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Inspired by the condensed matter analogues of black holes (a.k.a. dumb holes), we study Hawking

radiation in the presence of a modified dispersion relation which becomes superluminal at large wave

numbers. In the usual stationary coordinates ðt; xÞ, one can describe the asymptotic evolution of the wave

packets in WKB, but this WKB approximation breaks down in the vicinity of the horizon, thereby

allowing for a mixing between initial and final creation and annihilation operators. Thus, one might be

tempted to identify this point where WKB breaks down with the moment of particle creation. However,

using different coordinates ð�; UÞ, we find that one can evolve the waves so that WKB in these coordinates

is valid throughout this transition region, which contradicts the above identification of the breakdown of

WKB as the cause of the radiation. Instead, our analysis suggests that the tearing apart of the waves into

two different asymptotic regions (inside and outside the horizon) is the major ingredient of Hawking

radiation.
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I. INTRODUCTION

Despite decades of research, the precise nature of
Hawking [1] radiation—one of the most fundamental
predictions of quantum field theory [2] in curved space-
times—is not fully understood yet. E.g., open questions
are:

(i) Why does Hawking radiation give a thermal
spectrum, i.e., why do black holes seem to behave
as thermal [3] objects with an energy (mass),
temperature, and because the temperature depends
on energy, an entropy, etc.?

(ii) What are the essential ingredients of Hawking
radiation and how robust is it? Is the thermal spec-
trum and density matrix robust, or is it possible
to encode some information into the seemingly
thermal radiation given off?

The last point is especially relevant for the black
hole information ‘‘paradox,’’ i.e., the question of whether
(and if yes, how) the process of a gravitational collapse to a
black hole and its subsequent evaporation can be described
by a globally unitary (i.e., information preserving) process
[4]. Because the field equations are local the system is
always locally unitary. The question is essentially whether
there are places (e.g., singularities, baby universes, etc.)
into which information could be lost.

Sometimes it is argued that the information (possibly
stored near the singularity or in the vicinity of the horizon)
might perhaps leak out the black hole (during its evapora-
tion process) hidden in correlations between the emitted
Hawking quanta—this would require some sort of imprint-
ing procedure during which the information is stored

(remembered) and later transferred to the emitted particles.
These motivate a better understanding of the robustness
and origin of Hawking radiation. In the following, we study
this question for a setup including a modified dispersion
relation at large wave numbers—an approach which is
partly motivated by the condensed matter analogues [5]
of black holes (a.k.a. dumb holes).

II. CONVENTIONAL DERIVATION

Let us start with a brief sketch of the conventional
derivation of Hawking radiation in the presence of a modi-
fied dispersion relation [6]. Usually this is done in terms
of the Painlevé-Gullstrand-Lemaı̂tre or the Eddington-
Finkelstein coordinates [7]. Here, we employ the former
since they are more closely related to the condensed matter
analogues of black holes. In terms of these coordinates, the
metric reads (ℏ ¼ c ¼ 1)

ds2 ¼ ½1� v2ðxÞ�dt2 � 2vðxÞdt dx� dx2

¼ dt2 � ½dxþ vðxÞdt�2; (1)

where we restrict our consideration to 1þ 1 dimensions
for simplicity. Here vðxÞ corresponds to the fluid velocity
of the sonic black hole analogues and we have a horizon

where vðxhorizonÞ ¼ c ¼ 1. If we choose vðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=x

p
this metric is exactly the Schwarzschild metric in
Painlevé-Gullstrand-Lemaı̂tre coordinates with the angular
coordinates suppressed.
In order to include a modified dispersion relation, the

standard wave equation h� ¼ 0 is replaced by

h� ¼ Fð@xÞ�; (2)

where F contains higher order spatial derivatives. Here we
use F ¼ ��2@4x, which corresponds to the dispersion
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relation of phonons in atomic Bose-Einstein condensates
[8], for example, but our results can be generalized to other
functions F.

The scale � sets the cutoff wave number kcutoff ¼ 1=�
where the dispersion relation starts to deviate significantly
from a linear behavior. For atomic Bose-Einstein conden-
sates, it is related to the healing length—whereas for real
gravity, one might speculate that it is related to the Planck
scale. Then Eq. (2) becomes

ð½@t � @xv�½@t � v@x� � @2x þ �2@4xÞ� ¼ 0: (3)

Since this wave equation is stationary and linear, we make
the separation ansatz �!ðxÞe�i!t. However, due to the
x-dependence of the the velocity vðxÞ, an analogous
(plane-wave) ansatz for �!ðxÞ ¼ e�ikx is not an exact
solution. Nevertheless, assuming that vðxÞ varies slowly,
we may use the WKB method to obtain an approximate
solution �!ðxÞ � exp f�iS!ðxÞg. In order to ensure the
applicability of the WKB approximation, the local wave
number kðxÞ ¼ S0!ðxÞ should vary slowly compared to
its magnitude dk=dx ¼ S00! � k2 ¼ ðS0!Þ2. This WKB
approximation yields the dispersion relation

ð!� vkÞ2 ¼ k2 þ �2k4 V ! ¼ vk� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2k2

q
; (4)

where the term with the square root on the right-hand side

is the dispersion relation !MinðkÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2k2

p
in

Minkowski space-time (where v ¼ 0). The plus sign in
front of the square root refers to the left-moving solutions
whereas the minus sign applies to the right-moving branch.
Since the latter branch contains the relevant modes such as
the outgoing Hawking particles, we focus on the minus
sign in the following. Without loss of generality, we set
xhorizon ¼ 0 such that the velocity vðxÞ can be approxi-
mated in the vicinity of the horizon by

vðxÞ ¼ 1� �xþOðx2Þ; (5)

where � is the surface gravity. Assuming that the frequency
! is of the order of the surface gravity � and small
compared to the dispersion scale 1=� (i.e.,�! ��1), we
may find an intermediate regime for x

1 � j�xj3 � �2!2 ¼ Oð�2�2Þ: (6)

This range is chosen such that the linearization (5) applies
due to j�xj3 � 1 and, at the same time, we find two WKB
solutions with large and nearly opposite wave numbers

k� � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�xj=�2

p
for x < 0, i.e., inside the black hole.

In principle, these values k� can be derived by solving the
quartic equation (4) for k, but, to a very good approxima-
tion, we may Taylor expand the square root in the disper-
sion relation (4). Inserting the velocity profile (5), we get
! � �kð�xþ �2k2=2Þ. Finally, using j�xj3 � �2!2

from the above condition (6), we find that j�xj � !=k�,
which gives k� � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j�xj=�2
p

. After integrating kðxÞ ¼
S0!ðxÞ, the associated WKB solutions of the wave equation

read exp f�i!t� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�jx3j=ð9�2Þp g. There are also other

solutions of the dispersion relation (4), but they
have much smaller k-values k � !=ð�� 1Þ and are thus
well separated from the k� solutions.
However, when �x becomes too small (i.e., very close

to the horizon) such that j�xj3 � �2�2, this WKB approxi-
mation breaks down. One way to see this is to take the
spatial derivative of the dispersion relation (4) giving

dk

dx
¼ � dv

dx

k

vðxÞ � vgroupðkÞ ; (7)

where vgroup ¼ d!Min=dk is the group velocity in

Minkowski space-time (where v ¼ 0). When approaching
the horizon (where v ¼ 1), dk=dx diverges and thus the
WKB approximation breaks down. To make this statement
more precise, let us approximate the group velocity by
vgroupðk�Þ � 1þ 3�2k2�=2 � 1þ 3j�xj, where we have

used the same arguments as below Eq. (6). Then, inserting
Eq. (5), theWKB condition jdk�=dxj � k2� translates into
j�xj3 � �2�2, consistent with Eq. (6).
At the WKB turning point near the horizon where vðxÞ

equals vgroupðkÞ and thus dk=dx diverges, the k�-solutions
are no longer well separated from the other modes and two
real k-solutions (k � !=ð�� 1Þ and kþ) of the dispersion
relation (4) merge and become complex—i.e., the modes
do not stay separated and mix. Thus, one might be tempted
to identify this point with the place of particle creation.

III. LINEAR PROFILE

Since the critical point where the WKB approximation
described above breaks down is very close to the horizon
j�xj3 � �2�2 ��1, we focus on this region and employ the
near-horizon approximation by setting

vðxÞ ¼ 1� �x: (8)

Introducing the usual Kruskal light-cone coordinate U, the
metric (1) can then be cast into the form

U ¼ �x exp f��tg V ds2 ¼ 2e�tdt dU� e2�t dU2: (9)

With
ffiffiffiffiffiffiffi�g

p ¼ e�t, we get the d’Alembert operator

h� ¼ e��tð@te�t@t þ 2@U@tÞ�; (10)

and the wave equation (2) with a modified dispersion
relation F ¼ ��2@4x reads (note that @x ¼ �e��t@U)

ð@te�t@t þ 2@U@tÞ� ¼ ��2e�3�t@4U�: (11)

In terms of the new coordinates, the metric (9) becomes
time-dependent but independent of U. Hence, @t is not a
Killing vector anymore but @U is, which allows us to make
the separation ansatz �ðt; UÞ ¼ �KðtÞeiKU

€�K þ � _�K þ 2iKe��t _�K ¼ ��2K4e�4�t�K: (12)

For late times t " 1, the exponential factors e��t and e�4�t

can be neglected and thus the above equation corresponds
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to the motion of a particle with damping. Hence we see
that the solution freezes �ðt " 1; UÞ ¼ �1

Ke
iKU at late

times t " 1. This motivates the introduction of a new
time coordinate via

� ¼ � 1

�
e��t V d� ¼ e��tdt; (13)

such that the wave equations simplify to

ð@2� þ 2iK@�Þ�K ¼ ��2K4ð��Þ2�K: (14)

With the redefinition ’Kð�Þ ¼ eiK��Kð�Þ, we may
eliminate the 2iK@� term and obtain the simple form

ð@2� þ �2K4ð��Þ2 þ K2Þ’K ¼ 0: (15)

Equations of this type are well known and can be solved in
terms of Whittaker or Kummer functions [9]. Incidentally,
the same equation occurs for the Sauter-Schwinger effect,
i.e., electron-positron pair creation out of the QED vacuum
due to a strong electric field [10].

IV. WKB ANALYSIS—LINEAR PROFILE

Even though the wave equation (15) can be solved
exactly, let us find an approximate solution via the WKB
method. The associated dispersion relation reads

�Kð�Þ ¼ �K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2ðK�Þ2

q
: (16)

If we now check the applicability of the WKB approxima-
tion in analogy to Eq. (7), we find that

�� � 1 V
�������� 1

�2
K

d�K

d�

��������� 1; (17)

and thus the WKBmethod applies for all �, i.e., all the way
from t # �1 down to t " þ1. The two branches of solu-
tions of (16) with positive and negative �Kð�Þ stay well
separated throughout the evolution and there is negligible
mode mixing between them.

Let us study the wave-packet trajectories for the two
branches. First, we consider the case without dispersion
� ¼ 0 for comparison. For the branch with�K ¼ þK, the
solution behaves as eiKU and thus the trajectories haveU ¼
const, i.e., x / e�t. These are the modes peeling off the
black hole horizon at U ¼ 0 (i.e., x ¼ 0), for example
the Hawking modes. For the other branch with �K ¼
�K, the solution behaves as eiKU�2iK� and thus the trajec-
tories have U ¼ 2�þ const, which translates into x ¼
2=�þ e�t � const. This is a consequence of the linear
velocity profile in (8) which yields another horizon (where
v ¼ �1) at x ¼ 2=�. Thus, the modes corresponding to the
other branch peel off this additional horizon at x ¼ 2=� but
they propagate freely across the black hole horizon at x ¼ 0.

As one would expect, this behavior changes in the
presence of a modified dispersion relation (16). In this
case, the modes which later form the Hawking radiation
do not originate from the vicinity of the horizon at U ¼ 0

but approach the horizon from the inside in the past. In
analogy to (6), we use the smallness of �� ��1 to find an
intermediate regime for � where

1

�2�2
� ðK�Þ2 � 1: (18)

In this regime, we may Taylor expand the square root in
(16) and thus the final Hawking modes initially behave as
’K � exp fiSKð�Þg with dSK=d� ¼ �Kð�Þ which gives
’K � exp fiK�þ i�2�2K3�3=6g. The complete field solu-
tion then reads �ðU; �Þ � exp fiKUþ i�2�2K3�3=6g.
Using the stationary phase (or saddle point) approximation,
we find the WKB trajectories as U ¼ U0 � �2�2K2�3=2.
As expected, the modes approach the horizon from the
inside where U > 0 and x < 0 (note that � < 0).

V. PARTICLE CREATION

Now, after having studied the solutions of the wave
equation, let us derive the consequences for Hawking
radiation. To this end, we use the same trick as in [11]
and consider the following function

�!ðUÞ ¼
�
eþ�!=ð2�Þj�Uji!=� for U > 0

e��!=ð2�Þj�Uji!=� for U < 0:
(19)

After analytic continuation, this function is holomorphic in
the entire upper half of the complex U plane =ðUÞ> 0
while it has a branch cut in the lower half. As a result, the
Fourier decomposition of this function �!ðUÞ consists of
modes eiKU with positive K > 0 only. (For negative K < 0,
the integral determining the overlap with �!ðUÞ can be
closed in the upper half of the complex plane and thus
vanishes.)
As we have seen in the previous section, the modes

which finally behave as exp fiKUg are initially of the
form exp fiKUþ i�2�2K3�3=6g. In terms of the original
x-coordinate, we get exp fiKx��þ i�2�2K3�3=6g. Now,
calculating the time-derivative of this exponent (i.e., the
eikonal function S ¼ Kx��þ �2�2K3�3=6) for fixed x,
we find @tSðt; xÞ ¼ ��KðUþ �2�2K2�3=2Þ. Evaluating
this expression along the WKB trajectories discussed
above U ¼ U0 � �2�2K2�3=2, we get a constant @tS ¼
��KU0. This should be no surprise since our original
problem is stationary in terms of the ðt; xÞ coordinates,
i.e., @tS ¼ ��KU0 is related to the conserved frequency
! � �KU0. Thus, for Hawking radiation, mainly modes
with KU0 ¼ Oð1Þ will be important. Note, however, that
the concept of well-localized WKB trajectories becomes
somewhat inaccurate for KU0 ¼ Oð1Þ since one cannot
localize a wave packet more precisely than �U ¼
Oð1=KÞ. Hence, it is impossible to decide whether such a
wave packet is located inside or outside the horizon at
U ¼ 0. This is precisely the reason for the tearing apart
of the waves at the horizon and the resulting particle
creation. Wave packets with large jKU0j � 1 will
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basically not be torn apart and thus there will be negligible
particle creation for these modes.

As the next step, let us study how the initial mode of the
form exp fiKx��þ i�2�2K3�3=6g is experienced by a
freely falling observer with the near-horizon trajectory
xðtÞ � x0 � t. Since (as we have seen above), the temporal
variance @tSðt; xÞ is slow compared to the spatial variation
@xSðt; xÞ, the freely falling observer will see a rapid oscil-
lation with a frequency of !in � K�� initially, i.e., for
ðK�Þ2 � 1. Thus, modes with positive K will have a large
negative frequency !in due to � < 0 and vice versa.

As the final ingredient, let us convert the above function
�!ðUÞ into t, x coordinates, where we get

�!ðt; xÞ ¼
�
eþ�!=ð2�Þj�xji!=�e�i!t for x < 0

e��!=ð2�Þj�xji!=�e�i!t for x > 0:
(20)

We see that we obtain the wave functions of the outgoing
Hawking radiation (with positive pseudonorm) for x > 0
and its infalling partner particles (with negative pseudo-
norm) for x < 0 (where both have the same conserved
frequency !). Therefore, if we consider the evolution of
a Gaussian wave packet peaked at K0 � �K > 0

�U0;K0

�K ð�;UÞ /
Z

�Kð�ÞeiKðU�U0Þ�ðK�K0Þ2=�K2
dK; (21)

we find the following picture: Initially, i.e., for values
of � satisfying (18), this wave packet approaches the
horizon from the inside according to the trajectory U ¼
U0 � �2�2K2

0�
3=2. For a freely falling observer, it has a

large negative frequency !in � K0��. During the ap-
proach to the horizon, the wave packet is constantly red-
shifted according to !in � �K0e

��t. This reflects the
time-translation invariance of our system: Modes with
larger K0 evolve in the same way as those with smaller
K0, but at later times t. Finally, this wave packet is ripped
apart at the horizon into an outgoing part and its infalling
partner (unlessK0U0 is too large, see above). Nevertheless,
the WKB method in Sec. IV remains applicable during
the whole process. Note that the above condition (18),
together with K0U0 ¼ Oð1Þ, also ensures that �x ¼
U=� ¼ U0=�� �2�2K2�2=2 is small and thus consistent
with our linear approximation (8).

For a given final frequency !, the amplitudes of these
two parts directly yield the Bogoliubov coefficients�! and
�! and from (20), we may read off���������!

�!

��������¼ exp

�
��

!

�

�
: (22)

Together with the normalization j�!j2 � j�!j2 ¼ 1, this
gives a thermal spectrum

hn̂out! iin ¼ j�!j2 ¼ 1

exp f2�!=�g � 1
; (23)

with the Hawking temperature (ℏ ¼ c ¼ kB ¼ 1)

THawking ¼ �

2�
: (24)

VI. GENERAL PROFILE

For a more general velocity profile vðxÞ, the light cones
lie at dt ¼ �½dxþ vðxÞdt� and thus the Kruskal light-cone
variable U reads

U ¼ � 1

�
exp

�
��t� �

Z dx

vðxÞ � 1

�
; (25)

where � ¼ jv0ðxhorizonÞj is again the surface gravity.
Inserting the coordinate differential

dU ¼ ��U

�
dtþ dx

vðxÞ � 1

�
; (26)

the metric becomes

ds2 ¼ 2
v� 1

�U
dUdt�

�
v� 1

�U

�
2
dU2: (27)

Note that the factor

	 ¼ ffiffiffiffiffiffiffi�g
p ¼ v� 1

�U
(28)

is regular at the horizon and behaves as 	 ¼ e�t fðxÞwith a
regular function fðxÞ satisfying fðxhorizonÞ ¼ 1. Using
the same modification Fð@xÞ of the dispersion relation as
before, the wave equation becomes

h�¼ 1

	
ð@t	@tþ2@U@tÞ�¼Fð@xÞ�¼��2@4x�; (29)

where @x ¼ �	�1@U.

VII. TANH-PROFILE

In order to deal with a smooth profile with well-defined
asymptotics, let us consider the following example

vðxÞ ¼ 1� tanh ð�xÞ: (30)

In this case, the Kruskal variable U simply becomes

U ¼ � sinh ð�xÞ
�

exp f��tg ¼ � sinh ð�xÞ; (31)

and the factor 	 in ds2 ¼ 2	dUdt� 	2dU2 reads

	 ¼ e�t

cosh ð�xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e�2�t þ �2U2
p ¼ ��1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þU2
p : (32)

The wave equation (29) assumes the form

ð	@t	@t þ 2	@t@U þ �2	2½	�1@U�4Þ� ¼ 0; (33)

and, after transforming to the time coordinate �, we get

ð
@�
@� þ 2
@�@U þ �2	2½	�1@U�4Þ� ¼ 0; (34)

with the purely x-dependent factor
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 ¼ 1

cosh ð�xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þU2=�2
p : (35)

Now let us consider the two limiting cases. For �2 � U2

(i.e., small x), we have 
 ! 1 and thus the wave equation
simplifies and we get the same result as with the linear
profile (as expected)

ð@2� þ 2@�@U þ �2�2�2@4UÞ� ¼ 0: (36)

In the other limiting case �2 � U2 (i.e., large x), we
have 	 ! 1=j�Uj and thus the wave equation becomes
approximately independent of t

ð@2t þ 2j�Uj@t@U þ �2½�U@U�4Þ� ¼ 0: (37)

This equation has two branches of solutions

��
� / j�Uji� exp

�
�i��tð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2�2

q
Þ
�
; (38)

labeled by � ¼ const. Without dispersion, i.e., for � ¼ 0,
we may interpret the two branches in the same way as in
Sec. IV: one �þ / j�Uji�e�2i��t is propagating into the
black hole while the other�� / j�Uji� is trying to escape.
However, most interesting is the case with dispersion,
where we get

��
� � exp

�
i��ðjxj � 2tþ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2�2

q
Þ
�
: (39)

We see that the modes with �2�2�2 < 3 are propagating
away from the horizon while the others with �2�2�2 > 3
are moving toward it. A final Hawking particle with fre-
quency !> 0 stems from initial modes with � < 0 and

�2�2�2 ¼ 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�2!2

3

s
; (40)

which propagate very slowly toward the horizon.
Again, for a freely falling observer, these modes with

� < 0 and j�j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð�2�2Þp � 1 have a very large nega-

tive frequency.

VIII. WKB ANALYSIS—TANH-PROFILE

Since we can solve the wave equation (33) exactly in the
two limiting cases �2 � U2 and �2 � U2, the remaining
critical regime is where U and � are roughly of the same
order, i.e., where �x ¼ Oð1Þ. In this regime, we may obtain
�K and K via the transformation from the original t, x
coordinates to the �, U coordinates

@t

@x

 !
¼ ��

� U

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ �2

p
 !

	 @�

@U

 !
: (41)

Identifying @t ! � and @x ! k, as well as, @� ! �K and
@U ! K, we get the transformation

K ¼ � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2U2 þ �2�2

p ¼ �k	: (42)

Furthermore, we find the exact conservation law

��K þUK ¼ �!

�
¼ const; (43)

which reflects the fact that @t is a Killing vector in the
original t, x coordinates and thus the solution behaves as

e�i!t�iS!ðxÞ with an eikonal function S!ðxÞ depending
on �x ¼ arcsinhðU=�Þ. Finally, using that k � ! in the
regime of interest, we find

�K � �U

�
K ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2U2 þ �2�2
p U

�
: (44)

Now, if U and � are roughly of the same order, i.e., for
�x ¼ Oð1Þ, we know that k is large k � � and slowly
varying (while ! is exactly constant). Thus we find that K
and �K are also slowly varying, for example

1

K2

@K

@U
� �

k

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ �2

p 
 �

k
� 1; (45)

and similarly for the other terms. Consequently, we again
find that the WKB approximation does not break down
when approaching the horizon.

IX. CONCLUSIONS

In summary, we studied the origin of Hawking radia-
tion in the presence of a modified dispersion relation at
large k which provides an effective UV cutoff. We find
that the transformation from ðt; xÞ coordinates to ð�;UÞ
coordinates offers several advantages: First, if the UV
cutoff scale 1=� is much larger than the surface gravity
� (i.e., Hawking temperature), then the WKB approxima-
tion remains valid throughout the evolution. Second, the
derivation of Hawking radiation becomes much simpler—
for example, we avoid dealing with nontrivial complex
contour integrals involving branch cuts and saddle points,
see, e.g., [6].
Note that—in contrast to the Schwarzschild coordinates,

for example—both coordinate systems, ðt; xÞ and ðU; �Þ, are
regular across the horizon (i.e., ‘‘horizon-penetrating’’).
However, the U coordinate is better adapted to follow the
gravitational redshift (i.e., the tearing apart) of the waves
near the horizon, which explains their different behavior in
terms of the WKB method.
The persistent applicability of the WKB method in the

ð�;UÞ coordinates could also shed light on the slightly
puzzling observation that there is so little mixing between
left and right-moving modes. At low wavelengths, slow
spatial variation of the field, the equations are approxi-
mately conformally invariant, which naturally separates
the left and right moving branches of the solutions, at
higher spatial frequencies this conformal invariance fails,
leading to the expectation that there should be mixing
between the left and right moving modes. The absence of
any evidence for such mixing in the numerical studies has
long been a puzzle. In terms of the ðt; xÞ coordinates, one
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might expect that all these branches mix when the WKB
approximation breaks down, but Eq. (15) shows that the
(right-moving) branch of modes with �K=K > 0 contain-
ing the Hawking particles stays well separated from the
other (left-moving) branch with �K=K > 0.

As a result of the validity of the WKB approximation
throughout the evolution, we find that the genesis of
Hawking radiation is an extremely robust process—as
long as the (yet unknown) theory of quantum gravity
incorporates some sort of general covariance, which allows
us to go from ðt; xÞ coordinates to ð�;UÞ coordinates. In
view of the black hole information ‘‘paradox’’ mentioned
in the Introduction, this robustness show that it is not
obvious how to encode information in the outgoing
Hawking photons.

It is important to note that the thermal properties of the
outgoing radiation do not come about because of any
interaction with other degrees of freedom, a la Planck’s
explanation of black body radiation in terms of the degrees

of freedom in the walls of the cavity [12]. They are a direct
consequence of the free field evolution. The particles have
no obvious sources except for the tidal disruption of the
evolution by the stretching of the wavelengths. The energy
is locally conserved by the equations of motion, and does
arise due to emission or absorption of that radiation.

ACKNOWLEDGMENTS

The authors thank the Perimeter Institute for Theoretical
Physics (Waterloo, Canada) for the kind hospitality and
support for a research stay during which part of this work
was done, and also the Pacific Institute for Theoretical
Physics at UBC which hosted one of us (R. S.) during
some of this work. W.G.U. thanks both the NSERC of
Canada for research support and the CIfAR and the
Templeton Foundation for additional support during this
work. R. S. acknowledges support from DFG (SCHU 1557/
1-3, SFB-TR 12).

[1] S.W. Hawking, Nature (London) 248, 30 (1974);
Commun. Math. Phys. 43, 199 (1975).

[2] N. D. Birrell and P. C.W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[3] J. D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972);
Phys. Rev. D 7, 2333 (1973); 9, 3292 (1974); 12, 3077
(1975); J.M. Bardeen, B. Carter, and S.W. Hawking,
Commun. Math. Phys. 31, 161 (1973).

[4] See, e.g., S. Liberati, L. Sindoni, and S. Sonego, Gen.
Relativ. Gravit. 42, 1139 (2010); and references therein.

[5] W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981); Artificial
Black Holes, edited by M. Novello, M. Visser, and G.
Volovik (World Scientific, Singapore, 2002); G. E.
Volovik, Universe in a Helium Droplet (Oxford
University Press, Oxford, 2003); C. Barceló, S. Liberati,
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