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We obtain an explicit two-point function for the Maxwell field in flat Robertson-Walker spacetimes,

thanks to a new gauge condition which takes the scale factor into account and assumes a simple form.

The two-point function is found to have the short distance Hadamard behavior.
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I. INTRODUCTION

Despite numerous works on quantum field in curved
spacetimes [1,2] and the importance of the flat Robertson-
Walker (RW) spacetimes in current cosmology, it seems
that, until recently, the search for a two-point function for
the electromagnetic field in such spacetimes has been
overlooked. In this paper, we make a proposal to fill this
gap. Precisely, we derive a two-point function [whose ex-
plicit expression is given by Eq. (13)] for the electromag-
netic field in flat RW spacetimes. To this end we use the
Gupta-Bleuler (GB) quantization procedure and explain
why it applies in this context. The quantization is performed
in a covariant gauge [whose explicit expression is given
by Eq. (9)] which reduces to the Lorenz gauge condi-
tion in a Minkowski space.

Two-point functions are of central importance in quan-
tum field theory. In curved spacetimes, explicit expressions
are known in a number of cases. For maximally symmetric
spaces, general expressions have been given for both the
scalar and the vector field [3]. The propagator of the
graviton is the subject of continuous works especially in
de Sitter and anti–de Sitter spaces (see for instance [4–6]
for recent works). Nevertheless, an explicit expression for
the two-point function of the (quantum) Maxwell field (the
‘‘photon’s propagator’’) in RW spaces is seemingly miss-
ing. A recent proposal in conformally flat spacetimes has
been made [7] in which the electromagnetic field appears
as a part of a six-dimensional SO0ð2; 4Þ-invariant field
in a conformally invariant gauge. A quantization using
the Dirac’s procedure for constrained systems has also
been recently proposed in flat RW spacetimes [8]. But no
explicit four-dimensional two-point function appears in
these two works. In the second one, the choice of Dirac’s
method is mainly motivated by the alleged inapplicability
of the GB condition in cosmological spacetimes. This is
related to the fact that this condition makes explicit use of
the annihilation operators, while it is well known that there

is no preferred vacuum state in a general curved space.
This has been the starting point of a discussion about the
possible contribution of scalar photons to the dark energy
[9]. However, following Parker [10] the situation of a flat
RW space appears as an exception: since the Maxwell
equations are conformally invariant, the choice of a pre-
ferred vacuum state, the so-called conformal vacuum, is
possible in such conformally flat spacetimes. We will see
that the GB condition makes sense in this context.
The quantization method introduced by Gupta and

Bleuler was designed for the electromagnetic field in the
Lorenz gauge in the Minkowski space. In this original
application, the classical Maxwell equations are replaced
by other equations (@2A� ¼ 0) which provide the modes

used in this explicit canonical quantization. Unfortunately,
this process, using the Lorenz gauge in more general
spacetimes, yields equations which are often intractable
in practice. This is precisely the situation in flat RW
spacetimes. Fortunately, the GB process can be adapted
to gauges other than the Lorenz one. The difficulty can
then be circumvented thanks to the conformal relation
between the flat RW space and its global Minkowskian
chart, that is, the chart in which the metric is conformal to
the Minkowskian metric � ¼ diagðþ;�;�;�Þ. The point
is that the conformal map allows us to choose a new gauge
condition, in place of the Lorenz gauge on the flat RW
manifold, which is conformally mapped to the Lorenz
gauge in the Minkowskian chart. Then, thanks to the
conformal invariance of the Maxwell equations, the prob-
lem in the Minkowskian chart is just that of the historical
GB method.

II. AVIEWOF THE GB QUANTIZATIONMETHOD

In this paragraph we give a concise and practical view of
the usual GB quantization method focusing on the electro-
magnetic field. This quantization, historically associated
with the Lorenz gauge, is actually more general and can be,
in particular, applied in other gauges. Essentially, the GB
method can be viewed as an algorithm with the following
steps (commented hereafter):
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(1) Define a scalar product on the space of the solutions
of the field equations. This product is degenerate if
gauge freedom is present.

(2) Extend the space of solutions (by considering new
field equations) in order to eliminate the degeneracy
of the scalar product.

(3) Apply canonical quantization to the field which is a
solution of the extended equations.

(4) Select the subspace of physical states, which corre-
spond to the initial (not extended) field equations
using the so-called GB condition.

Note that only the second and the fourth points are
specific to the GB scheme. The others belong to the stan-
dard canonical quantization, which can be presented in a
number of equivalent ways.

In the first step, we consider a general bosonic field A
on a globally hyperbolic curved spacetime. The field is
assumed to satisfy the Euler-Lagrange equations coming
from some quadratic Lagrangian L. Then, a natural
Hermitian sesquilinear form on the space of solutions of
the Euler-Lagrange equations results from the Lagrangian
(see for instance Appendix B of [11] for a proof). For two
solutions A and B, it reads

hA; Bi ¼ �i
Z
�
��J �ðA; B�Þ; (1)

where � is a Cauchy surface, and J � is the divergenceless
current corresponding to L. For the free Maxwell field, it
reads

J �ðA; BÞ :¼ A�

@L

@r�B�

� @L

@r�A�

B�: (2)

Note that the general expression (1) is for the free scalar
field nothing but the Klein-Gordon scalar product. In the
case of the Maxwell field, the gauge invariance makes the
above scalar product degenerate. This is due to the gauge
solutions which are orthogonal to all solutions, including
themselves. With no additional consideration, this property
prohibits the canonical quantization.

The second step is the first part specific to the GB
procedure. It amounts to finding equations EA ¼ 0 which
are the Euler-Lagrange equations derived from a quadratic
Lagrangian L0 and which satisfy the following two
conditions. First, the space of solutions of EA ¼ 0 can
be equipped with a nondegenerate Hermitian product.
Second, these equations, together with some constraint
CA ¼ 0, are equivalent to the Maxwell equations MA¼0,
together with a (most frequently covariant) gauge condition
GA ¼ 0. Thus, the spaces of solutions of EA ¼ 0 and
MA ¼ 0 coincide on the subsets defined by their respective
constraint:

ðEA ¼ 0 and CA ¼ 0Þ , ðMA ¼ 0 and GA ¼ 0Þ:
(3)

In the historical case, for instance, one has EA� ¼ @2A�,

CA ¼ GA ¼ @ � A, andMA� ¼ @2A� � @�ð@ � AÞ.
Then, the third step consists in quantizing the field

defined through the equation EA ¼ 0. This part follows
the canonical quantization scheme and is not specific to the
GB method. In curved spacetimes it thus shares all the
well-known difficulties of the quantization. In practice, it is
performed (when possible) through the following steps
(see for instance [2]): first find a basis of modes solution
of the equation EA ¼ 0with respect to the (nondegenerate)
scalar product, and then determine (choose) the so-called
positive frequency modes. From them, one obtains the
annihilation (and creation) operators, the vacuum, the
quantum field, the two-point functions, etc.
Finally, the last step of the GB scheme is to determine

the physical states. These are the states which correspond
to the classical positive frequency solutions satisfying the
constraint CA ¼ 0. They can be determined thanks to the
so-called GB condition. It reads in general

CÂðþÞj�Ai ¼ 0; (4)

(see for instanceAppendixB of [12] for this straightforward

generalization of the historical condition rÂðþÞj�Ai ¼ 0).

In this expression, the operator ÂðþÞ is the annihilator part of
the quantum field Â and j�Ai the state corresponding to the
classical solution A [that is, h0jÂðxÞj�Ai ¼ AðxÞ]. Finally,
the quantum field Â fulfills (3) in the mean on physical
states:

h�A1
jMÂj�A2

i ¼ 0 and h�A1
jGÂj�A2

i ¼ 0; (5)

as soon as j�A1
i, j�A2

i are physical states.
It is worth noting that the well-known ambiguity in the

definition of a vacuum in curved spacetimes affects the GB
method both in the quantization of the field and in the
determination of the physical states. Nevertheless, we will
argue in the following that in the particular case of flat RW
spacetime, for which the choice of the so-called conformal
vacuum is possible, the GB procedure is still applicable.

III. LESSON FROM LORENZ
GAUGE QUANTIZATION

First, let us attempt to apply the procedure just described to
quantize the Maxwell field in the Lorenz gauge r � A ¼ 0
in a conformally flat RW space. We first enlarge the
space of solutions of the Maxwell equations to that of the
equations

hA� þ R�
�A� ¼ 0: (6)

These equations can be obtained as usual by adding the
gauge term 1

2 ðr � AÞ2 to the Lagrangian of electromagne-

tism 1
4F

2, where F is the Faraday field strength tensor.

In the Lorenz gauge they coincide with the Maxwell equa-
tions. We then have to determine a basis of modes solution
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of (6). One may attempt to take advantage of the conformal
flatness of the spacetime. To this end, let us call
Minkowskian coordinates the global coordinates system
in which the RW metric element assumes the form

ds2 ¼ a2ð�Þðd�2 � dx2Þ: (7)

In that system of coordinates, Eq. (6) reads

@2A� �W�@ � Aþ ð@� �W�ÞW � A ¼ 0; (8)

where W :¼ d ln a2. Unfortunately, we did not succeed in
finding a family ofmodes solution of Eq. (8). Consequently,
we cannot explicitly complete the quantization process,
although quantization is still theoretically possible [13].

Let us remark that the one-form W, which appears in
Eq. (8), is generally defined by W :¼ d ln�2, for a real
positive conformal factor �ðxÞ. In the system of coordi-
nates used in (7), one has �ðxÞ ¼ að�Þ and the only non-
vanishing component of W is W� ¼ 2H , two times the
comoving Hubble factor. Throughout this paper, we never-
theless keep the general notation W, since the derivations
of all the expressions in whichW appears do not make use
of the exclusive dependence in �, and they are still valid for
a :¼ aðxÞ.

Now, the above unsuccessful attempt leads us to a prac-
ticable route. Indeed, a look at Eq. (8) makes obvious that
the conformal flatness does not lead to much simplification
here. Let us consider more closely the equations (6) and (8)
by themselves. Equation (8) is simply (6) written in the
Minkowskian system of coordinates. Now, it is straightfor-
ward to show that Eq. (8) can also be obtained by adding to
the usual Lagrangian of electromagnetism in Minkowski
space the gauge-fixing term 1

2 ð@ � AþW � AÞ2. In short,

writing the Maxwell equations in Lorenz gauge in the RW
space is equivalent to writing the Minkowskian Maxwell
equations in the gauge @ � AþW � A ¼ 0.

The point is that writing equations over the RW mani-
fold in the global Minkowskian chart, in which the
Robertson-Walker metric element is (7), is equivalent to
performing a conformal transformation (see for instance
[2]) between the RW space and a Minkowski space, that is,
a Weyl rescaling between the metric manifolds ðR4; gÞ and
ðR4; �Þ, where g and � are, respectively, the RW and the
Minkowskian metric diagðþ;�;�;�Þ. Under such a re-
scaling, the Maxwell equations are invariant and a form
field solution A is mapped to itself since its so-called
conformal weight is zero. In fact, the rescaling map in-
duces a transport of all mathematical objects (fields, op-
erators, etc.) between structures defined on the spacetimes.
In particular, even the equations which are not conformally
invariant can be moved between spaces. From this point
of view, quantizing the Maxwell equations in Lorenz
gauge in RW spacetime is equivalent to quantizing the
Maxwell equations (since they are conformally invariant)
in the Weyl rescaled gauge @ � AþW � A ¼ 0 in the
Minkowski space.

Finally, the lesson from the unsuccessful Lorenz gauge
quantization is that if one wishes to obtain a two-point
function, one may recognize that the Lorenz gauge condi-
tion in the RW space is not the best choice. Since the
Maxwell equations in Lorenz gauge in Minkowski space
are well known, it is far more convenient to start from a
gauge condition in RW space which reads as the Lorenz
gauge in the Minkowskian coordinates (or equivalently
which is conformally mapped to the Lorenz gauge in the
Minkowski space). We take this approach in the sequel.

IV. QUANTIZATION IN THE W GAUGE

The Lorenz gauge condition in Minkowski space can be
conformally lifted to the RW space where it reads

r � A�W � A ¼ 0; (9)

or, specializing to the case a ¼ að�Þ,
r � A ¼ 2HA�:

As explained in the previous section, we quantize the
Maxwell equations on RW spaces in the above W gauge,
because in the Minkowskian system it reduces to the
historical GB quantization in Minkowski space in Lorenz
gauge. From the point of view of conformal transforma-
tions, this amounts to pulling back in RW space the whole
structure (enlarged space of solutions, basis of modes, two-
point function, etc.) involved in the quantization process.
Let us consider this construction step by step.
Because of the gauge invariance, the scalar product

obtained from the Lagrangian over the space of solutions
of the Maxwell equations is degenerate. Following the GB
method, one first enlarges the space of solutions. This is
done by adding to the Lagrangian of electromagnetism the
gauge term 1

2 ðr � A�W � AÞ2. The Euler equations then

read

ðMAÞ� þ ðr� þW�Þðr �WÞ � A ¼ 0; (10)

where we have set ðMAÞ� :¼ hA� �r�r � Aþ R�
�A�.

The space of solutions of (10) is endowed with the scalar
product (1) derived from the gauge-fixed Lagrangian.
Inspection of (10) makes obvious that the subset of solu-
tions of (10) defined through the gauge condition (9) are
solutions of the Maxwell equations.
The next step in the quantization procedure is to find a

basis of modes for Eq. (10). To this end, they are expressed
in the Minkowskian chart, which is equivalent to perform-
ing a Weyl rescaling, and they become @2A� ¼ 0, as

expected from the consideration of the previous section.
Then the modes are, in the Minkowskian coordinates, the
familiar exponentials; they read

�ð�Þ
k;�

:¼ �ð�Þ� ðkÞ 1

ð2�Þ3 ffiffiffiffiffiffiffiffiffi
2!k

p exp f�ið!k�� k � xÞg; (11)
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with k0 ¼ kkk ¼: !k, and the forms f�ð�ÞðkÞg being the
polarization basis.

It is crucial to remark that, although (10) is not confor-
mally invariant, it is the conformal lift of the Minkowskian
equation @2A� ¼ 0. Consequently, the above functions are

modes of both equations @2A� ¼ 0 and (10). In addition,

these modes are of positive frequency with respect to the
timelike Killing vector field of Minkowski space @�. Since
the RW space is conformally flat, @� is also a timelike
conformal Killing vector of the RW spacetime. The modes
(11) are thus positive frequency with respect to the con-
formal time, which means that the vacuum they define is
the so-called conformal vacuum.

It is known that the f�ð�Þ
k;�g form a basis of the space of

solutions of @2A� ¼ 0 endowed with the indefinite scalar

product derived through (1) from the Minkowskian
Lagrangian LM ¼ 1

4F
2 þ 1

2 ð@ � AÞ2. They also form a basis

of the space of solutions of Eq. (10) endowed with the
indefinite scalar product derived from the RW Lagrangian
LRW ¼ 1

4F
2 þ 1

2 ðr � A�W � AÞ2. Indeed, these two

spaces of solutions are identical. This can be seen as
follows. First, since the conformal weight of the electro-
magnetic field is zero, these spaces of solutions contain
the same functions. Then, the scalar products defined
on them through (1) are equal. In fact, the conformal
relation between spacetimes implies that LRW ¼ a�4LM.
Consequently, using the definition (2) of J � and again the
fact that the electromagnetic field is of null conformal
weight, one obtains J �

RWðA; BÞ ¼ a�4J �
MðA; BÞ. Since

the surface form �� in (1) scales as
ffiffiffi
g

p
, one has �RW

� ¼
a4�M

� . Finally, taking into account that a Cauchy surface�

defined in the RW spacetime is also a Cauchy surface in the
Minkowski chart, one obtains, through the definition (1),
that hA; BiRW ¼ hA; BiM.

Once a basis of modes solution is known, the Wightman
two-point function can be obtained straightforwardly.
If one chooses, as usual, a polarization basis such that

����ð�Þ� �
ð	Þ
� ¼ ��	, the two-point function takes the famil-

iar Minkowskian form

D��ðx; x0Þ ¼ ����D
ðsÞ
M ðx; x0Þ: (12)

In this expression, x and x0 denote two points of the RW
spacetime whose Minkowskian Cartesian coordinates

are ð�; xiÞ and ð�0; x0iÞ, and DðsÞ
M ðx; x0Þ is the two-point

function for the conformal scalar field in Minkowski space.
Using the Weyl rescaling and taking into account that the

conformal weight of the conformal scalar is �1, this

expression reads D��ðx; x0Þ ¼ ����aðxÞDðsÞðx; x0Þaðx0Þ,
where DðsÞðx; x0Þ ¼ a�1ðxÞDðsÞ

M ðx; x0Þa�1ðx0Þ is the two-
point function for the conformal scalar field in RW space.
Finally, taking into account the manifest symmetry of
D��ðx; x0Þ in (12), one obtains a more intrinsic expression

for this two-point function in RW spacetime, namely,

D��ðx; x0Þ ¼ � 1

2

�
g��

a2
þ g0��

a02

�
aa0DðsÞðx; x0Þ; (13)

where for brevity we have denoted by a prime the quanti-
ties which have to be evaluated at the point x0. The above
expression is our central result.
It is worth noting that this two-point function has the

Hadamard behavior. Inspection of (13) shows that the

short distance behavior is that of DðsÞðx; x0Þ. Then since

DðsÞðx; x0Þ ¼ a�1ðxÞDðsÞ
M ðx; x0Þa�1ðx0Þ, the result follows

from the fact that �RWðx; x0Þ ’ a2ðxÞ�Mðx; x0Þ for x close
to x0, the quantities�RW and�M being half of the square of
geodesic length between two points x and x0 in their
respective spacetimes (see for instance [14]).
Finally, the basis of modes (11) also allows us to define

the quantum field Â in the usual way through the expansion
over the modes. Then the Fock space is built using the
standard procedure. The important point here is that the
conformal flatness of the RW spacetime allows us, thanks
to the existence of a timelike Killing vector field @� in
Minkowski space, to unambiguously define positive fre-
quency modes. These modes allow us in turn to define
unambiguously annihilation (and creation) operators and
consequently a preferred vacuum state: the conformal
vacuum. This is a well-known result of Parker [1,10].
As a consequence, the GB condition (4) which defines

the subspace of physical states is also meaningful. In theW
gauge (9), it reads

ðr �WÞ � AðþÞj�Ai ¼ 0;

where AðþÞ is the annihilator part of the quantum field. This
field fulfills the Maxwell equations together with the
W-gauge condition, in the mean on physical states (5).
This is not in agreement with the starting point of [8,9].
However, let us emphasize that the GB condition applies in
flat RW spacetimes due to the existence of a conformal
vacuum. On the contrary, this condition can lose its mean-
ing in general curved spacetimes where the definition of
the vacuum is ambiguous.
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