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We discuss the quantization of an unstable field through the construction of a ‘‘one-particle Hilbert

space.’’ The system considered here is a neutral scalar field evolving over a globally hyperbolic static

spacetime and subject to a stationary external scalar potential. In order to prove our results we assume

spacetimes without horizons and that the theory possess a ‘‘mass gap.’’ Our strategy consists in building a

complex structure, which arises from a suitable positive bilinear form defined over the space of classical

solutions of the field equation. Once the space of states of the quantum field has been set, it is possible to

study the effect of the time translation symmetry on it. From the time translation operator we obtain an

expression for the Hamiltonian operator associated with the unstable sector of the field. This last result

coincides with findings from long ago showing that the unstable degrees of freedom of the field behave as

nonrelativistic particles in a parabolic potential barrier.

DOI: 10.1103/PhysRevD.88.124005 PACS numbers: 04.62.+v

I. INTRODUCTION

One of the most interesting features of quantum fields is
the instabilities that may arise when they interact with
some external classical field. Here we are particularly
concerned with the tachyoniclike instability analyzed in
Ref. [1]. There it was argued that it is possible for a neutral,
nonminimally coupled scalar field to become unstable
when subject to gravitational fields generated by realistic
classical-matter distributions. The presence of the instabil-
ity leads to an exponential amplification of the vacuum
fluctuations of the field and, consequently, of the expected
value of its energy-momentum tensor. A concrete realiza-
tion of this claim was given in Ref. [2], where the appear-
ance of the instability was studied in the spacetime of a
compact object. The scenario in which the spacetime is
generated by a spheroidal shell was considered in Ref. [3].
This last example is a good toy model to analyze the
relation between the instability and deviations from the
spherical symmetry. Obviously, this instability cannot
persist indefinitely: the growth of the observables related
to the field must be detained by its backreaction on the
background spacetime. The final state of the system is
presently under debate [4]. However, whatever it might
be, it is reasonable to expect that—possibly important—
particle creation processes will occur while the system
reaches its new stable configuration [5].

In Minkowski spacetime this kind of instability was first
studied by Schiff, Snyder, and Weinberg (SSW) in a paper
published in 1940 [6]. In that paper the authors considered
a charged scalar field subject to an electrostatic potential
well. For sufficiently deep wells, they discovered that the
field equation allows modes with ‘‘complex frequencies.’’
Their main concern, however, was about the particle

interpretation of these modes. This interpretation becomes
difficult since the Hamiltonian is no longer related to the
number operator. (For an extensive study on SSWand other
instabilities in this model, see Ref. [7].) The discussion on
the quantum field-theoretic treatment of the SSW instabil-
ity was deepened 30 years later by Schröer and Swieca by
considering the simpler problem of a charged scalar field
with an external scalar interaction [8]. In their approach
they concluded that the field algebra can be represented
either in a space with an indefinite metric or in a Hilbert
space without a ground state. Moreover, their analysis of
the field instability revealed that each unstable degree of
freedom behaves as a nonrelativistic quantum particle in a
parabolic potential barrier.
In this paper we revisit the quantization of fields pre-

senting tachyoniclike instabilities over globally hyperbolic
static backgrounds on the light of the formalism developed
for free quantum fields in curved spacetimes [9,10]. The
strategy we shall employ consists in defining a particular
complex structure over the space of solutions of the field
equation in order to select a ‘‘one-particle Hilbert space.’’
The representation for the algebra of the unstable field can
then be constructed through a Fock space over the chosen
‘‘one-particle Hilbert space.’’ To put forward this strategy
we shall restrict ourselves to background spacetimes that
do not possess horizons and will assume that the theory
possess a ‘‘mass gap.’’
In the context of quantum field theory in curved space-

times (QFTCS), this approach was first introduced by
Ashtekar and Magnon in Ref. [11] and further developed
by Kay in Ref. [12] for stable fields in stationary space-
times without horizons. Curiously enough, the quantiza-
tion of unstable fields presenting tachyoniclike instabilities
along these lines seems to be lacking in the literature; here
we cover this gap. Our starting point will be a result due to
Chmielowski [13], which states that to every bilinear form*wccl@ift.unesp.br
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over the space of classical solutions defining a quasifree
state on the field algebra there is associated a different
bilinear form defining a pure quasifree state.

It is important to emphasize that the canonical quantiza-
tion procedure does not rely on any specific choice for the
representation of the field algebra. Nevertheless, a particu-
lar representation may display more clearly some features
of the system. In the case we are interested in, we desire a
representation for the field algebra that does not ‘‘mix’’ the
stable degrees of freedom of the field with the unstable
ones. Since the backreaction of the quantum field is
expected to be dominated by the instability, the separated
analysis of the unstable sector and its time evolution might
provide us some clues about this process. Here, however,
we shall not be concerned about backreaction effects; this
issue is far beyond the scope of this study.

This paper is organized as follows. In Sec. II we follow
Refs. [10,13] and present the general theoretical frame-
work to define a representation for the field algebra based
on a ‘‘one-particle Hilbert space.’’ In Sec. III A we restrict
our attention to unstable fields over static spacetimes
without horizons and fix our bilinear form. Once the rep-
resentation has been set, it is possible to implement the
time-translation symmetry of the background spacetime as
a one-parameter unitary group over our Fock space. To do
so, we first deal with the time translation for the ‘‘one-
particle states’’ in Sec. III B, trying to keep the analysis for
the stable sector as close as possible to previous ones.
Then, in Sec. III C, we move to the definition of the time
translation on the Fock space. As will be shown, this
problem can be treated using the formalism presented in
Ref. [14] to define the S-matrix for free fields in curved
spacetimes. Next, we analyze in Sec. III D the Hamiltonian
operator associated with the quantum system and
‘‘rediscover’’ the connection between unstable fields and
nonrelativistic quantum particles in parabolic potential
barriers. We close the discussion and make our final
remarks in Sec. IV. Throughout the text we shall assume
natural units (G¼ℏ¼ c¼ 1) and the signature (�þþþ)
for the spacetime metric.

II. FREE FIELD QUANTIZATION IN GLOBALLY
HYPERBOLIC SPACETIMES

A. Classical field

For a globally hyperbolic spacetime ðM; gabÞ it is al-
ways possible to choose a foliation f�tgt2R where each
hypersurface�t is a smooth spacelike Cauchy surface [15].
Denote by na the normalized timelike vector field orthogo-
nal to every hypersurface in the foliation. The induced
metric defined over each spatial section is given by

hab � nanb þ gab:

We can introduce a coordinate system in our spacetime by
first setting the timelike vector field ta on M in such way

that tarat ¼ 1. Then, we cover each hypersurface �t with
coordinates xi (i ¼ 1, 2, 3) satisfying tarax

i ¼ 0, so ta is
our time coordinate vector.
Here we shall consider a neutral scalar field over

ðM; gabÞ with an external scalar interaction defined by
the following action:

S � � 1

2

Z
M

ffiffiffiffiffiffiffi�g
p

d4xðra�ra�þ V�2Þ; (1)

with V a real function overM (not explicitly depending on
�), which could encompass terms like mass and nonmini-
mal coupling with the scalar curvature. The principle of
minimal action applied to Eq. (1) leads to the following
field equation:

�rara�þ V� ¼ 0; (2)

the Klein-Gordon equation with an external scalar poten-
tial. The hypothesis of global hyperbolicity implies that the
specification of a ‘‘sufficiently nice’’ pair of functions
ðf; pÞ in a Cauchy surface �0 such that f ¼ �j�0

and

p ¼ nara�j�0
—the initial conditions—determines univo-

cally a solution of Eq. (2) over all the spacetime (see, e.g.,
Theorem 5.3.1 of Ref. [16]).
For general spacetimes, the convenient choice for the

phase space P of the field is

P � fðf; pÞjf; p:�0 ! R; f; p 2 C1
0 ð�0Þg;

where C1
0 ð�0Þ stands for the set of smooth real functions

with compact support in �0. Let us assume, then, that the
background spacetime and the scalar potential V are
smooth. According to Leray’s theorem [16,17], in this
case � and nara� are also smooth functions and of
compact support when restricted to any hypersurface �t.
The real vector space S is then defined as the set of all
solutions of Eq. (2) with initial data in P . The fact that the
Cauchy problem for Eq. (2) has a unique solution for a
given initial data implies that the vector spacesP and S are
isomorphic. Hence, we can refer to these spaces
interchangeably.
Over the phase space P it is possible to define a bilinear

form �: P � P ! R by

�ðc 1; c 2Þ �
Z
�0

d�ð�1n
ara�2 ��2n

ara�1Þ; (3)

where c stands for the pair ð�; nara�Þ and d� denotes
the volume element of �t, even though calculated over a
given Cauchy surface, the right-hand side of Eq. (3) is
conserved by the dynamics defined by Eq. (2). This fact,
together with the existing isomorphism between P and S,
induces a bilinear form over S, which is independent of the
Cauchy surface �0 as well. We also denote this bilinear
form by �. Since it is antisymmetric and nondegenerated
for solutions of Eq. (2), � is said to provide a symplectic
structure on S. As it will become clear in the next section,
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the only structure we need for the quantization of a neutral
scalar field is the real symplectic vector space ðS;�Þ.

B. Quantum field

To quantize a linear scalar field one seeks a complex,
separable Hilbert space F and a map W which takes the
elements of S into unitary operators acting onF satisfying

Wðc 1ÞWðc 2Þ ¼ e
i
2�ðc 1;c 2ÞWðc 1 þ c 2Þ (4)

as well as

Wyðc Þ ¼ Wð�c Þ; (5)

the Weyl relations. From the technical point of view, it is
safer to deal with these unitary operators than with the field
operators satisfying the canonical commutation relations
since the formers are bounded.

The standard way to approach this question is to start
with a pair ðK;H Þ, where H is a complex, separable
Hilbert space and K: S ! H is a real, linear map such
that its range RanðKÞ is dense in H . The Hilbert space F
is then defined as a Fock space built out of H . Hence,
inasmuch as we are concerned with bosonic quantum
fields, we define F as a symmetric Fock space, i.e.,

F ¼ FsðH Þ � C �H � ðH �H Þs � . . . ; (6)

where ðNnH Þs denotes the symmetric subspace ofN
n H . The inner product of F is defined through

h�;�iF � �cdþ X1
n¼1

hc ðnÞ; ’ðnÞi�nH ;

with c, d 2 C, �c the complex conjugate of c, ’ðnÞ, c ðnÞ 2
ðNnH Þs, and h�; �i�nH denoting the inner product ofN

n H .
Consider, then, F 0 � F , the set of all n-particle states,

i.e., the set of all vectors of F with the form

� ¼ ð0; . . . ; 0; c ðnÞ; 0; . . .Þ;
where c ðnÞ 2 ðNn H Þs, for n 2 N. Then, the linear span
of F 0, spanðF 0Þ, is a dense subset of F . Next, for � 2
spanðF Þ, � 2 H , and �� 2 �H—the complex conjugate
space to H—, one defines the operator

að ��Þ� � ð �� � c ð1Þ;
ffiffiffi
2

p
�� � c ð2Þ;

ffiffiffi
3

p
�� � c ð3Þ; . . .Þ (7)

the annihilation operator, and

a�ð�Þ� � ð0; c�; ffiffiffi
2

p
� �s c

ð1Þ;
ffiffiffi
3

p
� �s c

ð2Þ; . . .Þ (8)

the creation operator. The dot that appears in the slots in the
right-hand side of Eq. (7) indicates the contraction, accord-
ing to the inner product of H , between the vectors � and

c ðnÞ, while �s in Eq. (8) indicates the symmetrized tensor
product. These operators are continuous in the sense that if

�n ! � in H then að ��nÞ� ! að ��Þ� and a�ð�nÞ� !
a�ð�Þ� in F . For future reference, we denote by �0 the
normalized element in F 0 satisfying

að ��Þ�0 ¼ 0 (9)

for all � 2 H , the vacuum state. From Eqs. (7) and (8) it
is easy to verify that for any vector in spanðF 0Þ and any�1,
�2 2 H

½að ��1Þ; að ��2Þ	 ¼ 0; (10)

½a�ð�1Þ; a�ð�2Þ	 ¼ 0; (11)

and

½að ��1Þ; a�ð�2Þ	 ¼ h�1; �2iH I; (12)

where I stands for the identity operator.
With the aid of the creation and annihilation operators,

one defines the field operator for any c 2 S as

F0ðc Þ � iaðKc Þ � ia�ðKc Þ: (13)

The field operator F0ðc Þ is essentially self-adjoint in
spanðF 0Þ, so it has just one self-adjoint extension, namely,
its closure Fðc Þ. The representation for the relations (4)
and (5) is then set when we take Fðc Þ as the generator of
Wðc Þ:

Wðc Þ � eiFðc Þ:

Sometimes in the literature the quantization scheme pre-
sented here is referred to as the ‘‘Segal quantization over
H ’’ [18,19]. For the proof of the continuity of the creation
and annihilation operators, the essentially self-adjointness
of F0ðc Þ, and other properties of the Segal quantization
see, e.g., Theorem X.41 of Ref. [20].
Note that the vacuum state defines the following

functional:

h�0; Wðc Þ�0iF ¼ e�1
2hKc ;Kc iH :

From the algebraic point of view, �0 induces a state over
the C� algebra defined by the operators Wðc Þ. (For a
comprehensive discussion on the algebraic formalism for
quantum fields, see, e.g., Ref. [21].)

C. Definition of the ‘‘one-particle structure’’

The central question here, then, is how to define the pair
ðK;H Þ. A possible route starts by considering a bilinear,
positive, symmetric form � on S satisfying

½�ðc 1; c 2Þ	2 
 4�ðc 1; c 1Þ�ðc 2; c 2Þ (14)

for any c 1, c 2 2 S. Denote by A the real Hilbert space
obtained by the completion of S in the norm defined by �.
Then, on A, � is a bounded, densely defined bilinear
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form—the boundedness of the symplectic form is actually
the reason of Eq. (14). Hence, by the bounded linear trans-
formation theorem (see, e.g., Theorem I.7 of Ref. [22]),
there is a unique bounded extension of � to A, which we
denote by �0. The boundedness of �0 implies that on A
there exists a bounded operator A, such that

�ðc 1; Ac 2Þ � 1

2
�0ðc 1; c 2Þ: (15)

It follows from Eq. (15) and the antisymmetry property of
� that the operator A is also antisymmetric.

The polar decomposition theorem for bounded operators
(see, e.g., Theorem VI.10 of Ref. [22]) allows us to write
A ¼ UjAj, where jAj is the unique positive operator such
that jAj2 ¼ AyA ¼ �A2 and U is a partial isometry. The
nondegeneracy of � implies for the kernel of A that S \
KerðAÞ ¼ f0g. Consequently, the following expression de-
fines a bilinear, positive, symmetric form over the space of
solutions S:

~�ðc 1; c 2Þ � �ðc 1; jAjc 2Þ: (16)

Then, it is possible to show (see Proposition 1 of Ref. [13])
that

~�ðc 1; c 1Þ ~�ðc 2; c 2Þ � 1

4
½�ðc 1; c 2Þ	2 (17)

and that

~�ðc 1; c 1Þ ¼ 1

4
l:u:b:
c 2�0

½�ðc 1; c 2Þ	2
~�ðc 2; c 2Þ ; (18)

where l.u.b. stands for ‘‘least upper bound.’’ In the alge-
braic approach for quantum fields, a bilinear form defined
over S satisfying Eq. (14) defines a quasifree state, while
Eq. (18) gives rise to a pure quasifree state [23].

Next, define ~A as the real Hilbert space resulting from
the completion of S in the norm defined by the following
inner product:

hc 1; c 2i ~A � 2 ~�ðc 1; c 2Þ: (19)

From Eqs. (15) and (16) it is easy to see that for c 1, c 2 2
S, the partial isometry U satisfies

~�ðUc 1; Uc 1Þ ¼ ~�ðc 1; c 1Þ (20)

and

~�ðc 1; Uc 2Þ ¼ � ~�ðUc 1; c 2Þ: (21)

Equation (20) states that U is an isometry according to this

norm, so we can extend its action to ~A. Denote this
extension by J. Due to Eq. (21), the operator J satisfies

Jy ¼ �J: (22)

The fact that J is an isometry, together with its antisym-
metry, implies that

J2 ¼ �I: (23)

A linear operator J satisfying Eqs. (22) and (23) is said to

endow the real Hilbert space ~A with a complex structure
[24]. The symplectic form � can also be extended from S
to ~A thanks to Eq. (17). This extension will be denoted by
�00. Due to Eqs. (15) and (16), it is related to J by

hc 1; Jc 2i ~A ¼ �00ðc 1; c 2Þ: (24)

The next step consists in complexifying ~A, resulting in

the space ~AC, and extending to it by complex linearity the
bilinear forms ~�, �00, and the operator J. Naturally, the

space ~AC is a complex Hilbert space in the norm associ-
ated with the following inner product:

hc 1; c 2i ~AC
� 2 ~�ð �c 1; c 2Þ: (25)

Now we are in a position to define the Hilbert space H
as a closed subspace of ~AC. To do so, note that iJ is self-
adjoint and, due to Eq. (23), has eigenvalues �1.

Therefore, from the spectral theorem, ~AC decomposes
into two orthogonal eigensubspaces of iJ which are com-
plex conjugates of each other. Denote by P� the orthogo-
nal projections associated with the eigenvalues �1. Then,

J ¼ �iðPþ � P�Þ (26)

and the ‘‘one-particle Hilbert space’’ H is defined as

RanðPþÞ. For any two vectors c 1, c 2 2 ~AC it is easy
to show that

hPþc 1; Pþc 2iH � hPþc 1; Pþc 2i ~AC

¼ i�00ðPþc 1; Pþc 2Þ; (27)

usually called the ‘‘Klein-Gordon inner product.’’ The

definition of H implies that �H ¼ RanðP�Þ, i.e., �H
corresponds to the orthogonal complement of H in ~AC.
The restriction of the projection Pþ to S gives us the

real, linear map K. As proved in Ref. [23], Proposition 3.1,
the pair ðK;H Þ is uniquely defined, up to a unitary
equivalence. From Eq. (27) it follows that K satisfies

hKc 1; Kc 2iH ¼ ~�ðc 1; c 2Þ � i

2
�ðc 1; c 2Þ:

This relation shows that all the freedom we have in choos-
ing H is encoded in the bilinear form ~�, which depends
on � through Eq. (16). The freedom in picking a ‘‘one-
particle Hilbert space’’ is an important issue in quantum
field theory, since different choices can lead, in general, to
unitary inequivalent representations for the Weyl relations.

III. UNSTABLE FREE FIELDS IN STATIC
SPACETIMES WITHOUT HORIZONS

From now on we shall restrict ourselves to the special
case of a static spacetime. Hence, over ðM; gabÞ exists a
one-parameter group of isometries �t generated by a time-
like Killing vector field ßa—which we identify with our
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time coordinate vector ta—and a foliation orthogonal to
ßa. Thus, we can choose

na ¼ ßa

kßk ;

where kßk � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ßaßa
p

. Additionally, we will assume that
for some Cauchy surface in the foliation it is possible to
find constants �1, �2 > 0 such that

�1 < kßk< �2: (28)

Therefore, here we have in mind static spacetimes without
horizons.

When the background spacetime is static, it is possible
to cast Eq. (2) as

� @2t � ¼ kßk�0�; (29)

where the differential operator �0 is defined as

�0f � �DaðkßkDafÞ þ kßkVf; (30)

with Da the covariant derivative operator associated with
the spatial metric hab. In order to guarantee that Eq. (29)
shares the time symmetry of the background spacetime, we
will only consider scalar potentials with null Lie derivative
with respect to ßa. If we define the one-parameter family of
linear maps �t: S ! S acting on c ¼ ð�; nara�Þ as

�tc �
�

� 
 �t

ðnara�Þ 
 �t

�
; (31)

then the equation

d

dt
�tc jt¼0 ¼ �h0c ; (32)

with

h0 �
�

0 �kßk
�0 0

�
; (33)

just expresses Eq. (29) in terms of a pair of coupled
differential equations.

A. Definition of the ‘‘one-particle Hilbert space’’
for an unstable field

We consider the real Hilbert space L2ð�0; d�Þ—which
we abbreviate from now on just by L2—in the norm
associated with the inner product

hf1; f2iL2 �
Z
�0

d�f1f2:

On this Hilbert space, the multiplication by kßk defines a
bounded, positive, self-adjoint operator with bounded
inverse, due to Eq. (28). Moreover, since V 2 C1ð�0Þ is
locally square integrable in the measure d�, Eq. (30)
corresponds to an unbounded, symmetric, densely defined
operator with domain Domð�0Þ ¼ C1

0 ð�0Þ and range

Ranð�0Þ ¼ C1
0 ð�0Þ. Furthermore, for this class of

potentials, it is possible to show that �0 is also essentially
self-adjoint in Domð�0Þ [25]. Therefore, �0 has just one
self-adjoint extension in L2, namely, its closure �.
Denote by h�; �iL2�L2 the inner product of L2 � L2. We

define the real Hilbert space N as the completion of P in
the norm induced by the inner product

hc 1; c 2iN � hc 1;Nc 2iL2�L2 ;

where

N �
2
4 kßk�1 0

0 kßk

3
5: (34)

Note that as setsN and L2 � L2 coincide, the spaceN is
isomorphic to L2 � L2 according to the following unitary
transformation:

c 2 N � N
1
2c 2 L2 � L2: (35)

Moreover, the smoothness of the background spacetime

together with Eq. (28) imply that N
1
2 maps P into itself.

Consider, then, the following bilinear, symmetric form
over S:

"ðc 1; c 2Þ � 1

2

Z
�0

d�ðkßkp1p2 þ f1�0f2Þ

¼ hN1
2c 1;M0N

1
2c 2iL2�L2 ; (36)

with

M0 � 1

2

" kßk1
2�0kßk1

2 0

0 1

#
; (37)

where we have used the unitary transformation (35). When
c 1 ¼ c 2, the bilinear form (36) is equal to the conserved
energy associated with the scalar field. From Eq. (36) we
see that the energy of the field can become as negative as
we want if �0 fails to be a positive operator. Therefore, the
classical scalar field becomes unstable when �ð�Þ, the
spectrum of �, acquires a negative part.
From this point on we shall focus on situations in which

the scalar field is destabilized by the external fields. Hence,
it will be implied that �ð�Þ \ R� � ∅. For technical
reasons, we shall assume the existence of constants M1,
M2 > 0 such that for all � 2 �ð�Þ,

j�j>M1 (38)

and

� >�M2: (39)

Condition (38) guarantees that the inverse of some opera-
tors that will appear in what follows are bounded. (In the
case of stable fields, this imposition is related to the infra-
red behavior of the theory; for a discussion on this issue for
stable fields see, e.g., Ref. [26].) Moreover, this condition
will be important to prove that Eq. (14) holds for our choice
for �—see the Appendix. Equation (38) is what is meant
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by ‘‘mass gap’’ in Sec. I. As for condition (39), it is
equivalent to the statement that the scalar potential V is
bounded from below, which is a physically reasonable
assumption.

The operator M0 is essentially self-adjoint on P ,

since kßk1
2�0kßk1

2 is essentially self-adjoint on
C1
0 ð�0Þ. Denote by M the closure of M0. The map

kßk�1
2 � kßk1

2:L2 � L2 ! L2 � L2 applied to the elements
of the graph of the operator �0,

�ð�0Þ � fðf;�0fÞ; f 2 Domð�0Þg;
gives

ðf;�0fÞ � ðkßk�1
2f; kßk1

2�0kßk1
2kßk�1

2fÞ;
so �ð�0Þ is mapped into �ðkßk1

2�0kßk1
2Þ. The map kßk�1

2 �
kßk1

2 is a homeomorphism in the norm topology. Hence, we
also have that the graph of � is taken into the graph of the

closure of kßk1
2�0kßk1

2, which must be equal to kßk1
2�kßk1

2.
With the definition

� � kßk1
2�kßk1

2;

this last result implies that

M ¼ 1

2

�
� 0

0 1

�
: (40)

Note that if � fails to be a positive operator, so does �.
For a stable field, a suitable choice for � is the bilinear

form associated with the conserved energy, Eq. (36). In this
case, the field quantization is formally equivalent to the
prescription of expanding the field operator in terms of
positive- and negative-frequency modes of the field equa-
tion [10–12]. The presence of the instability, however,
spoils the positivity of the energy and, consequently, "
does not define a norm on S. For the unstable field, then,
we consider the following bilinear, positive, symmetric
form [27]:

�ðc 1; c 2Þ � hN1
2c 1; jMjN1

2c 2iL2�L2 ; (41)

with

jMj ¼ 1

2

� j�j 0

0 1

�
: (42)

As shown in the Appendix, the bilinear form (41) satisfies
Eq. (14), so we can proceed with the formalism discussed
in Sec. II. What is interesting about the bilinear form
defined by Eq. (41) is that it coincides with the conserved
energy (36) whenever the latter is positive. Hence, for this
stable sector, the bilinear form (41) is conserved and the
quantization that arises when we follow the steps presented
in Sec. II does not rely on the choice of the Cauchy surface.
For the unstable sector, however,� is not conserved. Thus,
in general, our definition ofH will depend on the Cauchy
surface on which we give the initial conditions for the field.

As will be discussed in Sec. III B, this fact implies that the
time translation defined by Eq. (31) will not induce a
unitary operator on H .
Once the bilinear form � has been fixed, it is possible to

give a representation for the Hilbert space A, for the
bounded operator A, and its polar decomposition. One
sees from the unitary transformation (35) and Eq. (41)
that A is isomorphic to A1 � L2, where A1 is the
Hilbert space resulting from the completion of C1

0 ð�0Þ in
the norm defined by 1

2 h�; j�j�iL2 . Then, the action of the

operator A can be written as

�ðc 1; Ac 2Þ ¼ hN1
2c 1; jMj 	AN1

2c 2iL2�L2 ; (43)

with

	A � N
1
2AN�1

2: (44)

Using the inner product of L2 � L2, we can express the
symplectic form (3) as

�ðc 1; c 2Þ ¼ hc 1;gc 2iL2�L2 ; (45)

with

g �
�

0 1

�1 0

�
: (46)

Then, comparing Eqs. (43) and (45) as in Eq. (15), it
follows that

	A ¼ 1

2
jMj�1N�1

2gN�1
2 ¼

�
0 j�j�1

�1 0

�
: (47)

Note that j�j�1 exists as a positive, bounded operator, due
to property (38) of �ð�Þ and Eq. (28). For the unitary
transformation of the operator jAj one has

j 	Aj � N
1
2jAjN�1

2 ¼
� j�j�1

2 0

0 j�j�1
2

�
: (48)

Thus, combining Eqs. (47) and (48), the unitary trans-
formation of U gives

	U � N
1
2UN�1

2 ¼ j 	Aj�1 	A ¼
�

0 j�j�1
2

�j�j12 0

�
; (49)

since Domðj�jÞ � Domðj�j12Þ. Finally, to arrive at an ex-
pression for ~�, we combine Eqs. (41) and (48) according to
Eq. (16) and obtain

~�ðc 1; c 2Þ ¼ hN1
2c 1; ~MN

1
2c 2iL2�L2 ; (50)

with

~M � 1

2

� j�j12 0

0 j�j�1
2

�
: (51)

Therefore, by defining the real Hilbert spaces ~A1 and
~A2

as the completion of C1
0 ð�0Þ in the norms given by
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1
2 h�; j�j12�iL2 and 1

2 h�; j�j�1
2�iL2 , respectively, one has that

~A is isomorphic to ~A1 � ~A2.
In S the complex structure J coincides withU, so we can

use Eqs. (26) and (49), together with I ¼ Pþ þ P�, to
obtain

	K ¼ Iþ i 	U

2
¼ 1

2

�
1 ij�j�1

2

�ij�j12 1

�
: (52)

Equations (50) and (52) allow us to write the inner product
of H , defined in Eq. (27), as

hKc 1; Kc 2iH ¼
�
Xf1 þ iXy�1p1ffiffiffi

2
p ;

Xf2 þ iXy�1p2ffiffiffi
2

p
�
L2
C

;

where h�; �iL2
C
stands for the inner product of L2

C, the

complexified version of L2. The closed operator X is
defined in such a way that

XyX ¼ kßk�1
2j�j12kßk�1

2:

Therefore, we are led to also identify H with L2
C and

implement the map K through the linear map k: P ! L2
C

given by

ðf; pÞ � Xfþ iXy�1pffiffiffi
2

p :

There are several unitarily equivalent identifications be-
tween H and L2

C. For instance, we could have chosen

X ¼ j�j14kßk�1
2;

which coincides with the representation found by Kay in
Ref. [12] for stable fields in static spacetimes.

B. Time translation for ‘‘one-particle states’’

Our next task is to implement in F the time translation
defined over ðM; gabÞ by �t. This is accomplished through
the construction of a strongly continuous unitary group
UðtÞ satisfying

UðtÞWðc ÞUð�tÞ ¼ Wð�tc Þ: (53)

Thus, to build such operator we have to investigate first
how the time translation acts on H .

We start by analyzing the continuity of �t in P , accord-
ing to the norm of A. Using the fact that j�j is a closed
operator and that �t maps P into itself, we obtain

lim
t!0

kð�t � IÞc k2A ¼ 0; (54)

since lim t!0ð�tc � c Þ ¼ 0. So, �t is strongly continuous.
Consequently, this map is also strongly continuous accord-

ing to the norm of ~A, due to the boundedness of jAj.
Furthermore, we also have

lim
	!0

�����
�
�tþ	 � �t

	
þ h0�t

�
c

�����2
A

¼ 0; (55)

due to Eq. (32). Thus, that equation holds in the strong

sense both in A and ~A.
As mentioned above, the behavior of the bilinear form

(41) under time translations is quite different whether we
restrict ourselves to the stable or the unstable sector. Thus,
it is convenient to study each case separately. Consider the
spectral projectionQB of�, associated with the set B � R.
We introduce on P the operators Q�, which are imple-
mented through

	Q� � N
1
2Q�N�1

2 ¼
�
QI� 0
0 QI�

�
; (56)

with Iþ � ½0;þ1Þ and I� � ð�1; 0Þ. Since they are built
out of spectral projections of �, these operators define

orthogonal projections on A, ~A, and H . Hence, these
Hilbert spaces are isomorphic to the Hilbert spaces

Aþ �A�, ~Aþ � ~A�, and Hþ �H�, respectively,
where we have defined A� � Q�A, ~A� � Q� ~A, and
H� � Q�H .
Denote byP� the images ofP by the projectionsQ�. In

general, we do not expect P� to be subsets of P . Thus, it is
more convenient to define the time translation on P� as

��t Q�c � Q��tc : (57)

Taking the derivative in both sides of Eq. (57), using
Eq. (32), and the closure of h0 in L2 � L2, h, we get

d

dt
��t Q�c ¼ Q�

d

dt
�tc

¼s �Q�h0c

¼ �Q�hc

¼ �hQ�c :

Then, by defining h� as the restriction of h to P� it is
possible to write

d

dt
��t ¼s �h���t ; (58)

where the equality holds in the strong sense both inA and
~A.
In order to analyze the action of the time translation on

the stable sector, we first note that

hhþc 1; c 2iA ¼ �hc 1;hþc 2iA; (59)

since j�j and � coincide in Pþ. Then, making use of
Eq. (58),

d

dt
k�þt c k2A ¼ �hhþ�þt c ; �þt c iA � h�þt c ;hþ�þt c iA

¼ 0; (60)

thanks to Eq. (59). This result is just a manifestation of the
bilinear form � coinciding with the conserved energy in
the stable sector. In conclusion, �þt defines a isometry on
Pþ according the norm of A. Furthermore, insofar as �t
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and jAj commute, �þt is also an isometry according to the

norm of ~A. Hence, the extension of �þt to ~Aþ
C defines a

strongly continuous one-parameter unitary group which we

denote by TþðtÞ. In the complex Hilbert space ~Aþ
C , hþ is a

skew-symmetric, densely defined operator which maps
Pþ þ iPþ into itself. Besides, hþ also commutes with
TþðtÞ. So, following the strategy of Ref. [12], it is possible
to use a lemma due to Nelson (see Lemma 10.1 of
Ref. [28]; see also Lemma 2.1 of Ref. [29]) to conclude

that, as an operator on ~Aþ
C , hþ is essentially skew adjoint

in Pþ þ iPþ. Then, thanks to Stone’s theorem and
Eq. (58),

TþðtÞ ¼ e�th; (61)

where h stands for the closure of hþ in ~Aþ
C . The operator

TþðtÞ can be represented as

TþðtÞ ¼
cos ðtj�j12Þ j�j�1

2 sin ðtj�j12Þ
�j�j12 sin ðtj�j12Þ cos ðtj�j12Þ

" #
(62)

and its restriction to Hþ gives

TþðtÞ↾Hþ ¼ e�itj�j12 0

0 e�itj�j12

2
4

3
5: (63)

As for the unstable sector, we encounter

hh�c 1; c 2iA ¼ hc 1;h�c 2iA; (64)

since now � coincides with �j�j in P�. Then, from
Eqs. (58) and (64),

d2

dt2
k��t c k2A ¼ 4kh���t c k2A 
 4M2�2k��t c k2A; (65)

where we have used Eq. (28) and property (39) of �ð�Þ to
obtain the inequality above. Equation (65) tell us that there
is a strictly positive function CðtÞ such that

k��t c k2A 
 CðtÞkc k2A: (66)

Equation (66) establishes that ��t is bounded in A� and,

consequently, also in ~A�. Hence, the extension of ��t to
~A�

C defines a strongly continuous one-parameter bounded

group which we denote by T�ðtÞ. In ~A�
C , h� is a sym-

metric bounded operator. So, we can write T�ðtÞ ¼ e�th�

and represent it as

T�ðtÞ ¼
cosh ðtj�j12Þ j�j�1

2 sinh ðtj�j12Þ
j�j12 sinh ðtj�j12Þ cosh ðtj�j12Þ

" #
: (67)

When restricted to H�, this representation leads to

T�ðtÞ↾H�¼ ffiffiffi
2

p cosh

�
tj�j12� i


4

�
0

0 isinh

�
tj�j12� i


4

�
2
6664

3
7775:

(68)

In conclusion, we have managed to show that �t extends

to ~AC ¼ ~Aþ
C � ~A�

C as a strongly continuous one-
parameter group TðtÞ, which can be expressed as

TðtÞ ¼ TþðtÞ � T�ðtÞ: (69)

This family does not act as a unitary group on ~AC and
does not commute with the projections P�, except when
restricted to ~Aþ

C . Hence, in general, TðtÞ will map the

elements of H into H � �H , ‘‘mixing’’ solutions that
initially had positive norm with ‘‘negative-norm’’ ones,
according to the notion established on �0.
Before changing the subject, it is worth pointing out that

part of the purpose of the representation set by Eq. (41) is
the implementation of the time evolution for the stable and
unstable sectors of H as in Eqs. (63) and (68). In this
sense, then, the representation of H in terms of L2

C—see

discussion below Eq. (52)—is useless when the field is
unstable, since Eq. (68) prevents us from representing TðtÞ
as an operator on this space.

C. Time translation on the Fock space

Now, let us get back to the time translation operator
acting on the space of states of the quantum field.
Equation (53) is equivalent to

UðtÞF0ðc ÞUð�tÞ ¼ ia½P�TðtÞc 	 � ia�½PþTðtÞc 	 (70)

on spanðF 0Þ. The time translation ‘‘mixes’’ positive- and
negative-norm solutions when the field is unstable just like
in an ‘‘in-out’’ setting the S-matrix maps the ‘‘in’’ space of
states into the ‘‘out’’ one. Thus, here we shall employ the
approach presented in Ref. [14] to define the action ofUðtÞ
on F .
The first step consists in setting the action of UðtÞ on

�0. We start by defining the one-parameter families of

bounded operators At:H ! H and Bt:H ! �H as

At � PþTðtÞ↾H (71)

and

Bt � P�TðtÞ↾H : (72)

From Eq. (27) and the conservation of the symplectic form
(3), it follows that for c 1, c 2 2 H
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hc 1; c 2iH ¼ i�00ð �c 1; c 2Þ
¼ i�00½TðtÞc 1; TðtÞc 2	
¼ i�00½ðPþ þ P�ÞTðtÞc 1; ðPþ þ P�ÞTðtÞc 2	
¼ hAtc 1; Atc 2iH � hBtc 1; Btc 2i �H

¼ hc 1; ðAt
yAt � Bt

yBtÞc 2iH
and that

h �c 1; c 2iH ¼ i�00ðc 1; c 2Þ
¼ i�00½ðPþ þ P�ÞTðtÞc 1; ðPþ þ P�ÞTðtÞc 2	
¼ hBtc 1; Atc 2iH � hAtc 1; Btc 2i �H

¼ hðAt
y �Bt � Bt

y �AtÞ �c 1; c 2iH ¼ 0:

Here, the operators �At and �Bt are defined as

�At � P�TðtÞ↾ �H

and

�Bt � PþTðtÞ↾ �H :

Hence, the operators At and Bt satisfy

At
yAt � Bt

yBt ¼ I (73)

and

At
y �Bt ¼ Bt

y �At: (74)

Equations (73) and (74) show that the operators At and Bt

define a one-parameter family of Bogoliubov transforma-
tions. Furthermore, from Eq. (73) it is possible to show that
At is bounded from below. Hence At

�1 exists as a bounded
operator.

Next, write

�t � UðtÞ�0 ¼ ctð1; c ð1Þ
t ; c ð2Þ

t ; c ð3Þ
t ; . . .Þ: (75)

By choosing c ¼ At
�1� in Eq. (70) and applying its left-

hand side on UðtÞ�0, we obtain

0 ¼ að ��Þ�t � a�ð"t ��Þ�t; (76)

with

"t � BtAt
�1: (77)

Equation (76) fixes the action ofUðtÞ on�0. This equation

implies that all c ðnÞ
t in Eq. (75) are null for n odd, while for

n even they can be expressed in terms of symmetrized

tensor products of c ð2Þ
t . Hence, the only equation we

must care about is

�� � c ð2Þ
t ¼ 1ffiffiffi

2
p "t ��: (78)

Following Ref. [14], we interpret c ð2Þ
t in the left-hand

side of Eq. (78) as a map from �H to H . Then, the

identification of c ð2Þ
t with the operator "t is consistent if

the former is symmetric, i.e., if

�"t
y ¼ "t; (79)

and if it is in the Hilbert-Schmidt class, meaning that

trð"ty"tÞ<þ1: (80)

The first condition comes from the symmetry of c ð2Þ
t , while

the second is a consequence of kc ð2Þ
t kH�H <þ1.

Equation (79) can be verified directly from Eq. (74). As
for Eq. (80), it gives a condition for the existence of a
solution of Eq. (76). This condition is equivalent to

trðBt
yBtÞ<þ1; (81)

since At
�1 is bounded. This condition can be read as stating

that the expected value of the total number operator in the
state �t is finite—see Eq. (97) below. In conclusion, we
have obtained that UðtÞ maps �0 into

�t ¼ ct

0
@1; 0; 1ffiffiffi

2
p "t; . . . ;

ffiffiffiffiffi
n!

p

2n=2ðn2Þ!
On=2

"t; . . .

1
A; (82)

for n even, provided that Eq. (81) holds.
The definition of the time translation operator UðtÞ is

completed by stating its action on F 0, the set of all
n-particle states. Since spanðF 0Þ is a dense subset of F ,
this defines UðtÞ on a dense domain. For a collection
�1; �2; . . . ; �n of vectors in H , the correspondent
n-particle state is given by

Q
n
j¼1 a

�ð�jÞ�0. The action of

UðtÞ on these vectors is given by

UðtÞYn
j¼1

a�ð�jÞ�0 ¼
Yn
j¼1

½a�ðAt�jÞ � aðBt�jÞ	�t: (83)

It is left to check that the operatorUðtÞ as constructed in
the last paragraphs actually defines a strongly continuous
one-parameter unitary group onF . The first thing to check
is whether the norm of �t is finite. As shown in Ref. [14],
assuming that "t is Hilbert-Schmidt and using its symmetry
property, it is possible to prove that k�tkF <þ1.

Besides, the vector �t lies in the domain of powers of
creation and annihilation operators. So, the right-hand side
of Eq. (83) is well defined. To show that UðtÞ is unitary, it
is enough to verify that this operator preserves the inner
product in F 0. The inner product between two n-particle
states can be written in terms of the commutator (12); since
this commutator is preserved by UðtÞ, thanks to Eq. (73),
the time translation defines a unitary operator in a dense
domain and, consequently, in F . To see that UðtÞ inherits
the group property of TðtÞ, first we need the following
relations, derived from Eqs. (71) and (72):

At2At1 þ Bt2Bt1 ¼ At1þt2 (84)

and
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Bt2At1 þ At2Bt1 ¼ Bt1þt2 : (85)

Equations (84) and (85), together with Eq. (76), lead to

Uðt2Þ�t1 ¼ �t1þt2 : (86)

Then, Eqs. (84)–(86) imply that

Uðt2ÞUðt1Þ
Yn
j¼1

a�ð�jÞ�0

¼ Yn
j¼1

½a�ðAt1þt2�jÞ � aðBt1þt2�jÞ	�t1þt2 ;

verifying that UðtÞ is a one-parameter group. For the
strong continuity of UðtÞ, it is sufficient to prove that

lim
t!0

�����UðtÞYn
j¼1

a�ð�jÞ�0 �
Yn
j¼1

a�ð�jÞ�0

�����2
F
¼ 0: (87)

The form of the right-hand side of Eq. (83) and the fact that
the creation and annihilation operators are continuous tell
us that Eq. (87) holds if (i) At and Bt are strongly continu-
ous and if (ii) lim t!0�t ¼ �0. Condition (i) follows from
the definition of operators At and Bt, Eqs. (71) and (72),
and the fact that TðtÞ is strongly continuous. Condition (ii)
depends on the norm of "t converging to zero as t ! 0. But

lim
t!0

k"tk2H�H 
 lim
t!0

X1
j¼1

kBt’jk2H ¼ 0;

where f’jgj2N� is a complete orthonormal base of H and

we have used Eqs. (72) and (81).
It is possible to extract more information about the time-

translated vacuum state�t if we exploit the representation
of the operators P� and TðtÞwhen restricted toH�. Using
Eqs. (52) and (67), we get

P�T�ðtÞ ¼
cosh ðtj�j12Þ 0

0 cosh ðtj�j12Þ

" #
P�

� i sinh ðtj�j12Þ 0

0 i sinh ðtj�j12Þ

" #
R�P�;

where

R� ¼ � 0 ij�j�1
2

ij�j12 0

" #
:

We can use the relation above to obtain the following
representation for the operators At and Bt on KP þ
iKP � Hþ �H�:

At ¼ At
þ � At

�; (88)

with

Aþ
t � e�itj�j12 0

0 e�itj�j12

2
4

3
5 (89)

and

A�
t � cosh ðtj�j12Þ 0

0 cosh ðtj�j12Þ

" #
; (90)

and

Bt ¼ Bþ
t � B�

t ; (91)

with

Bþ
t � 0 (92)

and

B�
t � i sinh ðtj�j12Þ 0

0 i sinh ðtj�j12Þ

" #
R�: (93)

Combining Eqs. (88)–(93) according to Eq. (77), we obtain

"t ¼ "þt � "�t ; (94)

where

"þt � 0 (95)

and

"�t � i tanh ðtj�j12Þ 0

0 i tanh ðtj�j12Þ

" #
Rþ: (96)

Now we possess the necessary tools to calculate the
mean value of the number operator in the state �t.
Consider again an orthonormal base f’jgj2N� of H and

define the operator Nð’jÞ as
Nð’jÞ � a�ð’jÞað �’jÞ;

the number operator associated to ’j. The mean value of

Nð’jÞ in the state �t is given by

h�t; Nð’jÞ�tiF ¼ hBt’j; Bt’jiH : (97)

Note that, as stated earlier in this section, the expected
value of the total number operator is finite if Eq. (81) holds.
Substituting Eqs. (91)–(93) into Eq. (97) it follows that

h�t; Nð’jÞ�tiF ¼
Z 0

�1
j�j32sinh 2ðj�j12tÞd�j

þ
Z 0

�1
j�j�3

2sinh 2ðj�j12tÞd�j;

where

d�j � dhkßk�1
2fj; Q�kßk�1

2fjiL2
C

and

d�j � dhkßk1
2pj;Q�kßk1

2pjiL2
C
;

with ’j ¼ ðfj; pjÞ are spectral measures associated with

the operator �. Thus, the mean number of quanta created

WILLIAM C.C. LIMA PHYSICAL REVIEW D 88, 124005 (2013)

124005-10



in a given ‘‘one-particle state’’ grows exponentially in
time.

D. The Hamiltonian operator

In order to investigate further the time translation op-
erator defined in the last section, it is convenient to separate
the space of states of the quantum field in two pieces, one
describing only the stable degrees of freedom of the field
and another describing only the unstable ones. So, consider
the Hilbert spaces F� � FsðH�Þ. The spaces F and
Fþ �F� are isomorphic, according to the following

map—see, e.g., Ref. [30]. Take �ðmÞ 2 ðNmHþÞs, %ðnÞ 2
ðNnH�Þs, and for each (mþ n)-particle state in F of the
form

ð. . . ; �ðmÞ �s %
ðnÞ; . . .Þ (98)

associate the vectorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!n!

ðmþ nÞ!

s
ð. . . ; �ðmÞ; . . .Þ � ð. . . ; %ðnÞ; . . .Þ (99)

in Fþ �F�. The combinatorial factor in Eq. (99), to-

gether with the fact that the contraction between �ðmÞ and
%ðnÞ is null, makes this map norm preserving on these
vectors. Furthermore, the set formed by all vectors of the
form (98) is dense in F , whereas the set formed by all
vectors of the form (99) is dense in Fþ �F�. Therefore,
this map establishes the desired isomorphism between
these two Hilbert spaces. Denote by��

0 the vacuum states

of F�. Applying this map to the time-translated vacuum
state, Eq. (82), we see that

�t � �þ
0 ���

t ; (100)

where

��
t ¼ ct

�
1; 0;

1ffiffiffi
2

p "�t ; . . . ;
ffiffiffiffiffi
n!

p

2n=2ðn2Þ!
On=2

"�t ; . . .
�
; (101)

due to Eqs. (94)–(96).
Next, for � 2 Hþ and % 2 H�, denote by bð ��Þ and

b�ð�Þ the annihilation and creation operators on Fþ and
by cð �%Þ and c�ð%Þ the same operators but on F�—defined
in the same manner as the operators in Eqs. (7) and (8). As
their counterparts on F , the annihilation and creation
operators on F� are defined on the linear span of F 0

�,
the set of all n-particle states of F�. It is easy to check,
then, that the action of the operator að ��Þ on vectors of the
form (98) can be written as the action of the operator

bð ��Þ � Iþ I � cð �%Þ (102)

on vectors of the form (99), while the operator a�ð�Þ acts as
b�ð�Þ � Iþ I � c�ð%Þ; (103)

for � ¼ �þ %. Taking c 2 P , Eqs. (102) and (103)
imply for the field operator, Eq. (13), that

F0ðc Þ � Fþ
0 ðcþÞ � Iþ I � F�

0 ðc�Þ;

where c ¼ cþ þ c�, c� 2 P�,

Fþ
0 ðcþÞ � ibðP�cþÞ � ib�ðPþcþÞ; (104)

and

F�
0 ðc�Þ � icðP�c�Þ � ic�ðPþc�Þ: (105)

Now, let us turn our attention to Eq. (83). The action of
creation and annihilation operators on the states�0 and�t

results in vectors of the form (98). Thus, if wewrite At�j ¼
Aþ
t �j þ A�

t %j, Bt�j ¼ B�
t %j, and use the expressions

(102) and (103), we conclude from Eq. (83) that the action
of UðtÞ on F is equivalent to the action of V ðtÞ �W ðtÞ
on Fþ �F�, where V ðtÞ is defined by

V ðtÞYn
j¼1

b�ð�jÞ�þ
0 ¼ Yn

j¼1

b�ðAþ
t �jÞ�þ

0 ; (106)

while W ðtÞ is defined by

W ðtÞYn
j¼1

c�ð%jÞ��
0 ¼ Yn

j¼1

½c�ðA�
t %jÞ � cðB�

t %jÞ	��
t :

(107)

By the same arguments of the last section it is possible to
show that, as UðtÞ, the operators V ðtÞ and W ðtÞ define
strongly continuous one-parameter unitary groups on Fþ
and F�, respectively. Note that Eq. (106) is equivalent to
the ‘‘second quantization’’ of the restriction of TþðtÞ to
Hþ, given in Eq. (63).
The main goal of this section is the analysis of the

generator of W ðtÞ. In particular, we wish to express it in
terms of the creation and annihilation operators defined in
F�. For simplicity, we will make the additional assump-
tion that the instability is related exclusively to the point
spectrum of � and that this operator has finitely many
eigenvalues. So, H� is a finite-dimensional Hilbert
space. This assumption corresponds to the most common
scenario explored in the literature where the scalar
field is made unstable due to a deep enough scalar
potential well that allows bound states with ‘‘imaginary
frequencies.’’
Thus, making use of Stone’s theorem, write

W ðtÞ ¼ e�itH� ; (108)

where H� is a self-adjoint operator which maps
spanðF 0

�Þ into itself, thanks to Eq. (107). Applying the
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time translation to the field operator defined in Eq. (105)
and taking the derivative with respect to t at t ¼ 0, it
follows that

½H�; F�
0 ð�Þ	 ¼ c�ðPþh��Þ � cðP�h��Þ: (109)

It is convenient to rewrite P�h� as

P�h� ¼ w�EP�; (110)

with

E � �1 0

0 1

" #
: (111)

Next, taking advantage of the representation of P�,
Eq. (52), and the form of h� with the transformation (35),

	h� � N
1
2h�N�1

2 ¼ 0 �1

� 0

" #
¼ � 0 1

j�j 0

" #
;

we obtain

	w� � N
1
2w�N�1

2 ¼ �i
j�j12 0

0 j�j12

" #
: (112)

From Eqs. (52) and (111) we can show that the combina-
tion EP� satisfies

P�EP� ¼ 0:

Hence, E maps �H�
into H� and vice versa. Denote by

f’jgj¼1;...;N the orthonormal base of H� built out of the

eigenvectors of �. Then, we can express � as

� ¼ XN
j¼1

�j’j þ ��j �’j: (113)

Substituting Eq. (113) in both sides of Eq. (109) and using
Eq. (105), we conclude that

½H�; cð �’jÞ	 ¼ �ic�ðwþE �’jÞ ¼ j�jj12c�ð’jÞ (114)

and

½H�; c�ð’jÞ	 ¼ �icðw�E’jÞ ¼ �j�jj12cð �’jÞ; (115)

where �j, for j ¼ 1; . . . ; N, denote the negative eigenval-

ues of �. Equations (114) and (115) are simultaneously
satisfied if

H� ¼ �XN
j¼1

j�jj12
2

½cð �’jÞcð �’jÞ þ c�ð’jÞc�ð’jÞ	; (116)

on spanðF 0
�Þ, up to the addition of a multiple of the

identity operator. Defining the operators

P̂j � �i

ffiffiffiffiffiffiffiffiffiffi
j�jj12
2

s
½cð �’jÞ � c�ð’jÞ	

and

Q̂j � 1ffiffiffiffiffiffiffiffiffiffiffiffi
2j�jj12

q ½cð �’jÞ þ c�ð’jÞ	;

it is possible to cast Eq. (116) as

H� ¼ XN
j¼1

1

2
P̂2
j �

j�jj
2

Q̂2
j : (117)

As expected, Eq. (117) tells us that each ‘‘one-particle
state’’ ’j behaves as a nonrelativistic particle in a para-

bolic potential barrier.

IV. CONCLUSION AND FINAL REMARKS

Throughout the text we have referred to H as a one-
particle Hilbert space. In QFTCS there is no preferred
notion of particles by the theory, even though a natural
one can be built in stationary spacetimes whether the field
is stable [9,10]. Despite of the fact that we have considered
a static spacetime background, the lack of a vacuum state
invariant under time translations in the representation we
have built leads to the conclusion that one should not
attribute a particle content to the system. As a matter of
fact, it was shown that particle detectors coupled to the
field following the orbits of the time isometry copiously
excite if the instability analyzed here is present [5]. This
result is expected, since the Hamiltonian operator of the
quantum system is unbounded from below—see Eq. (116)
above.
As mentioned in the introductory part and implied by

Eqs. (28) and (38), here we have focused on unstable free
scalar fields on static backgrounds without horizons and
possessing a ‘‘mass gap.’’ These assumptions are an essen-
tial part of the proof of the inequality (14) for our choice
for the bilinear form �, Eq. (41)—see the Appendix. Even
tough restrictive, these conditions can be satisfied at least
for massive scalar particles in Minkowski spacetime sub-
ject to scalar potential wells [8] and for nonminimally
coupled scalar fields in static spacetimes curved by
classical matter [1]. The former example resembles the
SSW instability, while the latter has a realization in the
spacetime of compact objects [2].
In summary, here we have studied the quantization of a

neutral scalar field that is made unstable through the

WILLIAM C.C. LIMA PHYSICAL REVIEW D 88, 124005 (2013)

124005-12



coupling with an external scalar potential while evolving
on a static globally hyperbolic spacetime. We have shown
how the general formalism to find a one-particle Hilbert
space based on the definition of a complex structure for
linear fields can be particularized in order to treat the
instability. The key point of the mathematical construction
is our choice of the bilinear form given in Eq. (41), which
sets a representation of the Weyl relations for the quantized
field. Then, we have investigated the action of the time
translation operator on the vacuum of this representation
and from this it was shown how to define its action on the
whole space of states of the unstable quantum field. As one
would expect, the presence of the instability leads to the
break of the invariance of the vacuum under time trans-
lations. Finally, from the particular form that the dynamics
assumes when specialized to the unstable sector of the
field, we have arrived at an expression for the contribution
from the unstable degrees of freedom of the field to the
generator of the time translations, the Hamiltonian. The
expression we have encountered tells us that each degree of
freedom lying in the unstable sector behaves just like a
nonrelativistic quantum particle subjected to a parabolic
potential barrier.

ACKNOWLEDGMENTS

It is a pleasure to thank Daniel Vanzella for countless
stimulating discussions concerning QFTCS and for his
careful reading of this manuscript. The author acknowl-
edges financial support from the São Paulo Research
Foundation (FAPESP) under Grant No. 2012/00737-0.

APPENDIX

In the present appendix we shall present the intermediate
steps that lead to inequality (14), for � with the form
assumed in Eq. (41).

To prove the inequality (14) we first show that
the symplectic form (3) is bounded in the L2 � L2

norm when the spacetime is static [31]. Thus, for any
c 1, c 2 2 P ,

j�ðc 1; c 2Þj2 ¼
								
Z
�0

d�ðp1f2 � p2f1Þ
								2



�Z

�0

d�ðjp1jjf2j þ jp2jjf1jÞ
�
2



��Z

�0

d�jp1j2
Z
�0

d�jf2j2
�1
2

þ
�Z

�0

d�jp2j2
Z
�0

d�jf1j2
�1

2

�
2


 hc 1; c 1iL2�L2hc 2; c 2iL2�L2 : (A1)

For the second inequality in Eq. (A1) we have applied the
Cauchy-Schwartz inequality to the inner product of L2,
while for the third we have used that

jajjbj þ jcjjdj 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ jdj2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj2 þ jcj2

q
:

On the other hand, from property (38) of �ð�Þ and
Eq. (28),

�ðc ; c Þ � 1

2

Z
�0

d�ðkßkjpj2 þM1jfj2Þ

� 1

2
�1 min ð1;M1=�2Þhc ; c iL2�L2 : (A2)

Hence, combining Eqs. (A1) and (A2) we obtain, after
rescaling our temporal coordinate, that Eq. (14) holds
when � is given by Eq. (41).
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