÞ ¼ P1

k¼1 z
k=ks.
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signify nonsmooth behavior. In this case there is no need
for regulating the models.

C. Two faces glued together:
The square of the face weight

Although pretty explicit, the effective face weights are
functions of the dihedral angles, which involve in their
definition the product of two group elements: cos �e1e2 ¼�tr h�1e1vhe2v. Thus if we glue faces together we would have

to disentangle these group elements again, as the he1v and

he2v will in general be shared by different sets of faces.

Also, even for effective face weights with valency
larger than two, the sets where some hi are 
I might
lead to (delta function-type) singularities (this is what
prevents ! from being a standard function), and they
may contribute, though having zero measure. Therefore,
for practical calculations, we would rather use the expres-
sion (9) and deal with products of SU(2) delta functions.

We have already emphasized that typical divergences
might show up because the products of deltas are a priori
ill defined, due to redundancies of the enforced constraints.
Such redundancies typically are expected when some
faces are glued in a way that creates closed surfaces in �
(boundary of 3-cells if � is the two-skeleton of a higher
dimensional cell complex). In the BF spin foammodel, it is
easy to check that the presence of 3-cells is associated to a
redundant Dirac delta, whose argument is automatically
the unit of the group whenever the deltas on the other
faces are satisfied.7 In the following subsections, we
will focus on these typical situations and argue that there
is no divergence, expect in one case where two faces with
exactly two vertices are glued together.

The first step to study this type of situation is to look at
the square of !. Geometrically, that corresponds to a
closed surface in � made of two faces with the same
boundary lines and vertices. In the BF case, ! ¼ � and
its square is obviously not well defined, because the two
deltas impose the same constraint twice. The question is,
therefore, is ! a distribution that can be squared?

Consider that there are n lines around the two faces.
There are also other faces which may share boundary lines
with the two faces. Therefore the amplitude on � reads

Zð�Þ ¼
Z Yn

a¼1
dha½!ðh1; . . . ; hnÞ�2fðh1; . . . ; hnÞ; (25)

where f is the result of integrating all the group elements
hef in � at fixed wedge group elements h1; . . . ; hn on the

boundary of the two faces. f is typically a distribution, or it
might itself contain divergences. However, our aim is to

isolate the contribution of the two faces glued together, and
therefore we consider f as a regular function. The integral
is on a compact manifold which implies

Zð�Þ � K
Z Yn

a¼1
dha½!ðh1; . . . ; hnÞ�2; (26)

where the constant K is the maximal value of f on SUð2Þn.
It is possible to calculate the integral of !2 exactly.

Going through the steps of Eq. (12),

Z Yn
a¼1

dha½!ðh1; . . . ; hnÞ�2

¼
Z Yn

a¼1
d
ad�a

Yn�1
b¼1

dgb�ðð
1�
�1
1 g1�1


�1
1 Þ

� ð
2�
�1
2 g2�2


�1
2 Þ � � �
n�

�1
n g�1n�1 � � � g�11 �n


�1
n Þ:
(27)

Reabsorbing ��1i on the right of 
i gives

Z Yn
a¼1

dha½!ðh1; . . . ; hnÞ�2

¼
Z Yn

a¼1
d
a

Yn�1
b¼1

dgb�ðð
1g1

�1
1 Þ

� ð
2g2

�1
2 Þ � � � ð
n�1gn�1
�1n�1Þ
ng

�1
n�1 � � �g�11 
�1n Þ:

(28)

We then use the character expansion and explicit integra-
tion of Wigner matrices. Doing so yields

Z Yn
a¼1

dha½!ðh1; . . . ; hnÞ�2

¼ X
j2N=2

1

dn�2j

Z Yn�1
a¼1

dga�jðg1 � � � gn�1Þ
Yn�1
a¼1

�jðgaÞ;

¼ X
j2N=2

1

d2ðn�2Þj

¼ �ð2n� 4Þ: (29)

This is obviously finite as soon as n � 3. One concludes
that Zð�Þ is finite for regular enough f.
The above result is identical to the partition function of

two-dimensional BF, i.e. two-dimensional Yang-Mills at
zero coupling, on a surface of genus n� 1. This is no
coincidence since (28) can actually be rewritten in the
typical two-dimensional YM form. We first abosrb 
n

into the other 
a  
�1n 
a. Then we proceed to the
change of variables ðga; 
aÞ� ðka; �aÞ step by step
starting with a ¼ 1,

7The full evaluation of divergences in the BF spin foam
models requires us, in addition, to take into account the reduc-
ibility of the gauge symmetries and global, topological effects
(see [35]).
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g1 ¼ g2 � � � gn�1k�11 g�1n�1 � � � g�12 and 
1 ¼ g2 � � � gn�1�1g
�1
n�1 � � � g�12 ;

g2 ¼ g3 � � � gn�1k�12 g�1n�1 � � � g�13 and 
2 ¼ g3 � � � gn�1�2g
�1
n�1 � � � g�13 ;

..

. ..
.

gn�2 ¼ gn�1k�1n�2g�1n�1 and 
n�2 ¼ gn�1�n�2g�1n�1; gn�1 ¼ k�1n�1 and 
n�1 ¼ �n�1:

This recasts (28) in the form

Z Yn
a¼1

dha½!ðh1; . . . ; hnÞ�2 ¼
Z Yn�1

a¼1
d�adka �ð½k1; �1�½k2; �2� � � � ½kn�1; �n�1�Þ; (30)

where ½k; �� ¼ k�k�1��1 is the group commutator. The
argument of the delta function in the above equation
is recognized as an SU(2) version of the presentation of
the fundamental group of the surface of genus n� 1, as
expected [36–38].

IV. FINITENESS OF SINGLE BUBBLE
CONTRIBUTIONS

The calculation performed in the case of two faces glued
along their boundaries generalizes to any single bubble of
arbitrary shape. The same way we had found the partition
function of two-dimensional BF on a surface of genus the
number of boundary lines minus 1, we will see that the
calculation goes through in the case of a single bubble
thanks to the well-known fact that lattice gauge theories are
trivial in two dimensions.

A. Single bubble contribution as
two-dimensional spin foams

Suppose we can identify in � a closed surface � of
arbitrary Euler characteristic � ¼ V � Eþ F. It is usually
referred to in the quantum gravity literature as a
(not necessarily spherical) bubble. It is such that each
line is shared by exactly two faces. The partition function
on � reads

Zð�Þ ¼
Z Y

ðe;vÞ
e;v��

dhev
Y
f��

!ðhw1f
; . . . ; hwnf

Þ

�Y
ðe;vÞ
e��

dhev
Y
f��

!ðhw1f
; . . . ; hwnf

Þ: (31)

Integrating all the group elements hev where e does not
belong to � produces a function depending on the group
elements on �,

f�ðfhevge;v��Þ ¼
Z Y

ðe;vÞ
e��

dhev
Y
f��

!ðhw1f
; . . . ; hwnf

Þ: (32)

It is a sort of Hartle-Hawking wave function on �, but it is,
clearly, not well defined a priori. However, to isolate the
contribution of �, we will consider that f� is a regular
function. Because it is defined on a compact space, we

assume it is bounded by some constant K. Therefore, Zð�Þ
is bounded by K times the partition function where f is set
to 1. This is exactly the partition function of the Barrett-
Crane model on the two-dimensional surface �. Therefore

Zð�Þ � KZð�Þ; (33)

with

Zð�Þ ¼
Z Y

ðe;vÞ
e;v��

dhev
Y
f��

!ðhw1f
; . . . ; hwnf

Þ: (34)

To evaluate the potentially divergent contribution of� �
�, we will calculate Zð�Þ instead of Zð�Þ. This amounts to
ignoring the faces external to �. In the usual spin foam
language, this is simply setting the spins of the external
faces to zero. This has already been used in the literature to
isolate divergent contributions. In [9], it was argued to yield
a fair evaluation of the divergences, just like in ordinary
quantum field theory the loop divergences are often eval-
uated by setting the momenta of the external legs to zero.
However, it seems to have gone un-noticed that when

doing so on a single bubble, the remaining part Zð�Þ is just
a two-dimensional version of the initial model. Thinking of
spin foam models as generalized lattice gauge theories, and
given that two-dimensional lattice gauge theories are solv-
able, this gives us hope to calculate Zð�Þ exactly. This is
what we do now, in the Barrett-Crane case in Sec. IVB, and
for generic spin foam models in Sec. IVC (the BC case is
just a particular case, but we treat them separately because
the BC model is our working example in this paper).

B. The Barrett-Crane model on
two-dimensional surfaces

To compute Zð�Þ, we use the character expansion of !,
(10), to get

Zð�Þ ¼ X
fjfgf��

Z Y
ðe;vÞ
e;v��

dhev
Y
f��

d
2�nf
jf

�jf ðhw1f
Þ � � ��jf ðhwnf

Þ;

(35)

where the sum is over all possible assignments of spins to
faces, nf is the number of lines on the boundary of f, and

hw is the wedge holonomy. Remember that a wedge is
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identified by a pair ‘‘vertex-face,’’ or equivalently the two
lines along that face which meet at that vertex. We denote
these two lines ew, e

0
w. To perform the integrals explicitly,

we notice that they actually factorize onto vertices,

Zð�Þ ¼X
fjfg

Y
f

d
2�nf
jf

Y
v

�Z Y
e�v

dhev
Y
w�v

�jf ðh�1ewvhe0wvÞ
�
:

(36)

Around each vertex with nv lines, there are also nv faces
(or rather wedges), and since each line is shared by exactly
two wedges, we can label the lines and the wedges, say in
clockwise order. At each vertex we have

Z
dh1 � � �dhnv�jf1

ðh�11 h2Þ�jf2
ðh�12 h3Þ � � ��jfnv

ðh�1nv h1Þ

¼
�Y
f;f0

�jf;jf0

�
d2�nvj : (37)

We have used the formula (A6) nv � 1 times to integrate
products of characters. As a result, all spins around v are
must have the same value which we have denoted j. Since�
is connected, the spins of all faces must be identical, so that
the sum over all spin assignments reduces to a single sum.
The summand is obtained by gathering all powers of dj,

Zð�Þ ¼ X
j2N=2

Y
f

d
2�nf
j

Y
v

d2�nvj

¼ X
j2N=2

d

2Fþ2V�P
f

nf�
P
v

nv

j : (38)

On the triangulation of a surface,
P

fnf ¼
P

vnv ¼ 2E,

hence

Zð�Þ ¼ X
j2N=2

d2��2Ej : (39)

Remark 1—Finiteness. The result is divergent if E � �.
Since � � 2 and we want at least E � 2, we find that the
only divergent case is E ¼ � ¼ 2, meaning a spherical
bubble with only two lines. This is the case of two faces
with two boundary lines glued together already seen in
Sec. III C. Any other bubble is finite,

Zð�Þ ¼ �ð2E� 2�Þ ¼ ð�1ÞE��þ1 B2ðE��Þð2�Þ2ðE��Þ
2ð2E� 2�Þ! :

(40)

Here � is the Riemann zeta function and Bn a Bernoulli
number.

Remark 2—Invariance. In the BF case, the partition
function on a surface of Euler characteristic � is �ð��Þ
and is therefore independent of the triangulation. Here Zð�Þ
depends on the triangulation only through the number of
lines and not its particular shape. It means that Zð�Þ is
invariant under homeomorphisms of the triangulation

which preserves the number of lines. In particular, the 2-2
Pachner move does so and therefore leaves Zð�Þ invariant.
Remark 3—4-2 Pachner move. Section III C is obviously

a particular case, with � ¼ 2 and E ¼ n the number of
boundary lines of the two faces. A more interesting case for
quantum gravity is the 4-2 Pachner move. As a Pachner
move, it is a change of triangulation which preserves the
topology of �. In the dual of �, one changes a configuration
of two 4-simplices which share a common tetrahedron and
thus have eight boundary tetrahedra, with four 4-simplices
each contributing to two boundary tetrahedra. The four
4-simplices are glued together in a specific pattern such
that two 4-simplices share exactly one tetrahedron. In the
two-complex �, we find four vertices completely con-
nected by six lines which form four triangular faces. This
pattern corresponds to the boundary of a tetrahedron and
this is precisely the surface�, with � ¼ 2, E ¼ 6. Thus the
contribution to the partition function from the bubble in the
4-2 Pachner move configuration is finite.

C. Single bubble contributions for general models

Spin foam models in two dimensions reduce to
two-dimensional (standard) lattice gauge theories [7],
implying that the above calculation for a single bubble
can be extended to generic models. Awide class of models
(including BC with generic choices of edge and face
weights and the EPRL/FK model) [7] is given by

Z ¼
Z
G

Y
ðe;fÞ

dhef
Y
e

Cðfhefgf�eÞ
Y
f

wðhe1f � � � henfÞ: (41)

Here we integrate over group G elements associated to
edge-face pairs ðefÞ. For every edge we have an edge
weight C that depends on the group elements hef, for

which e is an edge in the boundary of f. For each face
we have a (‘‘bare’’) face weightw, which is a class function
and evaluated on the holonomy around the face.
For a two-dimensional surface, there are always two

faces adjacent to a given edge. The edge weights C have
also to satisfy a certain invariance property, which means
that for the two-dimensional case, we can expand C as
follows into irreducible unitary representations � of G,

Cðh1; h2Þ ¼
X
�

~C� dim ð�Þ��ðh1h�12 Þ: (42)

The face weights are expanded as

wðhÞ ¼X
�

~!� dim ð�Þ��ðhÞ: (43)

Using these expansions in (41) for the two-dimensional
case, one notices that the sums over the representation
labels � reduce to one sum as the group integrations
impose Kronecker deltas between representation labels.
Taking care of all the dimension factors that come from
the expansions (42) and (43), the group inner product
between representation matrix elements, as well as from
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the contractions of Kronecker deltas (which gives traces
around vertices), we obtain

Z2D ¼
X
�

ð ~C�ÞEð ~!�ÞFðdim�ÞV�EþF

¼X
�

ð ~C�ÞEð ~!�ÞFðdim�Þ�: (44)

For (standard) lattice gauge theory we have ~C� � 1, and

we recover the corresponding two-dimensional partition
function. For the BC model we have G ¼ SUð2Þ � SUð2Þ
and with our choice of edge and face weights,

~!� ¼ 1; ~C� ¼ ��;ðj;jÞ
�
1

dj

�
2
; (45)

so that we recover (39). However, we see that changing
edge weights, for instance introducing a factor d2j per edge

so that ~C� ¼ ��;ðj;jÞ, would lead to a triangulation invariant
but divergent result for a spherical bubble.

For the EPRL model [G ¼ SUð2Þ � SUð2Þ] with
Barbero-Immirzi parameter �, leaving the face weights
~!� free for the moment, we have for the edges [7],

~C� ¼
X
j

dim ðjÞ
dim

�
1þ�
2 j

�
dim

�j1��j
2 j

�

� �

�
�;

�
1þ �

2
j;
j1� �j

2
j

��
ðdeð�ÞÞ2: (46)

Here deð�Þ is an edge weight factor that is left undeter-
mined. We obtain a nonvanishing coefficient only if the
SUð2Þ � SUð2Þ representation � ¼ ðj0; j00Þ is of the form

ð1þ�2 j; j1��j2 jÞ.
We have two free functions, the face weights ~!� and the

edge weight factors deð�Þ. The choice of these factors will
heavily influence the convergence properties of the model.
Different requirements have been proposed to fix these
weights [12–14]. With the simple arguments put forward
here, we can comment on how these requirements will
influence the convergence of single spherical bubbles.

(i) We can require that the model is invariant under edge
subdivisions (here for edges that are shared by only
two faces) and face subdivisions. To achieve this we

choose ~!� ¼ 1 and deð�Þ such that ~C� equal to one

or is vanishing (if� is not admissible). This will give a
triangulation-invariant two-dimensonal model. In this
case spherical bubbles will diverge (assuming that
there are infinitely many admissible representations).

(ii) A weaker requirement is invariance under subdivi-
sion of faces.8 Dividing one face into two, we raise

the number of faces and the number of edges by

one. Thus invariance requires ~!� ¼ ð ~C�Þ�1 for ad-
missible representations �. The convergence then
depends on the difference between the number of
faces and edges. If we consider the square of an
effective face weight, it forms a spherical bubble

with two faces. As long as ~C� scales with some

negative power of dim�, we obtain a more conver-
gent result with growing number of edges, where the
specifics again depend on the edge weight factor.

If ~!� ¼ ð ~C�Þ�1 we have a divergent partition

functions for all spheres where the number of edges
and faces are equal to each other. This includes
the bubbles that appear in the four-dipole
configurations.

(iii) One can also adjust the face weight and edge
weight factors to obtain convergent results for
specific families of bubbles.

Thus we see that we can get an estimate (as we ignore
the contribution of faces that connect to but are not part of
the bubble) on the behavior of bubbles and the behavior of
effective face weights by quite simple methods. This al-
lows us to choose the edge weight factors and face weights
according to the divergent or convergent behavior one
wants to achieve. We have seen, however, that requiring
triangulation independence in two dimensons (i.e. invari-
ance under face and edge subdivisions) comes at the cost of
divergent spherical bubbles and distributional effective
face weights for arbitrary number of edges.

V. MULTIPLE BUBBLES: THE FOUR-DIPOLE

Next we will discuss a configuration with multiple
bubbles, known as the four-dipole. In particular, it arises
in discussions of group field theories, as configurations that
include such dipoles are the most divergent ones [39]. For
the BCmodel, the four-dipole could be divergent due to the
appearance of two-valent faces, which glue to (multiple)
spherical bubbles. These bubbles have three faces and three
edges—thus, the single bubble contribution as discussed in
Sec. IVA, do converge. The assumption of this section was
to ignore faces external to the bubble. Thus, this is also a
test whether this assumption holds in this case. Indeed, we
will find that divergences do not occur—at least no diver-
gences due to redundancies of delta functions. (There are,
however, singularities on a measure zero set, and we leave
the integrability of these singularities open.)
An expansion in spin variables for this case is not

sufficient to determine convergence. We will therefore
switch to the group representation and basically show
that no redundancies arise if we solve for all the delta
functions appearing in the partition function for this
configuration (the method is detailed in [18]).
Let us describe the four-dipole configuration. We

consider a piece of triangulation with two 4-simplices

8Here we mean that a face is subdivided by a two-valent edge
which goes between two already existing vertices; i.e., we do not
create new vertices. We should point out that there exist other
notions of face subdivisions which create new vertices and hence
a larger number of additional edges.
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that are glued together along four of their five boundary
tetrahedra. These four internal tetrahedra have six
triangles and four edges in total, which are thus shared
by the two 4-simplices. The boundary of the gluing
consists of two tetrahedra. Notice that their triangles
are shared with internal tetrahedra (in a four-simplex, a
triangle is shared by exactly two tetrahedra). Therefore,
each triangle of a boundary tetrahedron is identified
with a triangle of the other boundary tetrahedron. This
means that the two 4-simplices actually share all their
triangles.

To write the spin foam amplitude, it is easier to work in
the dual of the triangulation, depicted in Fig. 1. It is called
the four-dipole because it has two vertices (of degree 5)
connected by four lines, with one external line hanging out
of each vertex. The vertices are labeled A, B and the
internal lines 1, 2, 3, 4. The two external lines are denoted
0A and 0B. The lines 1, 2, 3, 4 create six internal faces,
labeled by the pairs of lines, ðijÞ, 1 � i < j � 4, since each
face goes along two lines only. The four edges shared
by the two 4-simplices correspond to four bubbles in �,
whose boundary are the faces ðijÞ, ðjkÞ, ðkiÞ, for 1 � i <
j < k � 4, glued two by two. The surfaces of the bubbles
are therefore spherical.

The triangles of the boundary tetrahedra are dual to
external faces. As the two 4-simplices share these triangles,
the external faces actually go along both A andB. There are

four external faces, all going along the line 0A, then
choosing an internal line i ¼ 1, 2, 3, 4, and then all going
along the line 0B. Note that these faces are broken (they are
not closed, because the dual triangles are on the boundary
of the gluing).
In the spin representation, the amplitude for the four-

dipole has two 10j-symbol, one associated to the vertex A
and the other to B, and they depend on the spins associated
to the faces. Since the corresponding four-simplices share
all their triangles, it means that the spins on the faces are all
common to the two 10j-symbols (there are actually only
ten faces in the four-dipole). We thus get the square of a
10j-symbol. Moreover, the spins of the six internal faces
must be summed, while the spins on the external (broken)
faces are fixed to ji, i ¼ 1, 2, 3, 4. The partition function
for this piece of triangulation is a function of the four
external spins,

(47)

There are no dj factors because each face only goes along
two lines.

To estimate the potential divergence of these sums, it has
been proposed in [9] to set the spins of the four external
faces to zero. With ji ¼ 0, each 10j reduces to the square of
a Wigner 6j symbol (this can be seen in (1) which directly
reduces to the group integral formulation of the square of
the 6j symbol). Therefore, the amplitude is

Z4-dipoleð0; 0; 0; 0Þ ¼
X

j12 ;j13 ;j14
j23 ;j24 ;j34

�
j12 j13 j14

j34 j24 j23

�
4
: (48)

We consider the large spin behavior of the summand, when
all spins are homogeneously scaled by �� 1. The
Ponzano-Regge asymptotics of the 6j symbol states that

f6jg 
 1=�3=2. The summand thus behaves like 1=�6 and
as there are exactly six sums to perform, it is not possible
to conclude about the convergence/divergence of the

amplitude. This shows that the choice of measure in our
version of the BC model requires a more subtle analysis.
However, if gauge symmetries, or redundancies of delta
functions in the group integral formulation, were present, a
positive exponent of � would certainly be expected. It
means that the simple power-counting argument still sug-
gests the absence of redundancies and gauge symmetries.
This is what we will show below.
This is done by moving first to the group integral

formulation with effective face weights. The faces ðijÞ,
for 1 � i < j � 4, have effective face weights

!ij ¼
Z

d�ij�ðhiAh�1jA �ijhjBh
�1
iB ��1ij Þ: (49)

As the external faces are not closed, we cannot use effec-
tive face weights. But using the definition (1) for the two
10j symbols, it is easy to see that

0 0
BA 2

3
4

1

FIG. 1. The vertices A, B are dual to four-simplices, which are
glued together by four tetrahedra here represented as the lines 1,
2, 3, 4. The lines 0A, 0B stand for the two boundary tetrahedra.
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Z4-dipoleðj1; j2; j3; j4Þ ¼
Z Y

i<j

d�ij

Y4
0¼1

dhiAdhiB
Y
i<j

� �ðhiAh�1jA �ijhjBh
�1
iB ��1ij Þ

�Y4
i¼1

�jiðh0Ah�1iA Þ�jiðh0Bh�1iB Þ:

(50)

In other words, in the character expansion (10) of the
external faces, only the characters on the wedges of A
and B appear. Since there are no delta functions on the
external faces (the reason being that we work at fixed
external spins), the bubble divergences can only come
from the product of delta functions on the internal faces.
Therefore, we simplify the analysis by removing the con-
tribution of the external faces, as in Sec. IVA, which here

amounts to simply ignoring the oscillations of the charac-
ters �ji by setting ji ¼ 0, like in [9].

The partition function we want to evaluate is

Z4�dipoleð0; 0; 0; 0Þ ¼
Z Y

i<j

d�ij

Y4
i¼1

dhiAdhiB
Y
i<j

� �ðhiAh�1jA �ijhjBh
�1
iB ��1ij Þ: (51)

By a redefinition of the elements hiB  hiBh
�1
1B and

hiA  hiAh
�1
1A , i ¼ 2, 3, 4, the elements h1B, h1A are trivi-

ally eliminated. Then the faces (12), (13), (14) are used to
integrate hiA, i ¼ 2, 3, 4, which are constrained to be

hiA ¼ �1ihiB�
�1
1i ; i ¼ 2; 3; 4: (52)

Only three delta functions remain, which impose
constraints between the elements �ij and h2B, h3B, h4B.

Dropping the subscript B,

Z4-dipoleð0; 0; 0; 0Þ ¼
Z

dh2dh3dh4
Y
i<j

d�ij�ð�12h2�
�1
12 �13h

�1
3 ��113 �23h3h

�1
2 ��123 Þ

�ð�12h2�
�1
12 �14h

�1
4 ��114 �24h4h

�1
2 ��124 Þ�ð�13h3�

�1
13 �14h

�1
4 ��114 �34h4h

�1
3 ��134 Þ:

(53)

�12 can be completely absorbed into a redefinition of the other �ij  ��112 �ij. We obtain

Z4-dipoleð0; 0; 0; 0Þ ¼
Z

dh2dh3dh4d�13d�14d�23d�24d�34

�ðh2�13h
�1
3 ��113 �23h3h

�1
2 ��123 Þ�ðh2�14h

�1
4 ��114 �24h4h

�1
2 ��124 Þ�ð�13h3�

�1
13 �14h

�1
4 ��114 �34h4h

�1
3 ��134 Þ:

(54)

Notice that when a group element appears in one delta, it
also appears with its inverse in the same delta. It means that
it is now necessary to study the remaining constraints in
depth. Let us look at the constraint on the face (23),
appearing in the first line of the above equation. It reads

h2�13h
�1
3 ��113 ¼ �23h2h

�1
3 ��123 : (55)

We write hi ¼ cos�i þ i sin�in̂i � ~� and take the trace
(in the fundamental representation) on both sides. Using
the fact that trðhgÞ¼cos�hcos�g�sin�hsin�gðn̂h �n̂gÞ, it
becomes when �2, �3 � 0, �,

n̂2 � Rð�13Þn̂3 ¼ n̂2 � n̂3; (56)

where Rð�13Þ is the matrix of �13 in the three-dimensional,
vector representation. The solution of this equations are
easily found for arbitrary n̂2, n̂3,

�13 ¼ e�i�13n̂2� ~�ei	 arccos ðn̂2�n̂3Þðn̂2�n̂3Þ� ~�ei�13n̂3� ~�: (57)

The angles �13, �13 are totally free and parametrize arbi-
trary rotations around n̂2, n̂3. Notice that 	 ¼ 0, 1 is a
discrete ambiguity due to the fact that n̂3 can be rotated in
the plane spanned by n̂2, n̂3 by an angle which is twice the
angle between n̂2 and n̂3 without changing the scalar
product n̂2 � n̂3. Since it is a discrete ambiguity, we can
restrict attention to the case 	 ¼ 0. Inserting this solution

in the initial constraint, we find that h2h
�1
3 has to commute

with ei�13n̂2� ~��23. Two commuting SU(2) elements must lie
in the same U(1) subgroup generated by their common
rotation axis. As a result,

�23 ¼ e�i�13n̂2� ~�ei�23n̂23� ~�; (58)

where n̂23 is the rotation axis of h2h
�1
3 . The constraint (55)

thus admits solutions for arbitrary generic h2, h3, where
among the six real degrees of freedom of �13, �23, only
�13, �13, �23 are left undetermined. It means that three real
parameters have been fixed by the three real constraints.
The same reasoning applies to the constraint

h2�14h
�1
4 ��114 ¼ �24h2h

�1
4 ��124 . It leads to solutions for

arbitrary h2, h4 and

�14 ¼ e�i�14n̂2� ~�ei�14n̂4� ~�; �24 ¼ e�i�14n̂2� ~�ei�24n̂24� ~�;

(59)

up to some discrete ambiguity, where the angles
�14, �14, �24 are free. The final step is to insert these
solutions into the last set of three real constraints,
�13h3�

�1
13 �14h

�1
4 ��114 �34h4h

�1
3 ��134 ¼ I, and see whether

none of them are trivially satisfied. The following projec-
tion of the constraint,

tr�13h3�
�1
13 �14h

�1
4 ��114 ¼ tr h3h

�1
4 ; (60)
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gives Rðe�i�23n̂2� ~�Þn̂3 � Rðe�i�14n̂2� ~�Þn̂4 ¼ n̂3 � n̂4, which is
solved by

eið�13��14Þn̂2� ~� ¼ e�i�34n̂3� ~�eic 34n̂4� ~�; (61)

for some angles �34, c 34, up to some discrete ambiguity.
For generic h2, h3, h4, the rotation axes n̂2, n̂3, n̂4 are
linearly independent. Therefore, there is no nontrivial so-
lution in the neighborhood of the trivial solution �13 ¼
�14, �34 ¼ c 34 ¼ 0. It means that (60) indeed removes
one degree of freedom by setting �13 ¼ �14. Finally, the

constraint imposes that h3h
�1
4 commutes with ei�13n̂2� ~��34.

This fixes the two real degrees of freedom of the rotation

axis of ei�13n̂2� ~��34 and leaves one angle, denoted �34, free,

�34 ¼ e�i�13n̂2� ~�ei�34n̂34� ~�; (62)

where n̂34 is the rotation axis of h3h
�1
4 . The last set of

constraints has thus eliminated three real parameters,
meaning that we did not meet any redundancies while
solving the constraints.
The parameters left undetermined are h2, h3, h4, �13,

�13, �23, �14, �24, �34, and the set of solutions is

F ¼ fh2; h3; h4; �13 ¼ k2e
i�13n̂3� ~�; �14 ¼ k2e

i�14n̂4� ~�; �23 ¼ k2e
i�23n̂23� ~�; �24 ¼ k2e

i�24n̂24� ~�; �34

¼ k2e
i�34n̂34� ~�;withh2; h3; h4 arbitrary and k2 ¼ ei�13n̂2� ~�g: (63)

This is a fifteen-dimensional space, while there were 8 SU(2) elements to integrate in (54), i.e. 8� 3 ¼ 24 real variables.
Therefore, the constraints have put restrictions on 24� 15 ¼ 9 variables, corresponding to the number of constraints.

This means that there are no divergences coming from the product of delta functions. Defining the map H: SUð2Þ8 !
SUð2Þ3

Hðh2; h3; h4; �13; �14; �23; �24; �34Þ
¼ ðh2�13h

�1
3 ��113 �23h3h

�1
2 ��123 ; h2�14h

�1
4 ��114 �24h4h

�1
2 ��124 ; �13h3�

�1
13 �14h

�1
4 ��114 �34h4h

�1
3 ��134 Þ; (64)

the above analysis reveals that for a generic solution � 2
F , dim ker dH� ¼ 15 and rk dH� ¼ 9. Therefore the
tangent space at � decomposes as T�SUð2Þ8 ¼ T�F �
N�F , where the normal space N�F is the orthocomple-
ment of the tangent space to the space of solutions. The
restriction dH�jN�F to the normal space is an invertible
map from N�F to TðI;I;IÞSUð2Þ3. The integral over the
normal directions corresponds to the parameters that are
fixed by constraints. The partition function becomes

Z4-dipoleð0; 0; 0; 0Þ ¼
Z
F
d�

1

j detdH�jN�F j
: (65)

For generic solution �, this determinant is nonvanishing,
but it may happen that it actually vanishes on a subset of
measure zero in F . Such singularities are well-known to
arise in BF theory [18]. In two-dimensional BF, there are
such singularities on the moduli space of flat connections
[40], but it can be shown that these are integrable
(as expected since the partition function can be exactly
calculated using the character expansion as �ð2g� 2Þ
on a surface of genus g). However, there is absolutely no
generic result on such singularities beyond the two-
dimensional case, meaning that one has to deal with
them case by case. In the present case, this is quite com-
plicated because of the number of variables involved. We
will not discuss further the possibility that the integral is
divergent due to such singularities. Instead, we conclude
this section by emphasizing the fact that there are no

redundancies in the initial product of delta functions, re-
moving the expected source of divergences in spin foams.

VI. GENERIC EVALUATION OF THE BC
PARTITION FUNCTION

The technique used in the last section was developed in
[18] to integrate over the representation variety of finitely
presented fundamental groups. It can also be applied to the
BC model on generic two–complexes.
Combining (8) with (9), we see that the partition func-

tion writes as an integral over

A ¼ fA ¼ ðfhevge2�1;v2�0
; f�vfgv2�0;f2�2

Þg; (66)

subjected to the constraint

HðAÞ � fHf ¼ �v1fhe1v1
h�1e2v1

� ��1v1f
� � ��vnfhenvn

h�1e1vn
��1vnf
gf2�2

¼ I; (67)

where v1; . . . ; vn and e1; . . . ; en are the vertices and lines
around the boundary of each face f 2 �2.H is a map from

A to SUð2Þj�2j and

Zð�Þ ¼
Z
A

dA �ðHðAÞÞ: (68)

�ðHÞ is the 3j�2j-dimensional delta function over the target

space SUð2Þj�2j, �ðHÞ ¼ Q
f�ðHfÞ. Thinking of the group

elements as holonomies of a gauge field, and of Hf as the
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corresponding Wilson loops, the integral corresponds to a
lattice gauge theory on a two-complex at zero coupling.
The integral localizes on the set F ¼ H�1ðIÞ (which is
the set of flat connections in the lattice gauge theory
interpretation).

Therefore, we have to solve the constraints, meaning
that we need to find among the real degrees of freedom of
A 2A those which are free and parametrize the set of
solutions F , and those which are functions of the free
parameters as determined by the constraints. Because
ðHf ¼ IÞf2�2

is a set of polynomial equations on SU(2),

the set of solutions F is a real algebraic variety whose
dimension is the number of free parameters. For generic
solutions � 2 F , this turns out to coincide with the
dimension of the kernel of dH�. This is because

T�F ¼ ker dH�; (69)

as expected.
Now we can understand the potential divergences

coming from the product of delta functions. Notice that
the rank of dH� is rk dH� ¼ 3j�2j � ker dH� and corre-

sponds to the number of directions spanned by dH� in the

target space SUð2Þj�2j. If rk dH� is strictly less than dim

SUð2Þj�2j ¼ 3j�2j for generic �, then it means that some
directions are not explored whatever the variations around
� are. Therefore the components of the delta functions
along these directions are trivially satisfied and the
amplitude is divergent.

It is actually possible to describe the divergence rate,
following [18,35]. If the delta functions are regularized
with a thin width 1=� (using a heat kernel for instance),

then the divergence degree is rk �3j�2j�dH� . In the case
of BF theory on a two-complex �, it is possible to relate
this divergence rate to the topology of � (and even to
the spacetime topology if � is the two-skeleton of a cell
decomposition of a four-dimensional manifold). However,
in the Barrett-Crane model, we have not found a simple
topological interpretation of the divergence rate rk
3j�2j � dH�.

When rk dH� is exactly the dimension of the target

space for generic �, one can conclude that there is no
divergence coming from the product of the delta functions,
i.e. all the constraints are independent. This was the case
for the four-dipole. Moreover, the integral Zð�Þ rewrites as
an integral overF ð�Þ, and for each � 2 F ð�Þ, an integral
over the directions orthogonal to T�F ð�Þ, denoted N�F
for ‘‘normal space.’’ The directions of the normal space are
those along which the constraints fix the variations around
� to vanish. Therefore, the integral becomes

Zð�Þ ¼
Z
F ð�Þ

d�
Z
N�F

da�ðdH�ðaÞÞ

¼
Z
F ð�Þ

d�
1

detdH�jN�F
: (70)

dH�jN�F is the restriction of dH� to the normal space

(intuitively, its kernel has been removed).

VII. SOME GAUGE SYMMETRIES
AND RECURSION RELATIONS

ON THE 10J SYMBOL

A. Existence of gauge symmetries at certain solutions

Gauge symmetries around a solution� 2 F correspond
to directions which are not spanned by dH�. To see their

action, let us rewrite the �ðdH�ðaÞÞ of (70) as

�ðdH�ðaÞÞ ¼
Z
suð2Þj�2 j

db exp ihb; dH�ðaÞi; (71)

where h�; �i ¼ P
fh�; �if is the sum of the invariant inner

product over the different copies of suð2Þ. The variable
b¼fbfgf2�2

is a Lagrange multiplier imposing the con-

straint. A gauge symmetry is a�-dependent, nonzero varia-
tion ��b which leaves the action hb; dH�ðaÞi invariant,

h��b; dH�ðaÞi ¼ 0; (72)

for any variation a 2 T�A. Typically, we want a

gauge symmetry to involve nontrivial ��bf � 0 on several

faces.9

When the constraints are independent, dH� has maxi-

mal rank and there is generically no gauge symmetry. We
have seen this is the case for the four-dipole, and single
bubble contributions are finite so they have no gauge
symmetry either. This is expected in theory of discretized
gravity such as spin foams, because going on the lattice
breaks diffeomorphism invariance [26]. There is, however,
a special class of triangulations, which only admit flat
solutions and for which one would expect diffeomorphism
symmetry also in the discrete case [41]. Physically, the
gauge symmetry in the flat space case means that vertices
of the triangulation can be moved around without changing
the physics. Such a vertex translation symmetry arises for
instance for the 5-1 move configuration (arising from a
subdivision of a four–simplex into five simplices), where
the inner vertex can be moved in four directions without
changing the flatness of the configuration. While these
symmetries have been observed and (canonically) ana-
lyzed in detail in Regge calculus [27] and shown to lead
to Dirac’s hypersurface deformation algebras [28], the
(quantum) spin foam case remains mostly unexplored

9In BF theory on the torus,

ZBF 2-torus ¼
Z
SUð2Þ2

dxdy�ðxyx�1y�1Þ; (73)

the constraint forces x and y to lie in the same U(1) subgroup,
say generated by ~� � n̂. Then it is quite easy to see that the
linearized constraint dðxyx�1y�1Þ never spans the direction ~� �
n̂ 2 suð2Þ. However, this is clearly not a phenomenon we want
to call gauge symmetry.
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(with the exception of three-dimensional gravity and BF
theory in higher dimensions [17,23,24]. Assuming such
symmetries did exist, we could derive Hamiltonian con-
straint operators for the boundary wave functions defined
by the spin foam transition amplitudes. This would lead to
a canonical theory describing the amplitudes defined by
spin foams and thus to a connection between canonical
loop quantum gravity and spin foams. The case of BF
theory, where the symmetries are not broken, has been
discussed in [22–24]. For the BC model we found only
one configuration where such a symmetry occurred—the
case of 2 two-valent faces glued to each other. Indeed this
constitutes the only bubble divergence we found. Hence we
do not expect a divergence (and hence no full symmetry)
for the 5-1 move configuration.

In addition to the special class of triangulations that only
support flat solutions, such vertex translation symmetries
might arise around special (i.e. flat) solutions in more
general triangulations. The Hessian evaluated on such
solutions will have zero modes corresponding to infinitesi-
mal vertex translation symmetry [42]. Again such symme-
tries have not been discussed in the spin foam case yet.
Here we ask whether a possible similar phenomenon exist
for spin foams, i.e. symmetries which occur only at special
solutions.

Indeed we will show that some solutions � 2 F to
the constraint have gauge symmetries. We have already
mentioned that even when the constraints are independent
for generic solutions, there may be some solutions �
(a set of measure zero in F ) which are singular because
det dH�jN�F ¼ 0, meaning that ker dH� becomes larger

than T�F and not all directions of the target space

SUð2Þj�2j are spanned. Some of these singularities may
be interpreted as the appearance of gauge symmetries
(72) (but not all singularities correspond to gauge symme-
tries, since the phenomenon of footnote 9 can also occur in
singularities).

The condition (72) has to hold for any variation, in
particular when applied to a variation 
vif of a group

element �vif,

h��bf;Adð�v1fhe1v1
h�1e2v1

��1v1f
� � ��vi�1fhei�1v1

h�1eiv1
��1vi�1fÞ

� ½1� Adð�vifheifh
�1
eiþ1f�

�1
vif
Þ�
vifi ¼ 0: (74)

There are two obvious situations where this is true:
(i) when all the group elements hev are the same around

each vertex hev ¼ hv, because the operator 1�
Adð�vifheifh

�1
eiþ1f�

�1
vif
Þ is then identically zero, for

any elements �vf, (below we will need in addition

that the elements �vf only depend on the face)

(ii) when all group elements �vf, hev lie in the same

U(1) subgroup of SU(2), say generated by ~� � n̂, and
��b are variations in this direction. This is because

½1� Adðei�n̂� ~�Þ�ðn̂ � ~�Þ ¼ 0.

In both cases, we can exhibit gauge symmetries, when �
is a d-dimensional cell complex, with d � 3, using cellular
homology. The chain spaces Cið�Þ are real vector spaces,

Ci ’ Rj�ij (hence we identify chains and cochains), with
boundary operators @i and coboundary operators �i,

0! C0ð�Þ ! �0

@1
C1ð�Þ ! �1

@2
C2ð�Þ ! �2

@3
� � �! �d�1

@d
Cdð�Þ ! 0:

(75)

The boundary and coboundary operators satisfy @i�1 �
@i � 0 and �i � �i�1 � 0, and they are dual to each other.
The operator �1 sends lines to faces: if v ¼ fvege2�1

then �1ðvÞ ¼ f�1ðvÞjfgf2�2
with

�1ðvÞjf ¼
X
e�f

	efve; (76)

where 	ef ¼ 
 denotes the relative orientation between e

and f.
In the case where the elements hev only depend on the

vertices,

hev ¼ hv; and �vf ¼ �f; (77)

and on the faces, the differential of H reduces to

dHfhev¼hv;�vf¼�fgjf

¼ Adð�fÞðdhe1v1
h�1e1v1

� dhe2v1
h�1e2v1

þ � � � þ dhenvn
h�1envn

� dhe1vn
h�1e1vn

Þ;
¼ �Adð�fÞ

X
e�f

	efðdhesðeÞh�1esðeÞ � dhetðeÞh�1etðeÞÞ: (78)

Here sðeÞ, tðeÞ denote the source and target vertices of the
line e. Therefore, �1 and dH are simply related. Denote
�h ¼ dhh�1: ThSUð2Þ ! suð2Þ the Maurer-Cartan form
which maps the tangent space at h to the Lie algebra. It
becomes

dHfhev¼hv;�vf¼�fgjfðfaevgÞ
¼ ��1

f � Adð�fÞ�hvðaesðeÞ � aetðeÞÞ; (79)

for any tangent vectors aev 2 ThvSUð2Þ. The adjoint action
by�f on each face can be absorbed into a redefinition of the

Lagrange multipliers bf  Adð��1f Þbf, so that dH is basi-

cally the cellular coboundary operator �1. We notice that

hbþ @3 � idsuð2ÞðcÞ; dH�ðaÞi
¼ hb; dH�ðaÞi þ hc; ð�2 � idsuð2ÞÞ � dH�ðaÞi; (80)

using h@3 � idsuð2ÞðcÞ; xi ¼ hc; �2 � idsuð2ÞðxÞi. Thanks to

the identity �2 � �1 � 0, we see that

b � bþ @3 � idsuð2ÞðcÞ; (81)

for any c 2 C3ð�Þ � suð2Þ is a gauge transformation. This
is the same gauge symmetry as in the topological BF theory
with structure group R3. The reason is that the solution we
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are looking at is up to local rotations (at the vertices)
equivalent to the trivial solution where all group elements
are the identity, and in the neighborhood of the identity,
SU(2) looks like R3.

In the case where all group elements are generated
by a single direction, ~� � n̂, the gauge symmetry is the
same as in a U(1) BF theory. Let us parametrize the group
elements as

hev ¼ ei�evn̂� ~�; �vf ¼ ei�vfn̂� ~�: (82)

The constraintHfðAÞ ¼ I then reduces to a U(1) constraint,X
e�f

�esðeÞ � �etðeÞ ¼ 0 mod ð2�Þ; (83)

making the contact with U(1) BF theory obvious. The
privileged direction ~� � n̂ induces a natural splitting of
suð2Þ ¼ uð1Þn̂ � g? where uð1Þn̂ ¼ spanf ~� � n̂g and g?
is its orthocomplement. This also gives a natural basis in
ThevSUð2Þ,

ThevSUð2Þ ¼ R@�ev � gev?; (84)

where gev? is spanned by the derivatives with respect to
the two components of the rotation axis n̂ev of hev eval-
uated at n̂ev ¼ n̂. A similar decomposition T�vf

SUð2Þ ¼
R@�vf

� gvf? holds.

Some straightforward algebra shows that dH sends @�ev
to uð1Þn̂, and gev? as well as gvf? to g?, and that it

vanishes on @�vf
. Moreover, the restriction of dH to the

subspaces @�ev basically reduces to the cellular coboundary

operator �1,

dHfðfxev@�evgÞ ¼ ��1
fðfxesðeÞ � xetðeÞgÞ � ~� � n̂: (85)

Therefore, the action is left invariant by the transformation

b � bþ @3 � idsuð2ÞðcÞ; 8 c 2 C3ð�Þ � uð1Þn̂: (86)

Since these gauge symmetries rely on cellular homol-
ogy, they are reducible as soon as d � 4. Indeed, the gauge
parameters c are not independent. If two of them differ by
@4ðyÞ for y 2 C4ð�Þ � suð2Þ in the first case and y 2
C4ð�Þ � uð1Þn̂ in the second case, then they induce exactly
the same gauge transformation (because @3 � @4 ¼ 0).
This reducibility is well known in BF theory [17].

B. Recursion relations on the 10j symbol

1. Using the four-dipole

We consider the four-dipole configuration as in Sec. V,
where we wrote the partition function (50) with fixed spins
on the external faces. However, in this partition function,
not all solutions are of the form (77). Further, we have seen
that there is no gauge symmetry for generic solutions since
there are no redundancies in the constraints. Therefore,
instead of the partition function Z4-dipole in (50), we will

consider the following quantity:

I4-dipoleðj1B;j2B;j3B;j4B;j23;j24;j34Þ

¼
Z Y4

i¼0
dhiAdhiB

Y
1�i<j�4

d�ij

Y4
i¼1

�ðh0Ah�1iA Þ�jiBðh0Bh�1iB Þ
Y

j¼2;3;4
�ðh1Ah�1jA �1jhjBh

�1
1B �

�1
1j Þ

Y
2�i<j�4

�jijðhiAh�1jA �ijhjBh
�1
iB ��1ij Þ;

(87)

and proceed to evaluate I4-dipole in two different ways to get
recursion relations on the 10j symbol, which can be inter-
preted as a (constraint) equation on the vertex amplitude.

But first let us point out the difference between Z4-dipole
and I4-dipole. First, note that the integration variables are the

same, only the integrands and the boundary variables
differ. We have changed by hand the characters of the
external faces at vertex A in (50) like

Y4
i¼1

�jiðh0Ah�1iA Þ !
Y4
i¼1

�ðh0Ah�1iA Þ

¼ X
j1A;j2A
j3A;j4A

Y4
i¼1

djiA�jiAðh0Ah�1iA Þ: (88)

This allows us to satisfy the special condition (77) on the
elements hev at the vertex A. Notice that the delta functions
have an expansion onto characters similar to the initial
characters of (50). However, in Z4-dipole, the spins of the

characters �jiðh0Ah�1iA Þ at the vertex A and of the characters

�jiðh0Bh�1iB Þ at the vertex B are the same, because they

correspond to the same (external) faces going along both A
and B. When putting some additional constraints in
I4-dipole, the equality jiA ¼ jiB ¼ ji is broken because

more modes are necessary to enforce the condition (77)
at vertex A.
The dipole possesses six internal faces. Combining the

constraint (88) with the effective face weights of the faces
ð1iÞ, for i ¼ 2, 3, 4, imposes in turn that hiB ¼ hjB, for any

1 � i < j � 4. Indeed,

�ðh0Ah�11A Þ�ðh0Ah�1iA Þ
Z

d�1i�ðh1Ah�1iA �1jhiBh
�1
1B �

�1
1i Þ

¼ �ðh0Ah�11A Þ�ðh0Ah�1iA Þ�ðhiBh�11B Þ: (89)

As for the three remaining faces (23), (24), (34), the delta
functions of their effective face weights are automatically
satisfied thanks to (89), i.e. hiAh

�1
jA �ijhjBh

�1
iB ��1ij ¼ I

VALENTIN BONZOM AND BIANCA DITTRICH PHYSICAL REVIEW D 88, 124021 (2013)

124021-16



(for any �ij). Therefore, these delta functions become

redundant, confirming in this case the existence of gauge
symmetries. To avoid the divergences associated to these
redundancies, observe that we have not included the effec-
tive face weights of the faces (23), (24), (34) in I4-dipole.

Instead, we have only picked up one mode of their char-
acter expansion [the last line of products in (87)]. Due to
(89), these characters simply evaluate to the dimension of
their representation,

Y4
i¼1

�ðh0Ah�1iA Þ�ðhiBh�11B Þ
Y

2�i<j�4
�jijðhiAh�1jA �ijhjBh

�1
iB ��1ij Þ

¼Y4
i¼1

�ðh0Ah�1iA Þ�ðhiBh�11B Þ
Y

2�i<j�4
djij : (90)

This product of dimensions is the sole dependence of
I4-dipole in the spins j23, j24, j34. If these spins were summed

(with measure djij) to form the effective face weight as in

Z4-dipole, we would get
P

jij
d2jij , which is obviously diver-

gent (it is the formal expansion of �ðIÞ). The fact that the
dependence of I4-dipole on jij (2 � i < j � 4) is just djij is

the signature of the gauge symmetry, similar to the case of
spherical bubbles in BF theory [22]
Therefore, the only nontrivial contribution to I4-dipole is

the product of characters on the external faces at the vertex
B. With the change of variable h ¼ h0Bh

�1
iB (this quantity is

independent of i ¼ 1, 2, 3, 4), we finally get

I4-dipole ¼ dj23dj24dj34

Z
dh

Y4
i¼1

�jiBðhÞ: (91)

The second way to evaluate I4-dipole is through a charac-

ter expansion of all the delta functions, and integrating the
variables �ij. This leads to

I4-dipole ¼
X

j1A;j2A;j3A;j4A
j12 ;j13 ;j14

Q
4
i¼1 djiA

dj23dj24dj34

�Z Y4
i¼0

dhiA
Y

1�i<j�4
�jijðhiAh�1jA Þ

Y4
i¼1

�jiAðh0Ah�1iA Þ
�

�
�Z Y4

i¼0
dhiB

Y
1�i<j�4

�jijðhiBh�1jB Þ
Y4
i¼1

�jiBðh0Bh�1iB Þ
�
: (92)

The two quantities in square brackets are 10j symbols, according to the definition (1). Equating this formula with (91)
leads to

(93)

This is a new sum rule for 10j symbols. The summand is not the square of the 10j symbol as in the spin foam representation
(54) of Z4-dipole because of the constraints (88), which implies jiA � jiB. Moreover, the spins jiA are summed here while the
boundary spins ji in Z4-dipole are fixed. The final difference is that the spins j23, j24, j34 are arbitrary but fixed, instead of
being summed, to avoid the divergences due to the gauge symmetries.

Our formula can be specialized to specific values of the free spins jiB, i ¼ 1, 2, 3, 4, j23, j24, j34. For instance, setting
jiB ¼ 0, the 10j symbol in the second bracket collapses to a squared 6j symbol, and the integral on the right- hand side is
trivialized as �0ðhÞ ¼ 1,
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(94)

Another interesting way to use our main formula (93) is to sum over one of the spins jiB, say j1B, with measure dj1B .

Then the integral on the right-hand side simplifies,

X
j1B

dj1B

Z
dh

Y4
i¼1

�jiBðhÞ ¼
Z

dh�ðhÞ�j2BðhÞ�j3BðhÞ�j4BðhÞ ¼ dj2Bdj3Bdj4B : (95)

Therefore,

(96)

One can then further specialize the values of the remaining
free spins.

To conclude this section, we compare briefly our
calculation with the four-dipole in the SU(2) BF case.
Instead of 10j symbols, the vertex weight is a 15j symbol
(one additional degree of freedom per tetrahedron). As this
is a topological case, three delta functions are redundant in
the group integral formulation, exactly like in our calcu-
lation. The amplitude can thus be regularized the same
way, by fixing the spins on three internal faces. Once all
delta functions are taken into account, the special solutions
(77) hold at the vertices A and B. Therefore, there is no
integral like in the right-hand side of (93). This integral is
really the remnant of the way the BF theory is modified to
get the BC model (i.e. imposing the simplicity constraints
in a specific way), which survives even when the amplitude
is restricted by hand to the special BF-like solutions (77).

2. Using the tetrahedral graph

We consider a piece of triangulation formed by four four-
simplices, labeled 1, 2, 3, 4, connected to one another. The
tetrahedra they share (called internal) are therefore labeled
by pairs ðijÞ, 1 � i < j � 4. The boundary has eight tetra-
hedra, each four-simplex contributing to two, denoted iA,
iB. The two boundary tetrahedra of the simplex i share a

triangle labeled ðAiBÞ, for i ¼ 1, 2, 3, 4. The boundary
tetrahedra of the simplices i, j share two triangles, one
belonging to the tetrahedra of type-A and one to the tetra-
hedra of type B. We label these triangles ðijAÞ and ðijBÞ
and notice that they also belong to the internal tetrahedra
ðijÞ. The internal structure has four triangles, which are all
shared by three 4-simplices, and are therefore labeled ðijkÞ,
for 1 � i < j < k � 4. The triangle ðijkÞ belongs to the
three internal tetrahedra ðijÞ, ðjkÞ, ðikÞ.
In the dual picture, four-simplices are vertices, tetrahe-

dra lines and triangles faces. The two-complex, denoted
�4, is depicted (as a graph) in Fig. 2. It has four vertices
i ¼ 1, 2, 3, 4, connected to one another by six (internal)
lines ðijÞ, for 1 � i < j � 4. The tetrahedra on the

1 2

34
A

B

B

A A

B

A

B

FIG. 2. There are four 4-simplices (represented as vertices), all
connected to one another by a tetrahedron (represented as a
edge).
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boundary of the gluing are represented by eight half-lines
labeled ðiAÞ, ðiBÞ for i ¼ 1, 2, 3, 4, each vertex i having
two of them. The external faces are broken faces dual to the
boundary triangles. The external face ðAiBÞ goes along the
half-lines ðiAÞ and ðiBÞ, and there are four of them. There
are twelve other external faces, labeled ðijAÞ (six of them),
and ðijBÞ (six others), for 1 � i < j � 4. The face ðijAÞ
goes along the half-line ðiAÞ, then the internal line ðijÞ
which connects the vertices i to j, and continues along the
half-line ðjAÞ (similarly for ðijBÞ). The internal faces all

have three vertices, which allows to have them labeled
ðijkÞ and there are four of them.
To write the spin foam amplitude on �4, we fix the spins

of the external faces: ji for the face ðAiBÞ, jijA and jijB for

the faces ðijAÞ, ðijBÞ. The internal faces are closed with
three lines, and thus carry effective weights of faces with
n ¼ 3. The line ðijÞ has two group elements hij, hji,

respectively associated to the half-line connected to i and
to j. The external half-lines have group elements hiA, hiB.
The partition function is

Z�4
ðfjig; fjijAg; fjijBgÞ ¼

Z Y4
i¼1

dhiAdhiB
Y
i�j

dhij
Y

1�i<j<k�4
½d�kðijÞd�jðkiÞ�ðhijh�1ik �kðijÞhkih�1kj �

�1
kðijÞ�jðkiÞhjkh�1ji �

�1
jðkiÞÞ�

�Y4
i¼1

�jiðh�1iA hiBÞ
Y

1�i<j�4
�jijAðhiAh�1ij Þ�jijAðhjih�1jA Þ�jijBðhiBh�1ij Þ�jijBðhjih�1jB Þ: (97)

Notice that the internal faces form a spherical bubble, identical to the boundary of a tetrahedron. Therefore, the
contribution of this bubble can be evaluated as an application of the result in Sec. IV. We ignore the external faces
(putting their spins to zero), and use the formula (40) for the BC model on a surface of Euler characteristic � ¼ 2 with
E ¼ 6 lines, to get

Z�4
ð0; 0; 0Þ ¼ �ð8Þ ¼ �8

9450
: (98)

This is obviously finite, meaning that the four deltas in (97) are all independent. However, if we could project onto the
special configurations (77), there would be a gauge symmetry of the BF type, which in the case of �4 corresponds to one
redundant delta (like for any spherical bubble in the BF model). To project onto solutions of the form (77), we proceed like
in the four-dipole case. We change some of the characters of the external faces with deltas.

Let us consider

I�4
¼

Z Y4
i¼1

dhiAdhiB
Y
i�j

dhij
Y

1�i<j<k�4
d�kðijÞd�jðkiÞ

Y4
i¼1

�jiðh�1iA hiBÞ
Y

1�i<j�4
�jijBðhiBh�1ij Þ�jijBðhjih�1jB Þ

� �j32Aðh3Ah�132 Þ�j41Aðh4Ah�141 Þ�j42Aðh4Ah�142 Þ
�Y
i¼1;2

Y
j¼1;2;3;4j�i

�ðhiAh�1ij Þ
�
�ðh3Ah�131 Þ�ðh3Ah�134 Þ

� �ðh4Ah�143 Þ�ðh12h�113 �3ð12Þh31h�132 �
�1
3ð12Þ�2ð31Þh23h�121 �

�1
2ð31ÞÞ�ðh13h�114 �4ð13Þh41h�143 �

�1
4ð13Þ�3ð41Þh34h�131 �

�1
3ð41ÞÞ

� �ðh12h�114 �4ð12Þh41h�142 �
�1
4ð12Þ�2ð41Þh24h�121 �

�1
2ð41ÞÞ�j234ðh23h�124 �4ð23Þh42h�143 �

�1
4ð23Þ�3ð42Þh34h�132 �

�1
3ð42ÞÞ: (99)

The group variables we integrate are the same as in (97), and the products of these group elements appearing in the
integrand are also the same. Only the functions differ. The four external faces ðAiBÞ are untouched, as well as the six
external faces ðijBÞ. The characters �jijA along the wedges of the external faces ðijAÞ have almost all been replaced with
deltas, except for the wedge of the face ð23AÞ at the vertex 3, the wedge of the face ð14AÞ at the vertex 4, and the wedge of
the face ð24AÞ at the vertex 4. Finally, the delta on the internal face (234) has been changed with a single mode �j234 , to
avoid a divergence due to a gauge symmetry as we will see.

Now let us consider the effects of all these new deltas in I�4
. We have h12 ¼ h13, h21 ¼ h23. Therefore, the constraint on

the face (123) simplifies to h31 ¼ h32,

�ðh1Ah�112 Þ�ðh1Ah�113 Þ�ðh2Ah�121 Þ�ðh2Ah�123 Þ�ðh12h�113 �3ð12Þh31h�132 �
�1
3ð12Þ�2ð31Þh23h�121 �

�1
2ð31ÞÞ

¼ �ðh1Ah�112 Þ�ðh1Ah�113 Þ�ðh2Ah�121 Þ�ðh2Ah�123 Þ�ðh31h�132 Þ: (100)

Similarly, we have h13 ¼ h14, h31 ¼ h34 which means that the constraint on the face (134) simplifies to h41 ¼ h43,
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�ðh1Ah�113 Þ�ðh1Ah�114 Þ�ðh3Ah�131 Þ�ðh3Ah�134 Þ�ðh13h�114 �4ð13Þh41h�143 �
�1
4ð13Þ�3ð41Þh34h�131 �

�1
3ð41ÞÞ

¼ �ðh1Ah�113 Þ�ðh1Ah�114 Þ�ðh3Ah�131 Þ�ðh3Ah�134 Þ�ðh41h�143 Þ; (101)

and for the face (124), we get h42 ¼ h41,

�ðh1Ah�112 Þ�ðh1Ah�114 Þ�ðh2Ah�121 Þ�ðh2Ah�124 Þ�ðh12h�114 �4ð12Þh41h�142 �
�1
4ð12Þ�2ð41Þh24h�121 �

�1
2ð41ÞÞ

¼ �ðh1Ah�112 Þ�ðh1Ah�114 Þ�ðh2Ah�121 Þ�ðh2Ah�124 Þ�ðh41h�142 Þ: (102)

As a result of all the deltas in (99), we find the set of solutions of the constraints,

F �4
¼ fh12 ¼ h13 ¼ h14 ¼ h1A; h21 ¼ h23 ¼ h24 ¼ h2A; h31 ¼ h32 ¼ h34 ¼ h3A; h41 ¼ h42 ¼ h43 ¼ h4Ag; (103)

and the �s can take arbitrary values. The character on the fourth face, (234), is thus simply evaluated on the identity,

�j234ðh23h�124 �4ð23Þh42h�143 �
�1
4ð23Þ�3ð42Þh34h�132 �

�1
3ð42ÞÞjF �4

¼ dj234 : (104)

Clearly, a delta on that face would have been redundant and caused a divergence of the type �ðIÞ ¼ P
j234

d2j234 . This is the
sign of the gauge symmetry which exists when projecting onto F �4

.
The other characters going along the half-lines ðiAÞ simplify,

�j32Aðh3Ah�132 Þ�j41Aðh4Ah�141 Þ�j42Aðh4Ah�142 ÞjF �4
¼ dj32Adj41Adj42A : (105)

The only remaining nontrivial part is the integrals over hiB. Performing the changes of variables hi � hiBh
�1
ij , it finally

becomes

I�4
¼ dj234dj32Adj41Adj42A

Y4
i¼1

�Z
dhi�jiðhiÞ

Y
j�i

�jijBðhiÞ
�
; (106)

where we recognize these integrals as the same as the ones on the right-hand side of (93).
A second way to evaluate I�4

is by expanding all deltas as � ¼ P
jdj�j and integrating the group elements � using the

orthogonality relation (A4). For each vertex i ¼ 1, 2, 3, 4, we get a 10j symbol,

Z
dhiAdhiB

Y
j�i

dhij�jiðhiAh�1iB Þ
Y
j�i

�jijAðhiAh�1ij Þ�jijBðhiBh�1ij Þ
Y
j<k
j;k�i

�jijkðhijh�1ik Þ: (107)

Equating the two ways to evaluate I�4
finally gives
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(108)

×

×

In summary, as in the case of classical discrete gravity,
there are special solutions to the delta function con-
straints describing the BC model around which gauge
symmetries occur. By changing the partition functions
appropriately, we can enforce a projection onto these
special solutions. These altered partition functions
will have gauge symmetries, and this can be used to
derive equations involving the vertex amplitude of the
BC model.

VIII. DISCUSSION

We discussed possible divergences in spin foam
models, in particular in the Barrett-Crane model. The
reason for considering this model is that the relation of
divergences to gauge symmetries is easily found in such
a model for which the partition function can be rewritten
as an integral over a space of flat connections. This also
explains our choice of edge weight factors and face
weights.

We presented a simple method to determine the
(single bubble) divergences for general spin foam models.
We argue that, to this end, one just needs to evaluate the
spin foam model on a two-dimensional surface, and we
gave an explicit formula for a large class of models,
encompassing BC and EPRL/FK. This allows us to deduce
the influence of the edge and face weights on the conver-
gence of the models very easily. We noticed that requiring
invariance under face divisions and in addition under
(two-valent) edge subdivisions leads to triangulation-
invariant two-dimensional models, which have, however,
divergent spherical bubbles.

We discussed in detail the effective face weights as they
capture the basic, possibly distributional, building blocks
for the models. We found that for the BC model the
effective face weights (for faces with more than two edges)
are (almost everywhere) regular functions. For the EPRL/
FK models, finiteness depends on the choice of edge and
face weight factors. However, applying our arguments on
how to evaluate spherical bubbles, one can consider the
square of the effective face weights. This will identify a
distributional character of the effective face weights also
for these models. The (Lorentzian) EPRL/FK model has
been argued to be finite for the 1-5 move and have only a
logarithmic divergence for the four-dipole [10]. This sug-
gests that the effective face weights for faces with more
than two edges might also be finite functions and not be
distributional in this case.
For spin foams, recent work [33] suggested the notion of

wave front sets, which specifies the nonsmooth part of a
distribution, in order to study the large spin limit and
regularization issues. The wave front sets have been iden-
tified for both the Barrett-Crane and the EPRL models in
[33]; thus, there is clearly the potential for divergent be-
havior. Indeed if the wave front sets correspond to diver-
gences, regularization is needed (to define products of
distributions). In that case, the conclusions of [33] for the
large spin limit regime would have to be reconsidered, as
this work assumed that products can be formed from the
distributions that occur as amplitudes in spin foams. Here
we found that (for higher than two-valent faces) the wave
front sets for BC correspond to noncontinuous or non-
smooth but also nondivergent behavior (modulo sets of
measure zero).
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Furthermore we analyzed in detail the four-dipole case
for the BC model. With our choice of edge and face weight
the spin picture does not allow for a definite conclusion
regarding finiteness. We therefore used the fact that the BC
amplitudes can be rewritten as integrals over some sets of
flat connections, which renders the problem accessible
through the method of [18]. We showed that no redundan-
cies of delta functions arise, thus excluding divergences
due to this reason (another possible source are the measure
zero singularities though).

Redundancies of delta functions would be the sign
of gauge symmetries. As such redundancies are not
occurring—and in addition we found convincing argu-
ments that the BC model is finite on a regular
(i.e. involving only faces with more than two faces)
triangulation—we have to conclude that gauge symme-
tries, which could be connected to diffeomorphisms, are
not present. This even seems to hold for configurations,
for instance the 5-1 Pachner move, for which the symme-
tries exist on the classical (Regge) level [19].

There are however special solutions (of measure zero)
for which delta function redundancies can be identified.
Similarly there are measure zero solutions in gravity (the
flat solutions) around which (linearized) gauge symmetries
can be found. We discussed those special solutions and
described the related gauge symmetries for the BC model.
We developed a method to derive associatedWard identity-
like equations on the vertex amplitude. This is the first
proposal that enables us to extract constraints from a
quantum theory with broken gauge symmetries, i.e. equa-
tions that have to hold for the boundary wave function
(which modulo measure factors can be identified with
the vertex amplitude), extending in this way the tools
introduced [22] for topological theories.

The question arises whether those special symmetries
can be the seed for the occurrence of more general sym-
metries, which might emerge under coarse graining [43].
The heuristic argument is that coarse graining leads to an
effective description of the coarse model on a much finer
triangulation. On this fine triangulation, the curvature per
building block is very small, so that one is near the flat
case, that is on the special solutions around which gauge
symmetries do exist.

This mechanism actually works for classical systems
[44] as well as for one-dimensional quantum systems
[45]. In this case the amplitudes might become more and
more divergent under coarse graining, as is indeed the case
for one-dimensional discretized quantum systems [45]. We
will leave this question for future work.

Another interesting question is whether the wave front
analysis performed in [33] can be used to analyze the
gauge symmetries around special solutions also for more
general spin foam models. Wave fronts are a refinement of
the singular support to the cotangent space. We also used
the cotangent space in (71) to define the notion of gauge

symmetries we applied in this work. This might make the
methods presented here applicable to other spin foam
models as well.
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APPENDIX: SU(2) CALCULUS

We parametrize group elements as h ¼ ei�n̂� ~� ¼
cos�Iþ i sin �n̂ � ~�, where n̂ 2 S2 is the rotation axis
and � 2 ½0; �� is the class angle. The vector ~� ¼
ð�x;�y; �zÞ is the 3-vector formed by the Pauli matrices,10

which transforms as a covector under the adjoint action

g�ig
�1 ¼ X

j¼x;y;z
Rðg�1Þij�j; (A2)

RðgÞ being the rotation matrix in the vector representation,
g 2 SUð2Þ. From this, the orbit of the adjoint action on the
group is found,

ghg�1 ¼ cos �Iþ i sin�ðRðgÞn̂Þ � ~� ¼ ei�ðRðgÞn̂Þ� ~�; (A3)

meaning that g rotates the rotation axis of h without
changing its class angle.
The matrix elements in the irreducible representation of

spin j 2 N=2 satisfy the orthogonality relation

Z
SUð2Þ

dhDðj1Þm1n1ðhÞDðj2Þm2n2ðhÞ ¼
1

dj1
�j1j2�m1m2

�n1n2 : (A4)

Here dh is the normalized Haar measure, dj � 2jþ 1 is

the dimension of the representation and DðjÞ the Wigner

matrices. A useful property is DðjÞmnðh�1Þ ¼ DðjÞnmðhÞ for any
h 2 SUð2Þ. The character in the representation of spin j is
the trace

�jðhÞ ¼ �jðh�1Þ ¼
Xj

m¼�j
eim� ¼ sin dj�

sin �
: (A5)

It satisfies �jðIÞ ¼ dj. The convolution of characters is

Z
dg�j1ðh�11 gÞ�j2ðg�1h2Þ ¼ �j1j2

1

dj1
�j1ðh�11 h2Þ: (A6)

Functions in L2ðSUð2Þ; dhÞ admit expansions over the

Wigner matrices, fðhÞ ¼ P
j2N=2

Pj
m;n¼�j

ffiffiffiffiffi
dj

p
fðjÞmnD

ðjÞ
mnðhÞ,

10They read

�x¼ 0 1
1 0

� �
; �y¼ 0 �i

i 0

� �
; �x¼ 1 0

0 �1
� �

: (A1)
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which is the Fourier expansion. Class functions are the
functions invariant under the adjoint action, so that
they only depend on the conjugacy class, i.e. the class
angle. Characters provide a basis of class functions. The
Dirac delta over SU(2) is the distribution such thatR
SUð2Þ dg�ðgÞfðgÞ ¼ fðIÞ, and it has the expansion

�ðgÞ ¼ X
j2N=2

dj�jðgÞ: (A7)

The delta over the conjugacy class of angle c is

�c ðhÞ ¼
Z
SUð2Þ

d��ðh�gc�
�1Þ ¼ X

j2N=2

�jðgc Þ�jðhÞ;

(A8)

where gc 2 SUð2Þ is any representative of the conjugacy

class.
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Poincaré 13, 1083 (2012).

[24] V. Bonzom, Phys. Rev. D 84, 024009 (2011).
[25] J.W. Barrett and C.M. Steele, Classical Quantum Gravity

20, 1341 (2003); J.W. Barrett, R. J. Dowdall, W. J.
Fairbairn, H. Gomes, and F. Hellmann, J. Math. Phys.
(N.Y.) 50, 112504 (2009).

[26] B. Bahr and B. Dittrich, Classical Quantum Gravity 26,
225011 (2009).
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