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Deconfined quark matter may exist in a crystalline color-superconducting phase in the interiors of

compact stars. In this paper, we study the torsional oscillations of compact stars featuring a crystalline

color-superconducting quark-matter core in general relativity. Depending on the size of the crystalline

core and the value of the gap parameter �, we find that the frequencies of the torsional oscillation modes

can range from a few hundred hertz to a few kilohertz for our canonical 1:4M� compact star models. We

have also studied the prospect for detecting the gravitational-wave signals emitted from these modes in a

pulsar glitch event. Assuming that at least 10% of the energy released in a Vela glitch can be channeled to

the oscillation modes, we find that the Einstein Telescope should be able to detect these signals in quite

general situations. Furthermore, if the size of the crystalline core is comparable to the stellar radius and the

gap parameter is relatively small at �� 5 MeV, the signal-to-noise ratio for Advanced LIGO could reach

�10 for a Vela glitch. Our optimistic results suggest that we might already be able to probe the nature of

crystalline color-superconducting quark matter with the second-generation gravitational-wave detectors

when they come online in the next few years.
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I. INTRODUCTION

With their densities reaching a few times the standard
nuclear-matter density, the dense cores of compact stars
have long been recognized as the most promising places
where different exotic phases of matter could exist. In
particular, in the early 1970s, it was speculated that the
combinations of long-range attractive and short-range re-
pulsive channels of neutron-neutron interactions might
lead to a crystallization of nuclear matter (see Chap. 7 of
[1] for a brief review). One of the applications of the
possibility of solid cores inside neutron stars is the core-
quake theory for pulsar glitches [2,3]. It was also pointed
out by Dyson already in 1972 that, if solid cores exist
inside neutron stars, core quakes of these stars should
excite torsional oscillations which might generate detect-
able gravitational-wave signals on Earth [4]. However,
improved nuclear many-body calculations in the middle
of 1970s essentially ruled out the possibility of crystalli-
zation of nuclear matter inside neutron stars.

Another exotic phase of matter inside compact stars
proposed in the 1970s is the deconfined phase of quark
matter (e.g., [6–8]). Thanks to our improved understanding
of the QCD phase diagram nearly forty years later today,
we now know that the deconfined quark matter inside
compact stars may also be in a crystalline phase, and hence
the possibility of solid cores inside compact stars has
regained interest in recent years. It is now generally be-
lieved that the deconfined quarks inside mature (cold)
compact stars could form Cooper pairs and give rise to
color superconductivity [9–12] (see [13,14] for reviews).

At sufficiently high density, pairing between quarks of
different colors and flavors are allowed and the system is
said to be in the color-flavor-locked (CFL) phase [11].
However, at intermediate densities relevant to compact
stars, the more favored phase is the crystalline color-
superconducting quark matter with broken spatial symme-
tries [15–19]. The presence of this crystalline phase of
quark matter in the core of compact stars should produce
astrophysical signatures that are very different from those
of traditional neutron stars with a fluid core. Being able to
identify these signatures from observational data would
provide us a unique way to probe the nature of QCD in
the high, but not asymptotically high, density regime.
In this work, we shall focus on the gravitational-wave
signatures of these objects.
It has long been known that the gravitational-wave

signals emitted from compact stars carry important infor-
mation about the internal structure of the stars (see, e.g.,
[20–24]), and thus their detection would give us viable
information on dense matter. Regarding compact stars
featuring a core of crystalline color-superconducting quark
matter, the gravitational-wave emission due to nonaxisym-
metric distortions of the solid core have been studied
and analyzed with the (nondetection) results of the LIGO
scientific runs S3/S4 [25,26] and S5 [27]. A general con-
clusion obtained from these works is that the gravitational-
wave signals are within the reach of LIGO if the solid core
is maximally strained. In this paper, on the other hand, we
shall study the gravitational-wave signals emitted from the
torsional oscillations of the solid core. As we shall see
below, depending on the gap parameter and the size of the
core, the frequencies of these oscillation modes can range
from a few hundred hertz to a few kilohertz. This frequency*lmlin@phy.cuhk.edu.hk
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range is quite different from those standard fluid modes
of traditional neutron stars, such as the f and pmodes, with
typical frequencies at a few kilohertz [28]. Their relatively
low frequencies also put the torsional oscillation modes
within the best sensitivity region of ground-based
gravitational-wave detectors such as LIGO, VIRGO, and
KAGRA.

The plan of the paper is as follows. In Sec. II, we
summarize the formulation that we employ to calculate
the torsional oscillations of compact stars. Section III dis-
cusses the microphysical input that we need for construct-
ing background stellar models and mode calculations.
We present our numerical results in Sec. IV and discuss
the prospect for detecting the gravitational-wave signals in
Sec. V. Finally, we conclude our paper in Sec. VI. Unless
otherwise noted, we use geometric units with G ¼ c ¼ 1.

II. FORMULATION

The formulation for studying torsional oscillations of
compact stars in general relativity was first developed by
Schumaker and Thorne [5] thirty years ago. A more recent
gauge-invariant formulation of the problem can be found in
[29]. Due to their relevance to the quasiperiodic oscilla-
tions in giant flares emitted from soft gamma-ray repeaters
[30,31], torsional oscillations in the solid crust of neutron
stars have been studied in great detail recently (e.g.,
[32–38]). As far as we are aware, all these works are
done within the Cowling approximation where the metric
perturbations are neglected. This should be a good approxi-
mation in the study of oscillations in the crust of neutron
stars, since the density is low in the crust and the spacetime
variations should be small there. However, this is in general
not necessarily true for the oscillations of a massive solid
core. Hence, we shall employ the fully relativistic formu-
lation of Schumaker and Thorne [5] to study the torsional
oscillations, though we shall also compare the relativistic
results with those obtained by the Cowling approximation.

In the following, we shall first summarize the standard
set of equations for constructing the unperturbed equilib-
rium static configuration. We then briefly discuss the set of
perturbation equations and numerical scheme for solving
the torsional oscillation modes. We refer the reader to the
original work [5] for the full derivations.

A. Equilibrium static background

The unperturbed background is assumed to be a static
and spherically symmetric spacetime described by the
metric

ds2 ¼�e2�ðrÞdt2þe2�ðrÞdr2þ r2ðd�2þ sin2�d�2Þ; (1)

where the functions �ðrÞ and �ðrÞ depend only on the
radial coordinate r. The equilibrium structure of a compact
star is determined by the standard Tolman-Oppenheimer-
Volkov equations:

dm

dr
¼ 4�r2�; (2)

dP

dr
¼ �ð�þ PÞðmþ 4�r3PÞ

r2ð1� 2m=rÞ ; (3)

d�

dr
¼ mþ 4�r3P

r2ð1� 2m=rÞ ; (4)

where � and P are the energy density and pressure of
the fluid, respectively. The function mðrÞ is defined by

e�2�ðrÞ ¼ 1� 2mðrÞ=r. With a given equation of state
(EOS) Pð�Þ, the above system of differential equations
can be solved by imposing the boundary conditions

(i) mð0Þ ¼ 0; (ii) PðRÞ ¼ 0; (iii) e2�ðRÞ ¼ 1� 2M=R,
where M ¼ mðRÞ is the total mass of the star and R is its
radius.

B. Torsional perturbations

In studying the oscillation modes of compact stars, the
metric and fluid perturbations are decomposed onto the
basis of spherical harmonics [with indices ðl; mÞ]. Without
loss of generality, the study can be restricted to the m ¼ 0
modes because the unperturbed background is spherically
symmetric. Furthermore, the perturbations are in general
distinguished into two classes according to their parities
[39]: the so-called polar modes [with ð�1Þl parity] and axial
modes [with ð�1Þlþ1 parity]. The torsional oscillationmodes
are of the latter class and hence we shall discuss the axial
perturbations only. In the so-calledRegge-Wheeler gauge, the
axial metric perturbations h�� can be expressed as

h�� ¼

2
666664

0 0 0 �r2 _yðt; rÞ
0 0 0 �re���Qðt; rÞ
0 0 0 0

�r2 _yðt; rÞ �re���Qðt; rÞ 0 0

3
777775

� sin�
@

@�
Plðcos�Þ; (5)

where Plðcos�Þ is the Legendre polynomials of order l and
the dot over yðt; rÞ refers to derivative with respect to t. The
functions � and � are the background metric functions
defined in Eq. (1). On the other hand, the axial fluid pertur-
bation is characterized by the displacement vector

�r ¼ 0; �� ¼ 0; �� ¼ Yðt; rÞ
sin �

@

@�
Plðcos�Þ: (6)

To linear order in�i, the four-velocity of the fluid is given by

u� ¼ e��ð1; 0; 0; _��Þ.
The stress-energy tensor T�� of the matter inside the star

in general contains two contributions: T�� ¼ Tbulk
�� þ

Tshear
�� . The bulk part Tbulk

�� is assumed to take the perfect

fluid form
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Tbulk
�� ¼ ð�þ PÞu�u� þ Pg��: (7)

The shear part Tshear
�� is given by

Tshear
�� ¼ �2�S��; (8)

where � is the shear modulus and S�� is the shear tensor

which describes the deformations generated by the dis-
placement �i. The explicit expressions for S�� can be

found in [5]. In this work, we will consider star models
in which there exists two regions: a crystalline quark-
matter core and a nuclear-matter fluid envelope. The shear
modulus �, and hence Tshear

�� , is nonzero only in the crys-

talline core. It should also be noted that � and P cannot
support axial perturbations because they are scalar fields.
Thus, our compact star models can support torsional oscil-
lations only in their crystalline cores. Of course, a more
realistic compact star model may also have a thin crust
near the surface to support torsional oscillations. Since our
focus is on the emitted gravitational-wave signals associ-
ated with torsional oscillations, which are dominated by
the massive crystalline core, we shall thus neglect the crust
in our study.

Assuming a time dependence ei!t for the fluid and metric
perturbations [e.g., Yðt; rÞ ¼ YðrÞei!t], the linearized fluid
and Einstein field equations reduce to the following differ-
ential equations:

X0 ¼ r4e�þ�

�
16�ð�þ PÞ þ ðlþ 2Þðl� 1Þ

r2

� �þ P

�
!2e�2�

�
�Y þ ð�� �� PÞr3e���Z

þ ½r�0 þ 3�� ð�þ PÞ�r2Q; (9)

Z0 ¼ 16�rð�e2�Þ0Y þ e�þ�

�
16��þ lðlþ 1Þ

r2

þ 4�ð�� PÞ � 6m

r3
�!2e�2�

�
Q; (10)

where primes denote derivatives with respect to r.
The auxiliary functions X and Z are defined by

X ¼ �r4e���Y0; (11)

Z ¼ e���Q0: (12)

The above first-order system of equations are equivalent
to Eqs. (50a) and (50b) in [5], though being expressed in
terms of different variables. After solving the above equa-
tions for the mode frequency ! with appropriate boundary
conditions (see below), the remaining metric perturbation
function y can then be obtained by

y ¼ 1

!2

��e���

r2
ðrQÞ0 þ 16��e2�Y

�
: (13)

The fact that y is decoupled from the wave equations (9)
and (10), and being determined separately by Eq. (13), is
traceable to the gauge choice used in the formulation as
discussed in [29]. As we are only interested in obtaining
the mode frequency !, we shall not discuss the function y
any further.
In the nuclear-matter fluid region outside the core, the

shear modulus vanishes and the fluid cannot support
torsional oscillations. In this region, the fluid only differ-
entially rotates and the gravitational perturbation Q is
completely decoupled from the fluid [39]. It can be shown
that the governing equation for Q [Eq. (10)] in this region
can be written as (with � ¼ 0)

d2Q

dr2�
¼ e2�

r3
½lðlþ 1Þrþ 4�r3ð�� PÞ � 6m�Q�!2Q;

(14)

where the Regge-Wheeler radial coordinate r� is defined
by @=@r� ¼ e���@=@r. This is the standard wave equation
governing the so-called axial w modes of neutron stars,
which are due to spacetime oscillations (see, e.g., [28] for a
review). Outside the star where � and P vanish, Eq. (14)
reduces to the Regge-Wheeler equation governing the
perturbations of Schwarzschild spacetime:

d2Q

dr2�
¼

�
1� 2M

r

��
lðlþ 1Þ

r2
� 6M

r3

�
Q�!2Q; (15)

where r� ¼ rþ 2M ln ðr=2M� 1Þ and M ¼ mðRÞ is the
mass of the star.

C. Boundary conditions and numerical methods

In order to calculate the torsional oscillation modes, the
perturbation equations as listed in Sec. II B must be solved
with suitable boundary conditions at the center, the solid-
fluid interface, the stellar surface and at infinity. First, the
regularity conditions of the fields at the center require that

Y � rl�1; Q� rlþ1; (16)

near r ¼ 0. At the solid-fluid interface r ¼ Rc, we impose
the zero-traction condition which is given by [5]

�ðY0 � e���Q=rÞ ¼ 0: (17)

On the other hand, the continuity conditions of the intrinsic
and extrinsic curvatures require Q to be continuous there
and also at the stellar surface r ¼ R. Outside the star, the
Regge-Wheeler equation (15) has the asymptotic solution

Q� Aine
i!r� þ Aoute

�i!r� ; (18)

as r� ! 1. The quasinormal mode frequency ! is deter-
mined by requiring that there is only outgoing gravitational
radiation at infinity (i.e., Ain ¼ 0). Note that! is in general
a complex number because of the damping due to the
emission of gravitational waves.
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In the following, we outline our numerical scheme to
obtain the mode frequency. Given an equilibrium back-
ground configuration and a trial frequency !, we integrate
Eqs. (9)–(12) in the solid core using initial conditions
YðrÞ ¼ Y0r

l�1 and QðrÞ ¼ Q0r
lþ1, where the ratio Y0=Q0

is set to some value. The integration is carried out to the
solid-fluid interface r ¼ Rc at which we check whether the
boundary condition there [Eq. (17)] is satisfied. If Eq. (17)
is not satisfied, a new value of Y0=Q0 is used and the
integration is repeated. Once a correct value of Y0=Q0 is
found, we then integrate Eq. (14) in the fluid envelope and
finally Eq. (15) in the vacuum. The trial frequency ! is
the desired quasinormal mode solution if the asymptotic
ingoing-wave amplitude Ain vanishes. In practice, we de-
termine Ain from Eq. (18) at r ¼ 100R and the real parts of
the mode frequencies are determined by the locations of
deep minima in a graph of log 10jAinj vs Reð!Þ.

As a demonstration of the graphical method, we show a
typical result in our calculations in Fig. 1. The location of
the minimum in the figure corresponds to the frequency of
a torsional oscillation mode of the stellar model A (dis-
cussed in Sec. IV) with the gap parameter � ¼ 10 MeV.
We refer the reader to [40–42] for similar applications of
this graphical method. Since the torsional oscillationmodes
emit current-quadrupole gravitational waves, these modes
are damped much more slower than polar fluid modes such
as the f and p modes (as they emit mass-quadrupole
waves). Hence, we need to use a high resolution along
the ! axis in order to locate the modes. We typically set
�!M< 10�7 in the calculations, where �! is the step
size along the ! axis.

III. MICROPHYSICS INPUT

A. Equation of state

In order to construct equilibrium hybrid stars, we need
to provide EOS models to describe the quark-matter core
and nuclear-matter envelope. The quark-matter EOS is in

general derived using the MIT bag model and its variations
or more realistic Nambu-Jona-Lasinio (NJL) type models
[43]. In our numerical calculations we use the simple
phenomenological quark-matter EOS model of Alford
et al. [44] for the quark core. The model is based on the
thermodynamic potential

�QM ¼ � 3

4�2
a4�

4
q þ 3

4�2
a2�

2
q þ Beff ; (19)

where �q is the quark chemical potential. The phenome-

nological parameters a4, a2, and Beff are independent of
�q. The parameter a4ð� 1Þ is used to account for non-

perturbative QCD corrections. The limiting case a4 ¼ 1
corresponds to three flavors of noninteracting quarks. The
reasonable value for a4 is expected to be of order 0.7 [44].
The parameter a2 is used to model the effects of quark
masses and pairing. Finally, the effective bag constant Beff

can be regarded as a parameter to control the density at
which the transition from nuclear matter to quark matter
occurs.
In the nuclear-matter envelope we use the model of

Akmal et al. (APR) [45] at high densities. At lower den-
sities, the APR EOS is matched to the model of Douchin
and Haensel [46], which is followed by the model of Baym
et al. [47] and Haensel and Pichon [48]. We implement the
phase transition from nuclear matter to deconfined quark
matter using a Maxwell construction. The EOS for the two
different phases are matched by requiring that the pressures
of both phases are equal at certain (baryonic) chemical
potential.
We could in principle employ more sophisticated

models for the quark core, such as the NJL model used
in [27,49] where the three-flavor crystalline phase of QCD
is built in consistently. At this point we are more concerned
with the technical developments of the numerical program
and the qualitative properties of the torsional oscillation
modes, so we focus only on the phenomenological model
[Eq. (19)] as an illustrative example in this work.

B. Shear modulus

The shear modulus of crystalline color-superconducting
quark matter has been calculated by Mannarelli et al. [50]
and is given by

� ¼ 2:47 MeV=fm3

�
�

10 MeV

�
2
�

�q

400 MeV

�
2
; (20)

where � is the gap parameter. It should be pointed out that
the result is obtained by performing a Ginzburg-Landau
expansion to order �2. Since the control parameter for the
expansion is about 1=2 [50], Eq. (20) can thus be regarded
as an estimation of � only. For quark matter inside com-
pact stars, the quark chemical potential �q is expected

to lie in the range 350 MeV<�q < 500 MeV [50,51].

The gap parameter � is less certain and is expected to lie
between 10 and 100 MeV in the CFL phase where the

8.6286 8.62861 8.62862 8.62863 8.62864

Re(10
2ωM)

-1.982

-1.981

-1.98

-1.979
log

10
A

in

FIG. 1. Plot of Ain against Reð!MÞ for a typical oscillation-
mode calculation in this work. The location of the minimum
gives the frequency of a mode.
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strange quark mass can be neglected. However, Mannarelli
et al. [50] estimate that � should be in the range 5 MeV &
� & 25 MeV in order for the quark matter to be in the
crystalline phase rather than the CFL phase. As a result,
the shear modulus of crystalline color-superconducting
quark matter is in the range 0:47 MeV=fm3 <�<
24 MeV=fm3, which is much larger than that of the neutron
star’s crust [�Oð1 keV=fm3Þ]. This is the reason why the
maximum equatorial ellipticity sustainable by stellar mod-
els with a crystalline color-superconducting quark-matter
core can be a few orders of magnitude larger than which
can be supported by the neutron star’s solid crust [25–27]
(see also [52,53] for relevant studies).

IV. NUMERICAL RESULTS

A. Equilibrium stellar models

In the oscillation-mode calculations, we need to first
construct equilibrium stellar models which depend on the
background EOS model. While the EOS for the nuclear
fluid envelope is fixed in our calculations, there are still
three free parameters ða2; a4; BeffÞ in the quark-matter EOS
for the core. Since the parameter space is vast and we are
mainly interested in understanding the qualitative proper-
ties, we shall only use three different sets of parameters to
construct three ‘‘canonical’’ background stellar models
with the same total mass M ¼ 1:4M�. The EOS parame-
ters ða2; a4; BeffÞ, central density �c, quark-core radius Rc,
and stellar radius R of the background models are summa-
rized in Table I.

The EOS parameters are chosen in order to produce
quark-matter EOS models which can match to our fixed
nuclear-matter EOS at low density as discussed in Sec. III A.
Furthermore, the three sets of parameters are also chosen to
yield significant differences in the internal structures of the
stellar models for comparison. The effects of different pa-
rameters on the EOS can be seen in Fig. 2. In the figure, we
plot the pressure against energy density for the three EOS
models. It is note that, according to the Maxwell construc-
tion of the phase transition, there is in general a disconti-
nuity in the energy density at constant pressure as shown in
Fig. 2 (see also [44]). Figure 2 shows that the density at
which the transition from nuclear matter to quark matter
occurs, and also the jump in the density at the transition,
depend quite sensitively on the EOS parameters. This leads
to significant differences in the internal structures of the
three background stellar models. In particular, by comparing

models A and B, it can been seen that a small change in the
value of a4 can lead to a large difference in the density
at which the phase transition occurs. In Fig. 3 we plot the
density profiles of the three background models for
comparison. In our oscillation-mode calculations, we shall
consider how the size of the quark core for a 1:4M� canoni-
cal stellar model affects the mode frequency. Model A thus
represents the situation of a large quark core (Rc=R� 0:8),
while model C represents the more conservative case of a
small core (Rc=R� 0:1).
While we shall only focus on the three 1:4M� stellar

models in the oscillation-mode calculations, it is also
interesting to see how the stellar structure would change
for more massive configurations. In Fig. 4, we plot the
density profiles for stellar models with different central
densities. The stars are constructed with the same EOS
model B. The profile with the largest central density in the
figure corresponds to a 1:63M� hybrid star. We note that
for larger central densities, and hence more massive stars,
the radius of the quark core becomes less sensitive to the
central density and saturates at Rc � 6:6 km. We refer the
reader to [27] for a similar trend observed in a NJL model
where Rc saturates at 7 km for massive stars near 2M�.
Although our quark-matter EOS is based only on a

phenomenological model, we believe that the resulting
three stellar models are quite generic in representing the
internal structures of crystalline color-superconducting
hybrid stars. Our models are also compatible to the results
obtained by the NJL model of [27,49] in which it is shown
that large crystalline quark cores (Rc=R > 0:5) can exist in
compact stars.

B. Torsional oscillation modes

In this subsection we consider the l ¼ 2 torsional oscil-
lation modes of the three canonical stellar models presented
in Sec. IVA. Our focus will be on how the size of the quark
core and the gap parameter � affect the frequencies of the
modes. In particular, we only consider the range 5 MeV &
� & 25 MeV in our calculations as this is the theoretically
allowed range as discussed in Sec. IIIB.
We begin by plotting in Fig. 5 the frequencies of the first

three torsional oscillation modes of stellar model A against
�. In the figure, the fundamental modes are given by the
curves labeled as n ¼ 0. Similarly, the first and second
harmonics are given by the curves labeled as n ¼ 1
and n ¼ 2, respectively. The general pattern of the mode

TABLE I. The canonical background stellar models for the oscillation-mode calculations as
discussed in the text. All models have the same total mass 1:4M�.

Model a1=22 (MeV) a4 B1=4
eff (MeV) �c (1015 g cm�3) Rc (km) R (km)

A 100 0.85 160 1.487 8.28 10.31

B 100 0.8 160 1.265 4.71 11.07

C 200 0.9 150 1.205 1.71 11.24
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eigenfunctions can be seen in Fig. 6 in which we plot the
fluid perturbation function Y inside the quark core for the
case � ¼ 10 MeV. Note that the value of n corresponds to
the number of nodes in the mode eigenfunctions.

In Fig. 5, the solid lines are the results obtained from
the fully general relativistic calculations as discussed in
Sec. II B. On the other hand, the dashed lines are obtained
by using the Cowling approximation where the metric
perturbations are neglected (see, e.g., [32,37] for the rele-
vant equations in the Cowling approximation). The relative
differences between the fully relativistic and Cowling
results are about 15% for the n ¼ 0 fundamental modes.
The differences are even smaller for the higher harmonics.
We also note that the relative differences decrease as the
size of the quark core shrinks. For instance, the fully
relativistic and Cowling results for the fundamental modes
of stellar model C, which has the smallest quark core
among the three models, agree to about 1%.
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(g

 c
m

-3
)

FIG. 4 (color online). Density profiles for stellar models with
different central densities. The stars are constructed with the
same EOS model B. The star with the lowest central density
corresponds to our canonical model B listed in Table I. The star
with the highest central density has a mass 1:63M�.
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FIG. 5 (color online). Frequency of the torsional oscillation
modes as a function of the gap parameter for the stellar model A
listed in Table I. The integer n is the mode order (i.e., n ¼ 0
corresponds to the fundamental mode and so on). The solid lines
are computed using the fully relativistic framework as discussed
in the text, while the dashed lines are obtained by neglecting the
metric perturbations (Cowling approximation).
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FIG. 6 (color online). Radial amplitudes of the fluid perturba-
tion function Y inside the quark core for the torsional oscillation
modes of stellar model A and � ¼ 10 MeV. The horizontal
dashed line is used to pinpoint where the amplitudes vanish.
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FIG. 2 (color online). Pressure is plotted against energy
density for our EOS models.
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FIG. 3 (color online). Plot of the density profiles for the three
background stellar models listed in Table I.
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Figure 5 also shows that the mode frequency f depends
sensitively on �. In particular, the frequency of the funda-
mental mode (n ¼ 0) increases from 351.8 to 1407.3 Hz as
� increases from 5 to 20 MeV. Figure 7 plots the results of
stellar model B for comparison. In particular, for a given
stellar background model, our numerical results show that
the mode frequency is proportional to �. This can be
understood by noting that the frequency of a shear mode
is given roughly by f� vs=2�Rc, where the speed of the

shear wave is vs ¼ ½�=ð�þ PÞ�1=2 [32]. Since the shear
modulus � is proportional to �2, the mode frequency is
thus proportional to � as we found numerically.

The dependence of the mode frequency on the size of the
quark core (and hence the quark-matter EOS parameters)
can be seen in Fig. 8. In the figure, the fundamental modes
for the three stellar models are plotted against �. As
discussed above, models A and C have the largest and
smallest quark core among the three models, respectively.
It is thus expected that model A (model C) should have the
lowest (highest) mode frequency for a given value of � as

shown in Fig. 8, since the speeds of the shear waves for the
three models do not differ significantly.
It is also interesting to notice that the fundamental-mode

frequencies for models A and B are in the range from about
a few hundred hertz to two kilohertz. This frequency range
is quite different from those of the polar oscillation modes
of traditional neutron stars, such as the f and p modes,
which have higher frequencies at a few kilohertz or above.
Hence, these torsional oscillation modes should be easily
distinguished from those polar oscillation modes. Their
relatively low frequencies also mean that these modes
might already be detectable by the second-generation de-
tectors such as Advanced LIGO, since the best sensitivities
for these detectors are in the range of a few hundred hertz.
We shall turn to this issue in the next section.

V. GRAVITATIONAL-WAVE DETECTION

The power carried by any weak gravitational wave of
strain h is given by (see, e.g., [54])

_E ¼ c3d2

4G
_h2; (21)

where the dots refer to time derivatives and d is the
distance between the source and detector. Note that we
have restored the constants G and c. Assume that the
gravitational-wave signal is an exponentially decaying
sinusoid with a frequency f and characteristic damping
time scale 	. The wave strain h can then be expressed as

h ¼ 1

2�df

�
4G

c3
E

	

�
1=2

; (22)

where we have used _E � E=	 and _h � 2�fh. Here E is the
total energy radiated through the oscillation mode.
Measuring the signal through Nc � f	 cycles can boost
the signal strength by a factor of

ffiffiffiffiffiffi
Nc

p
. Hence, it is common

to define an effective gravitational-wave amplitude by
heff 	

ffiffiffiffiffiffi
f	

p
h:

heff � 1

2�d

�
4G

c3
E

f

�
1=2

: (23)

Note that heff depends only on the energy and frequency of
the oscillation mode.
While the torsional oscillation modes are damped very

slowly by gravitational-wave emission, they could never-
theless be damped much faster by internal dissipation.
In the Appendix, we provide an order-of-magnitude esti-
mate for the damping time scale due to internal dissipation
	v and show that f	v � 102–103 for the oscillation modes
studied by us. Assuming f	 
 1, the signal-to-noise
ratio for the gravitational-wave signal can be estimated
by [21] �

S

N

�
� 1

df

�
G

2�2c3
E

ShðfÞ
�
1=2

; (24)
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FIG. 7 (color online). Similar to Fig. 5, but for the stellar
model B listed in Table I.
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FIG. 8 (color online). This figure compares the fundamental
(n ¼ 0) mode frequencies of the three stellar models listed in
Table I.
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where ShðfÞ is the noise power spectral density of the
detector. For the Advanced LIGO, ShðfÞ is given approxi-
mately by (see Table 1 of [54])

ShðfÞ ¼ S0

�
x�4:14 � 5x�2 þ 111ð1� x2 þ 0:5x4Þ

1þ 0:5x2

�
; (25)

where S0 ¼ 1:0� 10�49 Hz�1 and x ¼ f=215 Hz. On the
other hand, for a third-generation detector such as
the Einstein Telescope, ShðfÞ is given by (see Table 1
of [54])

ShðfÞ ¼ S0

�
x�4:1 þ 186x�0:69 þ 233ð1þ 31x� 65x2 þ 52x3 � 42x4 þ 10x5 þ 12x6Þ

1þ 14x� 37x2 þ 19x3 þ 27x4

�
; (26)

where S0 ¼ 1:5� 10�52 Hz�1 and x ¼ f=200 Hz in this
case.

For a given mode frequency and distance to the source,
the study of the detectability of a gravitational-wave signal
now reduces to the problem of finding a reasonable esti-
mate for the energy radiated by the oscillation mode. For
the f modes of traditional neutron stars, the energy in the
mode must be at least�10�5M�c2 in order for the mode to
be marginally detectable by Advanced LIGO [21]. While
this amount of energy in the f mode might be possible for
wildly pulsating newborn neutron stars formed after super-
nova explosions, this is not the case for mature compact
stars with a crystalline quark core that we consider in this
work. A more relevant energy scale for us is the energy
associated with a pulsar glitch. The released energy can be
estimated by [41]

Eglitch � I���; (27)

where � is the angular velocity of the star and �� is the
change of � in a glitch event. For simplicity, we shall take
the moment of inertia I � 1045 g cm2 for the entire star. We
shall focus on two well-known pulsars, the Crab and Vela
pulsars, in the following analysis. For the Crab (Vela) pulsar,
we have d ¼ 2ð0:3Þ kpc, � ¼ 190:4ð70:6Þ rad s�1, and
��=� ¼ 10�8ð10�6Þ. The released energies are then
estimated to be 2� 10�13M�c2 and 3� 10�12M�c2 for

the Crab and Vela pulsars, respectively. Assuming that a
torsional oscillation mode excited in a glitch event carries a
similar amount of energy, we can then estimate the signal-
to-noise ratio by Eq. (24). In Table II, we summarize the
signal-to-noise ratios for the fundamental (n ¼ 0) torsional
oscillation modes of the three stellar models considered in
Sec. IV. We have considered both the Advanced LIGO and
Einstein Telescope in the calculations. In the table, S=N
(Crab) corresponds to the signal-to-noise ratio for a Crab
glitch. Similarly, S=N (Vela) is the value for a Vela glitch.
The lower (upper) limit for each S=N data represents the
result obtained by assuming that 10% (100%) of the glitch
energy is channeled to the oscillation mode.
If we assume that a signal-to-noise ratio must be at least

about 10 in order for a gravitational-wave signal to be
detectable, Table II shows that the modes of all three stellar
models for a Crab glitch are not detectable by Advanced
LIGO. However, for a Vela glitch, the mode becomes
detectable for models A and B if the gap parameter � is
at the lower end of the theoretically allowed range near
5 MeV. For stellar model C, which has a small quark core,
the modes are not detectable by Advanced LIGO for the
entire range of �. Comparing to Advanced LIGO, the
signal-to-noise ratios typically increase by 1 order of mag-
nitude for the Einstein Telescope as shown in Table II. For
this detector, we see that modes for a Crab glitch could also

TABLE II. Signal-to-noise ratios S=N for the fundamental torsional oscillation modes of the
three stellar models listed in Table I. S=N are tabulated for both the Advanced LIGO (ALIGO)
and Einstein Telescope (ET). S=N (Crab) corresponds to the value for a Crab glitch. The lower
(upper) limit for each S=N data is obtained by assuming that 10% (100%) of the glitch energy is
channeled to the mode. Similarly, S=N (Vela) corresponds the value for a Vela glitch.

ALIGO ALIGO ET ET

Model � (MeV) f (Hz) S=N (Crab) S=N (Vela) S=N (Crab) S=N (Vela)

A 5 351.8 0.3–1.0 8.5–26.7 4.3–13.5 110.3–348.8

10 703.7 0.05–0.2 1.4–4.4 1.1–3.5 28.9–91.2

20 1407.3 0.01–0.04 0.3–1.0 0.3–0.9 7.2–22.8

B 5 505.5 0.1–0.4 3.1–9.9 2.1–6.8 55.4–175.2

10 1010.9 0.02–0.08 0.6–1.9 0.5–1.7 14.0–44.2

20 2021.9 0.006–0.02 0.1–0.5 0.1–0.4 3.5–11.0

C 5 1253.5 0.02–0.05 0.4–1.2 0.4–1.1 9.1–28.7

10 2506.9 0.004–0.01 0.1–0.3 0.09–0.3 2.3–7.1

20 5013.9 0.0009–0.003 0.02–0.07 0.02–0.07 0.6–1.8
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be detectable if the quark core is large and �� 5 MeV.
For a Vela glitch, modes for stellar models A and B should
be detectable even for �� 20 MeV. For model C,
however, modes excited in a Vela glitch are detectable
only if �� 5 MeV.

One can also see the general trend of our results from
Fig. 9 in which we compare the effective gravitational-
wave amplitudes heff (vertical solid lines) for the modes
listed in Table II with the dimensionless noise amplitudesffiffiffiffiffiffiffiffi
fSh

p
for both detectors. For each vertical line in the figure,

the lower limit is estimated by assuming that 10% of
the energy of a Crab glitch is channeled to the mode.
The upper limit assumes that 100% of the energy of a
Vela glitch is channeled to the mode. It can be seen that
the Einstein Telescope should be able to detect most
of the modes in quite general situations. Even more excit-
ing is the possibility that we might already be able to make
discoveries with Advanced LIGO.

We end this section by discussing briefly how our results
would change for more massive configurations. It should
be noted that, for a given EOS model, more massive hybrid
stars in general have larger quark cores (see Fig. 4) com-
paring to those in our canonical 1:4M� models. As re-
marked in Sec. IVB, the frequency of a torsional shear
mode is f� vs=2�Rc. For a given EOS model and gap

parameter, the wave speed vs ¼ ½�=ð�þ PÞ�1=2 at the
surface of the quark core is the same for configurations
with different masses, since the transition density from
nuclear matter to quark matter is fixed. If we approximate
the frequency by evaluating vs at Rc, the frequency of a
torsional oscillation mode for more massive stars, and
hence larger Rc, should in general be smaller than that of
the canonical model with the same EOS and gap parameter.

As seen in Table II, a smaller mode frequency would
in general increase the signal-to-noise ratio, and hence
more massive hybrid stars should be more favorable for
gravitational-wave detection. For instance, the frequency of
the fundamental mode of the 1:63M� stellar model shown in
Fig. 4 is 328 Hz for � ¼ 5 MeV. This frequency is about a
factor of 0.65 smaller than the corresponding mode fre-
quency (505.5 Hz) of stellar model B. We note that this
agrees quite well with our expectation that the mode fre-
quency should be smaller by a factor of 0.7 according to the
scaling relation f� 1=Rc. As a result of a smaller mode
frequency, the upper limit ofS=N (Vela) for Advanced LIGO
is increased to 32.5 for the 1:63M� model, which is about
three times higher than that of stellar model B. Finally, as
mentioned in Sec. IVA, massive hybrid stars (M� 2M�)
have been constructed from theNJLmodel [27,49]. Since the
size of the quark core (Rc � 7 km) and the transition density
from nuclear matter to quark matter (�1015 g cm�3) of the
resulting stars are close to those of our models (see Fig. 4 of
[27]), we expect that massive stars based on the NJL model
would also have similar ranges of mode frequency and
signal-to-noise ratio as those obtained in our study.

VI. CONCLUSIONS

In this paper, we have studied the torsional oscillations
of crystalline color-superconducting hybrid stars in general
relativity. The quark matter in the crystalline core is
described by a phenomenological EOS model with parame-
ters to account for nonperturbative QCD corrections. The
low-density envelope of the star is composed of pure nuclear
matter and the phase transition from quark matter to nuclear
matter is implemented by using a Maxwell construction.
We have constructed three canonical 1:4M� stellar

models with different quark-core sizes and studied their
quadrupolar (l ¼ 2) torsional oscillation modes in details.
First we find that the mode frequency depends sensitively on
the gap parameter� and the size of the quark core. We have
also compared the results obtained by the fully relativistic
calculations with those obtained by the Cowling approxima-
tion. For stellarmodelswith a large quark core (Rc=R > 0:5),
the two results can differ by as much as 15% for the funda-
mental modes. However, the difference drops down to about
1% if the star has a small quark core (Rc=R� 0:1). On the
other hand, quite independent on the quark-core size, the two
results in general agree very well for higher harmonics.
Depending on the quark-core size and the value of �, the

frequency of the fundamental torsional oscillation mode can
range from a few hundred hertz to a few kilohertz in our
study. This frequency range is quite different from those
well-studied oscillation modes of traditional neutron stars,
such as the f and pmodes, with typical frequencies at a few
kilohertz. Their relatively low frequencies also put some of
the torsional oscillation modes studied in our models within
the best sensitivity region of ground-based gravitational-
wave detectors. We have studied the prospect for detecting

000010001001
f (Hz)

1×10-24

1×10-23

1×10-22

1×10-21

1×10-20

1×10-19

(f
 S

h )1/
2

ALIGO
ET

FIG. 9 (color online). Effective gravitational-wave amplitudes
heff (vertical lines) for the modes listed in Table II are compared
to the dimensionless noise amplitudes

ffiffiffiffiffiffiffiffi
fSh

p
for both the ALIGO

and Einstein Telescope (ET). For each vertical line, the lower
limit is obtained by assuming that 10% of the energy of a Crab
glitch is channeled to the mode. The upper limit assumes that
100% of the energy of a Vela glitch is channeled to the mode.
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the gravitational-wave signals emitted from these oscillation
modes in a pulsar glitch event by assuming that the energy
channeled to the fundamental mode is comparable to the
total energy released in the event. For a Vela glitch, we find
that the Einstein Telescope should be able tomake discovery
in quite general situations. Furthermore, the signals from a
Vela glitch could be detectable by Advanced LIGO if the
quark core is large (Rc=R * 0:5) and the gap parameter is
near the lower limit of the theoretically allowed range at
�� 5 MeV. Our optimistic results thus suggest the inter-
esting possibility that we might already be able to probe the
nature of crystalline color-superconducting quark matter
with the second-generation gravitational-wave detectors
when they come online in the next few years.

Finally, we end this paper with a few remarks. (1) As a
first investigation of the torsional oscillations of crystalline
color-superconducting hybrid stars, we simplify our study
by using a simple phenomenological model to describe the
quark matter. In future work, it would be interesting to try
more realistic models such as the NJL model of [27,49],
which includes the three-flavor crystalline phase consis-
tently. Nevertheless, we believe that our results would not
be changed significantly as long as the internal structure of
the star (e.g., the size of the quark core) is similar to those
stellar models considered in this work. Moreover, as
we pointed out before, the shear modulus that we employ
in this work is based on a Ginzburg-Landau expansion to
order �2, and hence its value only fixes the order of magni-
tude. Until the calculation can be improved, any attempt to
calculate the torsional oscillation modes of hybrid stars
should be regarded as yielding an estimate only. (2) The
standard explanation of pulsar glitches is based on the
pinning and unpinning of superfluid vortices in the inner
crust of neutron stars [55–57]. In our analysis of the emitted
gravitational-wave signals, we assume that glitches are
due to the presence of a crystalline quark core inside the
star so that the fundamental torsional oscillation mode can
be excited to a large amplitude. Future work is needed to
study in detail how pulsar glitches may be explained by the
presence of a crystalline quark core and whether it could
resolve the problem found in [58,59], where it is shown that
superfluid dynamics confined to the inner crust of a tradi-
tional neutron star is in fact not enough to explain the glitch
phenomenon. (3) We assume that 10%–100% of the total
energy released in a glitch event can be channeled to the
oscillation mode. This is certainly an ad hoc assumption, but
it provides us an order-of-magnitude analysis to quantify
whether these signals might be detectable or not. A natural
extension of this work is to study how large the amplitude of
a torsional oscillation mode can be excited in a core-quake
scenario of pulsar glitches [2,3].

APPENDIX: DAMPING TIME SCALES

In general, there can be different mechanisms acting
simultaneously to damp an oscillation mode. The damping

time scale 	 is controlled mainly by the most effective
dissipative mechanism in the system. As we mentioned at
the end of Sec. II C, the torsional oscillations are damped
very slowly by current-quadrupole gravitational-wave
emissions. The damping time can be estimated by [5]

	g � 30

�
GMc

Rcc
2

��1
�
vs

c

��5
!�1; (A1)

where Mc is the mass of the solid core. If we take the
typical value�� 10 MeV=fm3 [see Eq. (20)] for the shear
modulus and evaluate the wave speed vs at the surface
of the quark core Rc, we would obtain f	g � 106 (with f

being the mode frequency) and thus gravitational radiation
is not an effective damping mechanism for the torsional
oscillations. The fact that f	g 
 1 is the reason why the

deep minimum in Fig. 1 has such a narrow width.
The oscillation modes are also damped by internal

microphysics processes. Dissipative mechanisms in
color-superconducting quark matter have been studied
mainly for the CFL phase of quark matter (e.g., [60–64]).
At very low temperatures, it is expected that dissipative
processes are dominated by phonon-phonon scattering.
In particular, the coefficient for the phonon shear viscosity
in the CFL phase is [60]


� 2:5�1027
�

�q

400MeV

�
8
�

T

109 K

��5
gcm�1 s�1: (A2)

On the other hand, dissipative mechanisms in the crystal-
line phase of quark matter have not been studied (as far as
we are aware). We shall proceed by applying the formalism
developed in [65] where it is shown that the viscosity of a
solid can be treated formally as that of a fluid. The rate of
energy dissipation is given by [65]

dE

dt
¼ �2

Z
fdisdV; (A3)

where the dissipation function fdis is defined by

fdis ¼ 
�ij�ij þ 1

2
��2: (A4)

The shear tensor �ij is

�ij ¼ 1

2
ðrivj þrjviÞ � 1

3
gij�; (A5)

where vi is the velocity and the expansion� ¼ riv
i. Note

that the coefficients 
 and � in Eq. (A4) corresponds to the
shear and bulk viscosities, respectively. Given the rate of
energy dissipation (A3), we can estimate the damping time
scale of an oscillation mode due to internal viscosities
by 	v ¼ 2E=j dEdt j, where the energy of the mode is E ¼R
�v2dV=2 (see, e.g., [64]). Since the amplitude of the

fundamental torsional oscillation mode reaches a maxi-
mum at the surface of the quark core (see Fig. 6), we shall
approximate E and dE=dt by evaluating their integrands at
r ¼ Rc. Restricting to the torsional oscillations, where the
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velocity field is divergence-free, we obtain the following
estimate for the damping time scale:

	v � �ðRcÞR2
c



; (A6)

where �ðRcÞ is the density at the surface of the solid core
and we have also neglected numerical factors of order
unity. The value of the coefficient
 has not been computed
for the crystalline quark matter. As a rough estimate, we
take the typical value 
 � 1027 g cm�1 s�1 as suggested in
Eq. (A2) for the CFL phase at T ¼ 109 K. Using the
typical values �ðRcÞ � 1015 g cm�1 and Rc � 5 km for
our canonical models, we obtain the damping time scale
due to internal dissipation 	v � 0:3 s. Comparing to
gravitational-wave damping, our analysis suggests that
the torsional oscillation modes would be damped much
faster by internal dissipation. However, for the range of
mode frequency we studied (see Table II), we obtain

f	v � 102–103 and hence f	 
 1 is still a reasonable
assumption.
Our analysis is a crude approximation based on the

assumption that phonon-phonon scattering in the crystal-
line phase would not differ significantly from that in the
CFL phase. More detailed work in this direction is needed
to improve our estimation. In fact, as pointed out in [60],
the hydrodynamic treatment of the phonons used in the
derivation of Eq. (A2) is not valid anymore in the low-
temperature regime, where the mean-free path of phonons
would be much larger than the stellar radius. The CFL
quark matter would then become a perfect superfluid. If we
use the effective shear viscosity suggested in [64], 
eff �
5� 1017ðT=109 KÞ4 g cm�1 s�1, the value of which is ob-
tained by requiring that the mean-free path of phonons is
limited by the stellar radius, then the damping time scale at
the same temperature 109 Kwould be increased by a factor
of 109.
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