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We analyze the behavior of axion dark matter before it falls into a galactic gravitational potential well.

The axions thermalize sufficiently fast by gravitational self-interactions that almost all go to their lowest-

energy state consistent with the total angular momentum acquired from tidal torquing. That state is a state

of rigid rotation on the turnaround sphere. It predicts the occurrence and detailed properties of the caustic

rings of dark matter for which observational evidence had been found earlier. We show that the vortices in

the axion Bose-Einstein condensate (BEC) are attractive, unlike those in superfluid 4He and dilute gases.

We expect that a large fraction of the vortices in the axion BEC join into a single big vortex along the

rotation axis of the galaxy. The resulting enhancement of caustic rings explains the typical size of the rises

in the Milky Way rotation curve attributed to caustic rings. We show that baryons and ordinary cold dark

matter particles are entrained by the axion BEC and acquire the same velocity distribution. The resulting

baryonic angular momentum distribution gives a good qualitative fit to the distributions observed in dwarf

galaxies. We give estimates of the minimum fraction of dark matter that is composed of axions.
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I. INTRODUCTION

One of the outstanding problems in science today is the
identity of the dark matter of the Universe [1]. The exis-
tence of dark matter is implied by a large number of
observations, including the dynamics of galaxy clusters,
the rotation curves of individual galaxies, the abundances
of light elements, gravitational lensing, and the anisotro-
pies of the cosmic microwave background radiation. The
energy density fraction of the Universe in dark matter is
observed to be 26.7% [2]. The dark matter must be non-
baryonic, cold and collisionless. Nonbaryonic means that
the dark matter is not made of ordinary atoms and mole-
cules. Cold means that the primordial velocity dispersion
of the dark matter particles is sufficiently small, less than
about 10�8c today, so that it may be set equal to zero as far
as the formation of large-scale structure and galactic halos
is concerned. Collisionless means that the dark matter
particles have, in first approximation, only gravitational
interactions. Particles with the required properties are
referred to as ‘‘cold dark matter’’ (CDM). The leading
CDM candidates are weakly interacting massive particles
(WIMPs) with mass in the 100 GeV range, axions with
mass in the 10�5 eV range, and sterile neutrinos with mass
in the keV range. To tell these candidates apart on the basis
of observation is a tantalizing quest.

Recently it has been argued that the dark matter is
composed of axions [3–5], because this assumption pro-
vides a natural explanation and detailed account of the
existence and properties of caustic rings of dark matter in
galactic halos. Axions are different from the other cold
dark matter candidates, such as WIMPs and sterile neutri-
nos, because axions form a Bose-Einstein condensate
(BEC). They do so as a result of their gravitational
self-interactions. On time scales long compared to their

thermalization time scale �, almost all axions go to the
lowest-energy state available to them. The other dark
matter candidates do not do this. The (re)thermalization
of the axion BEC is sufficiently fast that axions that are
about to fall into a galactic gravitational potential well go
to their lowest-energy available state consistent with the
total angular momentum they acquired from nearby proto-
galaxies through tidal torquing [5]. That state is a state of
net overall rotation. In contrast, ordinary cold dark matter
falls into galactic gravitational potential wells with an
irrotational velocity field [6]. The inner caustics are differ-
ent in the two cases. In the case of net overall rotation, the
inner caustics are rings [7] whose cross section is a section
of the elliptic umbilic D�4 catastrophe [8], called caustic
rings for short. If the velocity field of the infalling particles
is irrotational, the inner caustics have a ‘‘tentlike’’ structure
which is described in detail in Ref. [6] and which is
quite distinct from caustic rings. Evidence has been
found for caustic rings. A summary of the evidence is
given in Ref. [9]. Furthermore, it was shown in Ref. [4]
that the assumption that the dark matter is composed of
axions explains not only the existence of caustic rings but
also their detailed properties—in particular, the pattern of
caustic ring radii and their overall size.
The main purpose of the present paper is to give a more

detailed description of the behavior of axion dark matter
before it falls into the gravitational potential well of a
galaxy. In particular, we want to investigate the appearance
and evolution of vortices in the rotating axion BEC, and
ask whether they have implications for observation. We
obtain two results that may be somewhat surprising. The
first is that, unlike the vortices in superfluid 4He and in
BECs of dilute gases, the vortices in axion BEC attract
each other. The reason for the difference in behavior is that
atoms have short-range repulsive interactions, whereas
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axions do not. The vortices in the axion BEC join each
other, producing vortices of ever increasing size. When two
vortices join, their radii (not their cross-sectional areas) are
added. We expect a huge vortex to form along the rotation
axis of the galaxy as the outcome of the joining of numer-
ous smaller vortices. We call it the ‘‘big vortex.’’ The
presence of a big vortex implies that the infall is not
isotropic as has been assumed in the past [7–10]. The
axions fall in preferentially along the equatorial plane.
Caustic rings are enhanced as a result because the density
of the flows that produce the caustic rings is larger. We
propose this as an explanation of the fact that the rises in
the Milky Way rotation curve attributed to caustic rings
[11] are typically a factor of 5 larger than predicted assum-
ing that the infall is isotropic, a puzzle for which no
compelling explanation had been given in the past.

The second perhaps surprising finding is that baryons are
entrained by the axion BEC and acquire the same velocity
distribution as the axion BEC. The underlying reason for
this is that the interactions through which axions thermal-
ize are gravitational, and gravity is universal. The condi-
tion for the baryons to acquire net overall rotation by
thermal contact with the axion BEC is the same as the
condition for the axions to acquire net overall rotation
by thermalizing among themselves. When baryons and
axions are in thermal equilibrium, their velocity fields
are the same, since otherwise entropy can be generated
by energy-momentum-exchanging interactions between
them. We expect that a big vortex forms in the baryon fluid
as well, although one of lesser size than the big vortex in
the axion fluid. The resulting angular momentum distribu-
tion of baryons agrees qualitatively with that observed by
van den Bosch et al. in dwarf galaxies [12]. In contrast, if
the dark matter is composed of WIMPs or sterile neutrinos,
the predicted angular momentum distribution of baryons in
galaxies differs markedly from the observed distribution, a
discrepancy known as the ‘‘galactic angular momentum
problem’’ [13,14]. At present, the most widely accepted
solution to this problem is that gas outflows driven by
supernova explosions preferentially remove low-angular-
momentum baryons from galaxies [15].

We consider the possibility that the dark matter is a
mixture of axions and another form of cold dark matter.
For the purposes of our discussion, WIMPs and sterile
neutrinos behave in the same way. So we call the other
form of cold dark matter WIMPs for the sake of brevity.
There is a minimum fraction of dark matter, of order 3%,
that must be composed of axions in order for the axions to
thermalize by gravitational interactions before they fall
into galactic gravitational potential wells. When they ther-
malize, the axions acquire net overall rotation and entrain
the baryons and WIMPs with them. The baryons and
WIMPs acquire the same velocity distribution as the axions
before falling into galactic halos. The WIMPs therefore
produce the same caustic rings, and at the same locations,

as the axions. However, to account for the typical size of
the rises in the Milky Way rotation curve attributed to
caustic rings, we find that the fraction of dark matter in
axions must be of order 37% or more.
To investigate the issues of interest here, we generalize

the statistical mechanics of many-body systems in thermal
equilibrium to the case when the system is rotating and
total angular momentum is conserved. When total angular
momentum is conserved, a system of identical particles in
thermal equilibrium is characterized by an angular fre-
quency ! in addition to its temperature T and its chemical
potential �. Broadly speaking, the state of thermal equi-
librium of such systems is one of rigid rotation with
angular frequency !. Incidentally, we find that there is
no satisfactory generalization of the isothermal sphere
model of galactic halos with ! � 0. This is a serious
flaw of that model, since galactic halos acquire angular
momentum from tidal torquing. For a Bose-Einstein con-
densate, we derive the state that most particles condense
into when ! � 0. In superfluid 4He, this state is one of
rigid rotation except for a regular array of vortices em-
bedded in the fluid. For a BEC of collisionless particles
contained in a cylindrical volume, the state is one of
quasirigid rotation with all the particles as far removed
from the axis of rotation as allowed by the Heisenberg
uncertainty principle. For an axion BEC about to fall into a
galactic gravitational well, the state is one in which each
spherical shell rotates rigidly, but the rotational frequency
varies with the shell’s radius r as r�2. (The motion is
similar to that of water draining through a hole in a
sink.) If the axions were to equilibrate fully, they would
all move very close to the equatorial plane. Because their
thermalization rate is not much larger than the Hubble rate,
we expect that the axions start to move towards the equator,
but there is not enough time for the axions to get all
localized there. The motion of the axions toward the equa-
torial plane is another way to see why the big vortex forms.
There is a large and growing literature exploring the

hypothesis that the dark matter is a Bose-Einstein conden-
sate of spin-0 particles with a mass of order 10�21 eV or so
[16,17]. When the mass is that small, the de Broglie
wavelength of the BEC in galactic halos is large enough
(of order kpc) that the wave nature of the BEC has observ-
able effects. In contrast, our proposal is that the dark matter
is composed of ordinary QCD axions, or of axionlike
particles with properties similar to QCD axions. That
QCD axions form a BEC is not an assumption on our
part but a consequence of their standard properties. The
axion BEC forms because the axions thermalize as a result
of their gravitational interactions [3,5]. The axion BEC
behaves differently from WIMPs because it rethermalizes
on time scales less than the age of the Universe. The
process of thermalization is key to understanding the prop-
erties of any BEC. It is only by thermalizing that a macro-
scopically large fraction of degenerate identical bosons go
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to their lowest-energy available state. The process of
thermalization is not described by the Gross-Pitaevskii
equation. That equation describes the properties of the state
that the particles condense into, but not the process by
which the particles condense into that state. We emphasize
in Sec. II that vortices appear in a BEC only as part of the
process of rethermalization. The Gross-Pitaevskii equation
describes the properties of vortices and their motions, but
not their appearance.

We would like to comment on two papers that have
independently analyzed the question of whether cold
dark matter axions thermalize and form a Bose-Einstein
condensate [18,19]. K. Saikawa and M. Yamaguchi [18]
use the Schwinger-Keldysh in-in formalism to analyze the
thermalization and evolution of cold dark matter axions by
themselves and in the presence of other species. They find
that the axions thermalize among themselves at the rate
given in Ref. [5], but they also find that the axions never
reach thermal contact with other species (baryons, photons,
etc.), whereas Ref. [5] concludes that such thermal contact
is possible. According to Ref. [18], contact between cold
dark matter axions and other species occurs only in higher
orders of perturbation theory. If so, there is no thermal
contact between axions and any other species on the time
scale of the age of the Universe. This is important to the
present paper, since we claim that baryons thermalize with
axions before falling into galactic halos. We disagree with
Saikawa and Yamaguchi on the question of whether axions
may reach thermal contact with other species and would
like to point out precisely where we believe Saikawa and
Yamaguchi err in drawing their conclusion. When calcu-
lating the expectation value of the time derivative of the
occupation number of a momentum state of species other
than axions, in Eq. (70) of Ref. [18], the authors find zero
because they calculate the expectation value in a state that
is an eigenstate of all the occupation numbers of the
momentum states of the other species. But a general state
is an arbitrary linear combination of such eigenstates. In a
general state, the said expectation values are not zero. The
set of states in which those expectation values vanish is a
set of zero measure.

S. Davidson and M. Elmer [19] discuss the question of
whether cold dark matter axions thermalize and form a
Bose-Einstein condensate. Applying classical field theory
methods to the cold axion fluid, they find that the axions
thermalize, but that the axions do not form a Bose-Einstein
condensate. If the claims by Davidson and Elmer are
correct, i.e. if Bose-Einstein condensation does not occur
in the cold dark matter axion fluid, there is no basis for the
calculations in the present paper. The conclusion of
Davidson and Elmer that Bose-Einstein condensation
does not occur in the cold dark matter axion fluid is not
surprising, because they use classical field theory to
describe the axion fluid. There is no Bose-Einstein con-
densation in classical field theory. When the methods of

statistical mechanics are applied to classical field theory,
one encounters an ultraviolet catastrophe. This catastrophe
is resolved by quantum mechanics. Classical field theory is
reliable when estimating the thermalization rate but not
in determining the equilibrium (highest entropy) state. To
determine the equilibrium state, it is essential to use Bose-
Einstein statistics, and hence essential that the underlying
field be quantized. One way to see that one cannot have
Bose-Einstein condensation in classical field theory is to
recognize that one of the conditions for Bose-Einstein
condensation is that the total number of quanta be conserved.
There are no quanta in classical field theory.
The outline of this paper is as follows: In Sec. II, we

generalize the rules of statistical mechanics to the case
where the many-body system conserves angular momen-
tum. We derive the rule that determines the state that a
rotating BEC condenses into. We verify that the rule is
consistent with the known behavior of superfluid 4He and
derive the expected behavior of a rotating BEC of quasi-
collisionless particles. In Sec. III, we obtain the expected
behavior of an axion BEC about to fall into a galactic
gravitational potential well, and the response of baryons
and WIMPs to the presence of the axion BEC. In Sec. IV,
we show that the axion BEC provides a solution to the
galactic angular problem and derive a minimum fraction of
dark matter in axions (37%) from the typical size of rises in
the Milky Way rotation curve attributed to caustic rings.
Section V provides a summary.

II. STATISTICAL MECHANICS
OF ROTATING SYSTEMS

In this section, we discuss theoretical issues related to the
statistical mechanics of rotating many-body systems. First,
we generalize the well-known equilibrium Bose-Einstein,
Fermi-Dirac and Maxwell-Boltzmann distributions to the
casewhere angular momentum is conserved. Systems which
conserve angular momentum are characterized by an angu-
lar velocity, in addition to their temperature and chemical
potential. Next, we discuss the self-gravitating isothermal
sphere [20] as a model for galactic halos. We show that the
model is a reasonably good description only when the
angular momentum is zero. Next, we discuss rotating
Bose-Einstein condensates (BEC) and obtain the rule that
determines the state which particles condense into. We
analyze the properties of the vortices that must be present
in any rotating Bose-Einstein condensate, and discuss the
contrasting behaviors of vortices in superfluid 4He and in a
fluid of quasicollisionless particles. Finally, we identify
rethermalization as the mechanism by which vortices appear
in a BEC after it has been given angular momentum.

A. Temperature, chemical potential
and angular velocity

A standard textbook result gives the average occupation
number N i of particle state i in a system composed of a
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huge number of identical particles at temperature T and
chemical potential �:

N i ¼ 1

e
1
Tð�i��Þ � �

; (2.1)

where �i is the energy of particle state i, and � ¼ 0,þ1 or
�1. If the particles are distinguishable, one must take
�¼0, and the distribution is called Maxwell-Boltzmann.
If the particles are bosons, � ¼ þ1, and the distribution
is called Bose-Einstein. If the particles are fermions,
� ¼ �1, and the distribution is called Fermi-Dirac.

To obtain Eq. (2.1), one considers a system with given
total energy E ¼ P

ini�i and given total number of parti-
cles N ¼ P

ini. The N i are the values of the ni which
maximize the entropy [21,22]. One may repeat this
exercise in the case of a system that conserves total
angular momentum L ¼ P

inili about some axis, say ẑ.
Maximizing the entropy for a given total energy E, total
number of particles N and total angular momentum L, one
finds

N i ¼ 1

e
1
Tð�i���!liÞ � �

; (2.2)

where ! is an angular velocity. The system at equilibrium
is characterized by T, � and !. If the total number of
particles is not conserved, one must set� ¼ 0. Likewise, if
total angular momentum is not conserved, one must set
! ¼ 0.

B. The self-gravitating isothermal sphere revisited

Consider a huge number of self-gravitating identical
classical particles. (Although identical, they are distin-
guishable by arbitrarily unobtrusive labels.) A particle state
is given by its location ð~r; ~vÞ in phase space. According to
Eq. (2.2), the particle density in phase space is given at
thermal equilibrium by

N ð~r; ~vÞ ¼ N 0e
�m

T½12 ~v� ~vþ�ð ~rÞ�!ẑ�ð~r� ~vÞ�; (2.3)

where m is the particle mass, N 0 � e
�
T , and �ð ~rÞ is

the gravitational potential. Newtonian gravity is assumed.
The gravitational potential satisfies the Poisson equation:

r2�ð~rÞ ¼ 4�Gmnð ~rÞ; (2.4)

where

nð ~rÞ ¼
Z

d3vN ð ~r; ~vÞ (2.5)

is the physical space density.
When ! ¼ 0, Eqs. (2.3) and (2.5) imply

nð ~rÞ ¼ n0e
� 3

hv2i�ð ~rÞ
; (2.6)

where hv2i ¼ 3T
m is the velocity dispersion of the particles

and n0 ¼ N 0ð2�hv2i
3 Þ32. Combining Eqs. (2.4) and (2.6), one

obtains

r2�ð ~rÞ ¼ 4�Gmn0e
� 3

hv2i�ð~rÞ
: (2.7)

This equation permits a spherically symmetric ansatz,
�ð ~rÞ ¼ �ðrÞ. It can then be readily solved by numerical
integration. The solutions have the form

nðrÞ ¼ n0dðr=sÞ; (2.8)

where

s ¼
� hv2i
12�Gmn0

�1
2
; (2.9)

and dðxÞ is a unique function with the limiting behaviors
dðxÞ ! 1 as x ! 0 and dðxÞ ! 2=x2 as x ! 1. A plot
of the function dðxÞ is shown, for example, in Fig. 1 of
Ref. [23] or Fig. 4.7 of Ref. [24]. The function dðxÞ is often
approximated by 2

2þx2
for convenience. The phase-space

distribution

N ð~r; ~vÞ ¼ N 0e
� 3

hv2i ~v� ~vdðr=sÞ (2.10)

is called an ‘‘isothermal sphere’’ [20].
The isothermal sphere is often used as a model for

galactic halos [25,26]. As such, it has many attractive
properties. First, the isothermal sphere model is very pre-
dictive, since it gives the full phase-space distribution in
terms of just two parameters, hv2i and s. Second, these two
parameters are directly related to observable properties of a
galaxy: hv2i is related to the galactic rotation velocity at

large radii vrot by vrot ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3 hv2i

q
, and s is related to the

galactic halo core radius a by a ¼ ffiffiffi
2

p
s. Third, since nðrÞ /

1=r2 for large r, the isothermal model predicts galactic
rotation curves to be flat at large r. This is consistent with
observation. Fourth, since nðrÞ ’ n0 for small r, galactic
halos have inner cores where the density is constant. This is
also consistent with observation. Fifth, the model is based
on a simple physical principle, namely thermalization.
For all its virtues, we do not believe the isothermal

model to be a good description of galactic halos. The
reason is that present-day galactic halos, such as that of
the Milky Way, are unlikely to be in thermal equilibrium.
If, for some unexplained reason, the Milky Way halo were
in thermal equilibrium today, it would soon leave thermal
equilibrium because it accretes surrounding dark matter.
The infalling dark matter particles only thermalize on time
scales that are much longer than the age of the Universe
[27,28]. The flows of infalling dark matter produce peaks
in the velocity distribution. A large fraction of the halo,
over 90% in the model of Ref. [9], is in cold flows. This
disagrees with the smooth Maxwell-Boltzmann distribu-
tion, Eq. (2.10), of the isothermal model. The presence of
infall flows, with high density contrast in phase space, has
been confirmed by cosmological N-body simulations [29].
Here we point to another flaw of the isothermal sphere as

a model of galactic halos. Galactic halos acquire angular
momentum from tidal torquing. If they are in thermal
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equilibrium, as the isothermal model supposes, the phase-
space distribution must be given by Eq. (2.3) with ! � 0.
However, Eq. (2.3) is an unacceptably poor description of
galactic halos as soon as ! � 0. Indeed, Eq. (2.3) may be
rewritten

N ð~r; ~vÞ ¼ N 0e
�m

T½12ð ~v� ~!� ~rÞ2þ�ð ~rÞ�1
2ð ~!� ~rÞ2�; (2.11)

where ~! ¼ !ẑ. Compared to the ! ¼ 0 case, the velocity
distribution is locally boosted by the rigid rotation velocity
~!� ~r. The physical space density is

nð~rÞ ¼ n0e
�m

T½�ð ~rÞ�1
2ð ~!�~rÞ2�: (2.12)

Substituting this into Eq. (2.4), one obtains

r2�ð ~rÞ ¼ 4�Gmn0e
m
T½��ð~rÞþ1

2!
2�2�; (2.13)

where ð�; z;�Þ are cylindrical coordinates. Equation (2.13)
does not have any solutions for which the density nð~rÞ goes
to zero for large �. Indeed, dð~rÞ / e

m
2T!

2�2
at large � unless

� ! 1
2!

2�2 there. But this implies, through Eq. (2.4), that

the density goes to the constant value !2

2�Gm at large �. The

particles at large � have huge bulk motion with average
velocity ~!� ~r. Thus, the rotating isothermal sphere is an
object of infinite extent in a state of rigid rotation. This is
certainly inconsistent with the properties of galactic halos.

As was discussed by Lynden-Bell and Wood [30], iso-
thermal spheres and self-gravitating systems in general are
unstable because their specific heat is negative; i.e., they
get hotter when energy is extracted from them. The insta-
bility implies a gravothermal catastrophe on a time scale
which may be inconsistent with the age of galactic halos
and thus causes further difficulties in using isothermal
spheres as models for galactic halos. The instability of
rotating isothermal spheres is discussed in Ref. [31].

C. The rotating Bose-Einstein condensate

1. Bose-Einstein condensation

Bose-Einstein condensation occurs when the following
four conditions are satisfied: (1) the system is composed of
a huge number of identical bosons, (2) the bosons are
highly degenerate, i.e. their average quantum state occu-
pation number is larger than some critical value of order 1,
(3) the number of bosons is conserved, and (4) the system
is in thermal equilibrium. When the four conditions are
satisfied, a fraction of order 1 of all the bosons are in the
same state.

Let us recall a simple argument [32] as to why Bose-
Einstein condensation occurs. We first set ! ¼ 0. For
identical bosons, Eq. (2.2) states

N i ¼ 1

e
1
Tð�i��Þ � 1

: (2.14)

Let i ¼ 0 be the ground state, i.e. the particle state with
lowest energy. It is necessary that the chemical potential
remain smaller than the ground-state energy �0 at all times,

since Eq. (2.14) does not make sense for �i < �. The total
number of particles NðT;�Þ ¼ P

iN i is an increasing
function of � for fixed T, since eachN i has that property.
Let us imagine that the total number N of particles is
increased while T is held fixed. The chemical potential
increases till it reaches �0. At that point, the total number of
particles in excited (i > 0) states has its maximum value

NexðT;� ¼ �0Þ ¼
X
i>0

1

e
1
Tð�i��0Þ � 1

: (2.15)

In three spatial dimensions, NexðT;� ¼ �0Þ is finite [32].
Consider what happens when, at a fixed temperature T, N
is made larger than NexðT;� ¼ �0Þ. The only possible
system response is for the extra N � NexðT;� ¼ �0Þ par-
ticles to go to the ground state. Indeed, the occupation
number N 0 of that state becomes arbitrarily large as �
approaches �0 from below. This is the phenomenon of
Bose-Einstein condensation.
We may repeat the above argument for ! � 0. In this

case, the chemical potential � must remain smaller than
the smallest �i � �i �!li. The existence of a minimum
�i is guaranteed because the particle energy �i always
contains a piece that is quadratic in li, namely the kinetic

energy associated with motion in the �̂ direction. Let

�0 � min
i
½�i �!li�; (2.16)

with i ¼ 0 being the particle state that minimizes �.
(We are relabeling the states compared to the ! ¼ 0 case.)
The largest possible number of particles in states i � 0 at a
given temperature T is

NexðT;� ¼ �0Þ ¼
X
i�0

1

e
1
Tð�i��0Þ � 1

: (2.17)

If the total number N of particles is larger than NexðT;� ¼
�0Þ, the extra N � NexðT;� ¼ �0Þ particles go to the
i ¼ 0 state.

2. Fluid description of the condensed state

Each particle state is described by a wave func-
tion �ð~r; tÞ which satisfies the Schrödinger equation
(we suppress for the time being the index i that labels
particle states):

i@t� ¼
�
� 1

2m
r2 þm�ð~r; tÞ þ Vð~r; tÞ

�
�; (2.18)

where�ð ~r; tÞ is the gravitational potential and Vð ~r; tÞ is the
nongravitational potential energy of the particle in its
background. We assume throughout that the particles are
nonrelativistic. As is well known, the probability density

��� and the probability flux density 1
m Imð�� ~r�Þ satisfy

the continuity equation because the total probability to find
the particle someplace is conserved.
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When a state is occupied by a huge number N of
particles, that state’s wave function �ð ~r; tÞ describes the
properties of a macroscopic fluid. The fluid density is

nð~r; tÞ ¼ N���; (2.19)

and the fluid flux density is

~jð~r; tÞ ¼ N
1

m
Imð�� ~r�Þ: (2.20)

They satisfy the continuity equation

@tnþ ~r � ~j ¼ 0 (2.21)

for the reason mentioned at the end of the previous

paragraph. The fluid velocity ~vð ~r;tÞ is defined by ~v � 1
n
~j.

If we write the wave function as

�ð ~r; tÞ � Bð ~r; tÞei	ð ~r;tÞ; (2.22)

then n ¼ NB2, ~j ¼ NB2 1
m
~r	, and hence [32]

~vð ~r; tÞ ¼ 1

m
~r	: (2.23)

When a state is occupied by a huge number N of particles,
its wave function �ð ~r; tÞ satisfies Eq. (2.18), as does the
wave function of any other state. However, the gravitational
potential� and the potential energy V may have important
contributions from the N particles themselves, i.e.

�ð~r; tÞ ¼ �Gm
Z

d3r0
nð ~r0; tÞ
j~r� ~r0j þ � � � ; (2.24)

where the dots indicate other contributions to the gravita-
tional potential, and likewise

Vð ~r; tÞ ¼
Z

d3r0Vpð~r� ~r0Þnð~r0; tÞ þ � � � (2.25)

if theN particles interact pairwise with forces derived from
a potential Vp. Upon substituting Eqs. (2.24) and/or (2.25),

Eq. (2.18) takes on a nonlinear form. This nonlinear form
of the Schrödinger equation is called the Gross-Pitaevskii
equation.

Equation (2.18) implies an Euler-type equation for the
fluid velocity [32]

@t ~vþ ð ~v � ~rÞ ~v ¼ � ~rq� ~r�� 1

m
~rV; (2.26)

where

qð ~r; tÞ ¼ � 1

2m2

r2
ffiffiffi
n

pffiffiffi
n

p : (2.27)

Except for the � ~rq term, Eq. (2.26) is the Euler equation
for a fluid of classical particles moving in the potentials �

and V. The � ~rq term is a consequence of the Heisenberg
uncertainty principle and accounts, for example, for the
intrinsic tendency of a wave packet to spread. However, the

� ~rq term is irrelevant on scales large compared to the de
Broglie wavelength. On such large length scales, the fluid
described by the Schrödinger equation is indistinguishable
from a fluid of classical particles moving in the potentials
� and V.

3. Vortices [33,34]

It may appear at first that the requirement ~r� ~v ¼ 0,
implied by Eq. (2.23), disagrees with the principle just
stated, since a fluid of particles may have a rotational
velocity field, whereas the wave description allows appar-
ently only irrotational flow. However, that appearance is
deceiving, because Eq. (2.23) is valid only where � � 0.
Indeed, 	 is not well defined where � ¼ 0. The following
example is instructive:

�ð�;�; tÞ ¼ AJlðk�Þeil�e�ik
2

2mt; (2.28)

where Jl is the Bessel function of index l. This wave
function solves the Schrödinger equation with �¼V¼0.

It describes an axially symmetric flow with energy k2

2m and a

z component of angular momentum l per particle. The fluid
is clearly rotating, since Eq. (2.23) implies the velocity
field

~v ¼ l

m�
�̂: (2.29)

The curl of that velocity field vanishes everywhere except

on the z axis: ~r� ~v ¼ 2�l
m ẑ
2ðx; yÞ, where x and y are

Cartesian coordinates in the plane perpendicular to ẑ. �
vanishes on the z axis if l � 0. Furthermore, since the
Bessel function JlðsÞ ’ 0 for s � l [35], the density im-
plied by Eq. (2.28) is tiny for �much less than the classical
turnaround radius �c ¼ l=k. Thus, on length scales large
compared to k�1, the fluid motion described by the wave
function in Eq. (2.28) is the same as the motion of a fluid
composed of classical particles, in agreement with the
principle stated at the end of the previous paragraph.
That the motion of a fluid of cold dark matter particles

can be described by a wave function was emphasized by
Widrow and Kaiser some twenty years ago [36]. Ordinary
(non-BEC) cold dark matter particles have irrotational flow
because their rotational modes have been suppressed by the
expansion of the Universe and, when density perturbations

start to grow, Eq. (2.26) implies ~r� ~v ¼ 0 at all times if
~r� ~v ¼ 0 initially [6]. The previous paragraph empha-
sizes that a fluid of cold dark matter particles can be
described by a wave function whether or not the velocity
field is irrotational. The only requirement is that the wave
function vanish on a set of lines, called vortices, if the
velocity field is rotational.
Each vortex carries an integer number of units of angular

momentum, l units in the example of Eq. (2.28). The
following rule applies: Let C½�� be the circulation of the
velocity field along a closed path �
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C½�� �
I
�
d~r � ~vð~r; tÞ: (2.30)

If the fluid is represented by a wave, Eq. (2.23) implies

C½�� ¼ �	

m
� 2�

m
l½��; (2.31)

where �	 is the change of the phase 	when going around
�. Since the wave function is single valued, l½�� � 1

2��	

is an integer. The surface enclosed by a closed path with
nonzero circulation must be traversed by vortices whose
units of angular momentum add up to l½��. Another rule is
that as long as the fluid is described by a wave function
�ð~r; tÞ, vortices cannot appear spontaneously in the fluid.
They can only move about. Indeed, consider an arbitrary
closed path �. The total number of vortices encircled by �,
counting a vortex with angular momentum l as l vortices, is
determined by the constraint of Eq. (2.31). The only way
the rhs of that equation can change is by having the wave
function � vanish somewhere on � and letting a vortex
cross that curve. Finally, a third rule: vortices must follow
the motion of the fluid. This is a corollary of Kelvin’s
theorem which states that, in gradient flow—i.e., if the
rhs of Euler’s equation is a gradient, as is the case for
Eq. (2.26)—the circulation of the velocity field along a
closed path that moves with the fluid is constant in time.

4. Superfluid 4He

Let us see how the above considerations apply first to
the case of superfluid 4He, and next to the case of a
collisionless fluid. Of course, we have nothing new to say
about superfluid 4He, which we discuss merely to build
confidence in the general approach described so far. We
found that, when Bose-Einstein condensation occurs, a
macroscopically large number of particles, say N, con-
dense into the state with lowest � ¼ ��!l. We have, in
terms of the quantities defined earlier,

� ¼
Z

d3r��
�
� 1

2m
r2 þm�þ V

�
�

¼ 1

N

Z
d3r n

�
m

2
~v � ~vþmðqþ�Þ þ V

�
(2.32)

and

l ¼
Z

d3r ��ẑ �
�
~r� 1

i
~r
�
� ¼

Z
d3r �� 1

i

@

@�
�

¼ 1

N

Z
d3r nmẑ � ð ~r� ~vÞ: (2.33)

He atoms have an interparticle potential Vp that describes

forces that are strongly repulsive at short range and weakly
attractive at long range. In the liquid state, the average
interatomic distance is of the order of the atom size.
Thus, the density of superfluid 4He has an approximately
constant value n0. In that case

� ’ n0
N

Z
d3r

m

2
~v � ~v; l ’ n0

N

Z
d3rmẑ � ð~r� ~vÞ;

(2.34)

and therefore

� ’ n0m

2N

Z
d3r ½ðvzÞ2 þ ðv�Þ2 þ ðv� �!�Þ2 �!2�2�:

(2.35)

� is minimized when ~v ¼ !ẑ� ~r. So, when superfluid
4He carries angular momentum, it is in a state of rigid
rotation when viewed on length scales large compared to
the de Broglie wavelength. Because rigid rotation implies
that the velocity field has nonzero curl, vortices are present.
The vortices are parallel to the z axis, and their number
density per unit area is

m

2�
ẑ � ð ~r� ~vÞ ¼ m!

�
(2.36)

according to Eqs. (2.30) and (2.31). The transverse size of a
vortex is determined by balancing the competing effects of

� ~rq and� 1
m
~rV in Eq. (2.26).� ~rq tends to increase the

transverse size of the vortex, whereas � 1
m
~rV tends to

decrease it—assuming, as is the case in superfluid 4He,
that the interparticle interactions are repulsive at short
distances. The outcome determines the transverse size of
a vortex to be a characteristic length �, called the ‘‘healing
length’’ [32]. For the interparticle potential

Vpð ~x� ~x0Þ ¼ U0

3ð ~x� ~x0Þ; (2.37)

the healing length is

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn0U0

p : (2.38)

The transverse size of an l-vortex, i.e. a vortex that carries l
units of angular momentum, is l�. Indeed, the behavior at
short distances to the vortex center is the same as in
Eq. (2.28) with k replaced by ��1. The cross-sectional
area of an l-vortex is therefore of order ��2l2. Also, its
energy per unit length [32] is proportional to l2. The
vortices repel each other because an l-vortex has more
energy per unit length than l 1-vortices. The lowest energy
configuration for given angular momentum per unit area is
a triangular lattice of parallel 1-vortices [37]. Such trian-
gular vortex arrays were observed in superfluid 4He [38]
and in Bose-Einstein condensed gases [39].

5. Quasicollisionless particles

We finally arrive at the object of our interest, a Bose-
Einstein condensate of quasicollisionless particles. The
particles cannot be exacly collisionless, since they must
thermalize to form a BEC, and they can only thermalize if
they interact. However, the interaction by which the
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particles thermalize can be arbitrarily weak, since the
thermalization may, in principle, occur on an arbitrarily
long time scale. In that limit, we may set V ¼ 0 in
Eq. (2.18). For the sake of definiteness, we set the gravita-
tional field � ¼ 0 as well. We have then

� ¼
Z

d3r��
�
� 1

2m
r2 �!

i

@

@�

�
�

¼ 1

N

Z
d3r n

�
m

2
~v � ~vþmq�m!ẑ � ð ~r� ~vÞ

�
:

(2.39)

If one approximates the Bose-Einstein condensate as a
fluid of classical particles [setting q ¼ 0 and taking nð~rÞ
and ~vð ~rÞ to be independent variables], the state of lowest �
is one of rigid rotation with angular velocity !ẑ and all
particles placed as far from the z axis as possible. For the
reasons stated earlier, this is a good approximation only on
length scales large compared to the BEC de Broglie wave-
length. To obtain the exact BEC state, one must solve the
eigenvalue problem�

� 1

2m
r2 �!

1

i

@

@�

�
�i ¼ �i�i: (2.40)

The BEC state is then �0 such that �0 ¼ min i�i. Since
by assumption the system conserves angular momentum,
the operators � 1

2mr2 and 1
i

@
@� are simultaneously diago-

nalizable. Thus (i ¼ kl):

�klðz; �;�Þ ¼ Aklðz; �Þeil�; �kl ¼ �kl �!l; (2.41)

and

� 1

2m

�
@2

@z2
þ 1

�

@

@�
�

@

@�
� l2

�2

�
Akl ¼ �klAkl: (2.42)

Let us consider the particular example of a BEC contained
in a cylinder of radius R and height h. In this case, the
operators � 1

2mr2, 1
i

@
@� and ð1i @

@zÞ2 are simultaneously

diagonalized by

�lpn ¼ eil� sin

�
�p

h
z

�
Jl

�
xln

�

R

�
; (2.43)

where l ¼ 0;�1;�2; . . . , p ¼ 1; 2; 3; . . . , n ¼ 1; 2; 3; . . . ,
and xln is the nth root of JlðxÞ with xl1 < xl2 < xl3 < � � � .
Since

�lpn ¼ 1

2m

��
�p

h

�
2 þ

�
xln
R

�
2
�
; (2.44)

�lpn is minimized by setting p ¼ n ¼ 1 and l ¼ l0, where

l0 minimizes 1
2m ðxl1R Þ2 �!l. For large l, the first zero

of Jl [35],

xl1 ’ lþ 1:85575l
1
3 þOðl�1

3Þ: (2.45)

Hence,

l0 ¼ mR2!½1� 2:47433ðmR2!Þ�2
3 þOðmR2!Þ�4

3�:
(2.46)

When the BEC is approximated as a fluid of classical
particles, the BEC state is rigid rotation with all the
particles located at � ¼ R, not necessarily in a uniform
way. In the actual BEC state, the particles are, for large l,
uniformly located just inside the � ¼ R surface, in a film of

thickness 
�	 Rl�2
3.

Unlike the case of superfluid 4He, vortices in a collision-
less BEC attract each other. Indeed, the lowest-energy state
for a given total angular momentum l is a single l-vortex
with transverse size as large as possible. We may imagine
turning off the interparticle repulsion in superfluid 4He
placed in a cylindrical container. Starting with a triangular
array of l parallel 1-vortices but progressively decreasing
U0, the vortices grow in transverse size till they join into a
single l-vortex and all matter is uniformly concentrated
near the � ¼ R surface.

D. Thermalization and vortex formation

We emphasized that vortices cannot appear spontane-
ously in a fluid that is described by a (single) wave function
�. The Gross-Pitaevskii equation can only describe the
motion of vortices, not their appearance. How then do the
vortices appear? The vortices appear when the bosons
move between different particle states, some of which
have vortices and some of which do not. When angular
momentum is given to a BEC that is free of vortices, it will
at first remain free of vortices even though it carries
angular momentum. The vortices only appear when the
BEC rethermalizes and the particles go to the new lowest-
energy state consistent with the angular momentum the
BEC received.
Consider, for example, a BEC of spin-0 particles in a

cylindrical volume. The wave functions of the particle
states are given by Eq. (2.43). The Hamiltonian is the
sum of free and interacting parts: H ¼ H0 þH1. The
free Hamiltonian is

H0 ¼
X
lpn

�lpna
y
lpnalpn; (2.47)

where alpn and a
y
lpn are annihilation and creation operators

satisfying canonical commutation relations and generating
a Fock space in the usual fashion. We assume that the
interaction has the general form

H1 ¼
X

i;i0;i00;i000

1

4
�i

i00
i0
i000a

y
i000a

y
i00ai0ai; (2.48)

where i � lpn, i0 � l0p0n0 and so forth, so that the total
number of particles

N ¼ X
lpn

aylpnalpn (2.49)
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is conserved. In addition, we require that

�i
i00
i0
i000 ¼ 0 unless lþ l0 ¼ l00 þ l000; (2.50)

so that the total angular momentum

L ¼ X
lpn

laylpnalpn (2.51)

is conserved as well. The interaction H1 causes the system
to thermalize on some time scale � ¼ 1

� . Reference [5]

estimates the thermalization rate � of cold dark matter
axions through their ��4 and gravitational self-
interactions. The relevant thing for our discussion here is
only that there is a finite time scale � ¼ 1

� over which the

system thermalizes.
Let us suppose that N particles are in thermal equilib-

rium in the cylinder with ! ¼ 0 and temperature T well
below the critical temperature for Bose-Einstein conden-
sation. A macroscopically large number N0 of particles
are in the ground state ðl; p; nÞ0 ¼ ð0; 1; 1Þ, which we label
i ¼ 0 for short. The remaining N � N0 particles are in
excited (i � 0) states. The vorticity of each state equals
its l quantum number. The N0 particles in the ground state
form a fluid with zero vorticity. Many excited states carry
vorticity, but their occupation numbers are small compared
to N0. The particles in excited states merely constitute a
gas at temperature T. Let us suppose that the fluid is then
given some angular momentum. This can be done, for
example, by having a large mass M which gravitationally
attracts the particles in the cylinder go by, producing a
time-dependent potential energy Vextð ~r; tÞ. We assume for
the sake of definiteness that the mass M passes by the
cylinder on a time scale �M which is much shorter than
the thermal relaxation time scale �. While the mass M
passes by, each � particle stays in whatever state it was in
to start with, since the interaction H1 that allows particles
to jump between states is, by assumption, too feeble to
have any effect on the �M time scale. The wave function
of each state satisfies the time-dependent Schrödinger
equation:

i@t�ið~r; tÞ ¼
�
� 1

2m
r2 þ Vextð ~r; tÞ

�
�ið~r; tÞ; (2.52)

with the initial condition �ið~r; t ¼ �1Þ ¼ �ið~rÞ.
Although each �ið ~r; tÞ changes in time, for the reasons
given earlier, its vorticity does not. Therefore, just after the
mass M has passed, the macroscopic fluid described by
�0ð ~r; tÞ has no vorticity, although it generally has angular
momentum. After a time of order �, the N particles acquire
a thermal distribution, Eq. (2.2) with � ¼ þ1, consistent
with the total number of particles N, the angular momen-
tum L acquired from the passing mass, and total energy E,
including some energy acquired from the passing mass.
Assuming the temperature is still below the critical
temperature for Bose-Einstein condensation, a macro-
scopically large number of particles are in the state

ðl; p; nÞ00 ¼ ðl00; 1; 1Þ, with l00 given by Eq. (2.46). That state
describes a fluid which carries a single vortex with l00 units
of angular momentum.

III. AXIONS, BARYONS AND WIMPS

In this section, we apply the considerations of Sec. II to
dark matter axions when they are about to fall into a
galactic gravitational potential well. We also discuss the
behavior, in the presence of dark matter axions, of baryons,
and of a possible ordinary cold dark matter component
made of weakly interacting massive particles (WIMPs)
and/or sterile neutrinos. First, we discuss the axions by
themselves, ignoring the other particles.

A. Axions

Axions behave differently from ordinary cold dark
matter particles, such as WIMPs or sterile neutrinos, on
time scales long compared to their thermalization time
scale � � 1

� , because on time scales long compared to �,

the axions form a BEC and almost all axions go to their
lowest-energy available state [3,5]. Ordinary cold dark
matter particles do not do this.
It may be useful to clarify the notion of lowest-energy

available state. Thermalization involves interactions. By
lowest-energy available state we mean the lowest-energy
state that can be reached by the thermalizing interactions.
In general, the system has states of yet lower energy. For
example, and at the risk of stating the obvious, when a
beaker of superfluid 4He is sitting on a table, the condensed
atoms are in their lowest-energy available state. This is not
their absolute lowest-energy state, since the energy of the
condensed atoms can be lowered by placing the beaker on
the floor.
Axions behave in the same way as ordinary cold dark

matter on time scales short compared to their thermaliza-
tion time scale � [3]. So, to make a distinction between
axions and ordinary cold dark matter, it is necessary to
observe the dark matter on time scales long compared to �.
The critical question is then: what is the thermalization
time scale �?

1. Axion thermalization

The relaxation rate of axions through gravitational
self-interactions is of the order [3,5,18]

�	 4�Gnm2‘2; (3.1)

where n and m are their density and mass, and ‘ � 1

p their

correlation length. 
p is their momentum dispersion.
A heuristic derivation of Eq. (3.1) is as follows: If the
axions have density n and correlation length ‘, they pro-
duce gravitational fields of order g	 4�Gnm‘. Those
fields completely change the typical momentum 
p of

axions in a time 
p
gm . � is the inverse of that time. To

estimate the axion relaxation time today, let us substitute

AXIONS AND THE GALACTIC ANGULAR MOMENTUM . . . PHYSICAL REVIEW D 88, 123517 (2013)

123517-9



nm ’ 0:23� 10�29 gr=cc (the average dark matter density
today), m ’ 10�5 eV (a typical mass for dark matter axi-
ons), and ‘ ’ 2� 10�7 sec GeV

10�4 eV
¼ 0:6� 1017 cm (the

horizon during the QCD phase transition, stretched by the
Universe’s expansion until today). This yields a relaxation
time � of order 105 years, much shorter than the present
age of the Universe. So dark matter axions formed a BEC a
long time ago already. It is found in Refs. [3,5] that the
axions first thermalize and form a BEC when the photon

temperature is approximately 500 eVð fa
1012 GeV

Þ12, where fa
is the axion decay constant. After the axions form a BEC,
their correlation length ‘ increases until it is of the order of
the horizon, since the BEC size is limited only by causality.

It may seem surprising that axions thermalize as a result
of their gravitational self-interactions, since gravitational
interactions among particles are usually negligible. Dark
matter axions are an exception, because the axions occupy
in huge numbers a small number of states (the typical
quantum state occupation number is 1061), and those states
have enormous correlation lengths, as was just discussed.

It has been claimed [3–5] that the dark matter is com-
posed of axions, at least in part, because axions explain the
occurrence of caustic rings of dark matter in galactic halos.
For this explanation to succeed, it is necessary that the
axions that are about to fall into a galaxy thermalize
sufficiently fast that they almost all go to the lowest-energy
available state consistent with the angular momentum they
acquired from neighboring protogalaxies by tidal torquing
[40]. Heuristically, the condition is [5]

4�Gnm2‘ > _p ¼ m _v; (3.2)

where _v is the acceleration necessary for the axions to
remain in the lowest-energy state as the tidal torque is
applied. Here ‘ must be taken to be of the order of the
size of the system, i.e. some fraction of the distance
between neighboring protogalaxies. It was found in
Ref. [5] that the inequality in Eq. (3.2) is satisfied by a
factor of order 30—i.e., that its lhs is of order 30 times
larger than its rhs—independently of the system size.

2. Caustic rings

The evidence for caustic rings is summarized in Ref. [9].
It is accounted for if the angular momentum distribution of
the dark matter particles on the turnaround sphere of a
galaxy is given by

~lðn̂; tÞ ¼ mjmax n̂� ðẑ� n̂ÞRðtÞ
2

t
; (3.3)

where t is time since the big bang, RðtÞ is the radius of the
turnaround sphere, ẑ the galactic rotation axis, n̂ the unit
vector pointing to an arbitrary point on the turnaround
sphere, and jmax a dimensionless parameter that character-
izes the amount of angular momentum the particular gal-
axy has. The turnaround sphere is defined as the locus of
particles which have zero radial velocity with respect to the

galactic center for the first time, their outward Hubble flow
having just been arrested by the gravitational pull of the
galaxy. Equation (3.3) states that the particles on the turn-
around sphere rotate rigidly with angular velocity vector

~! ¼ jmax

t ẑ. The time dependence of the turnaround radius

is predicted by the self-similar infall model [41] to be

RðtÞ / t
2
3þ 2

9�. The parameter � is related to the slope of the
evolved power spectrum of density perturbations on galaxy
scales [42]. This implies that � is in the range 0.25 to 0.35
[10]. The evidence for caustic rings is consistent with that
particular range of values of �.
Each property of the angular momentum distribution

given in Eq. (3.3) maps onto an observable property of
the inner caustics of galactic halos: the rigid rotation
implied by the factor n̂� ðẑ� n̂Þ causes the inner caustics
to be rings of the type described in Refs. [6–8], the value of

jmax determines their overall size, and the RðtÞ2
t time depen-

dence causes, in the stated � range, the caustic radii an to
be proportional to 1=n (n ¼ 1; 2; 3 . . . ). The prediction for
the caustic radii is

an ’ 40 kpc

n

�
vrot

220 km=s

��
jmax

0:18

�
; (3.4)

where vrot is the galactic rotation velocity. To account for
the evidence for caustic rings, axions must explain
Eq. (3.3) in all its aspects. We now show, elaborating the
arguments originally given in Ref. [4], that axions do in
fact account for each factor on the rhs of Eq. (3.3).

3. n̂�ðẑ�n̂Þ
Consider a comoving spherical volume of radius SðtÞ

centered on a protogalaxy. At early times, SðtÞ ¼ aðtÞS,
where aðtÞ is the cosmological scale factor. At later times,
SðtÞ deviates from Hubble flow as a result of the gravita-
tional pull of the protogalactic overdensity. At some point
it reaches its maximum value. At that moment, it equals the
galactic turnaround radius. S is taken to be of the same
order but smaller than the distance to the nearest protogal-
axy of comparable size, say one third of that distance. In
the absence of angular momentum, the axions have a
purely radial motion described by a wave function
�ðr; tÞ ¼ Uðr; tÞ, where r is the radial coordinate relative
to the center of the sphere. When angular momentum is
included, the radial motion is modified at small radii by the
introduction of an angular momentum barrier. This modi-
fication of the radial motion is relatively unimportant, and
we neglect it. The wave functions of the states that the
axions occupy are thus taken to be

�l;pðr; 
; �; tÞ ¼ Uðr; tÞAl;pð
;�Þ; (3.5)

where 
 and � are the usual spherical angular coordinates
(0 
 
 
 �, 0 
 �< 2�), and l and p are quantum num-
bers. l is, as before, the eigenvalue of the z component of
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angular momentum. The z direction is the direction of
the total angular momentum acquired inside the sphere
as a result of tidal torquing. We will see below that that
direction is time independent. p is an additional quantum
number, associated with motion in 
. We normalize Uðr; tÞ
and the various Að
;�Þ such that

Z SðtÞ

0
r2drjUðr; tÞj2 ¼

Z �

0
sin 
d


Z 2�

0
d�jAð
;�Þj2 ¼ 1:

(3.6)

We suppress the quantum numbers l and p henceforth.
According to Eq. (3.2), the axions thermalize on a time

scale � that is short compared to the age of the Universe.
Hence, we expect most axions to keep moving to the state
of lowest � ¼ ��!ðtÞl. The angular frequency ! is time
dependent, since the angular momentum is growing by
tidal torquing, and the moment of inertia is increasing
due to the expansion of the volume under consideration.
We have

�¼
Z
r<SðtÞ

d3x��
�
� 1

2m
r2þm�ðr;tÞ

�
�

¼
Z SðtÞ

0
r2drU�

�
� 1

2mr2
@

@r
r2

@

@r
þm�ðr;tÞ

�
U

þ 1

2IðtÞ
Z
d�A�

�
� 1

sin


@

@

sin


@

@

� 1

sin2


@2

@�2

�
A;

(3.7)

where

1

IðtÞ ¼ 1

m

Z SðtÞ

0
dr jUðr; tÞj2: (3.8)

IðtÞ is similar to a moment of inertia but differs from
the usual definition, because the volume to which it refers
is not rotating like a rigid body in three dimensions.
Equation (3.5) implies instead that each spherical shell of
that volume rotates with the same angular momentum
distribution. The associated angular velocities vary with
shell radius r as r�2. The inner shells rotate faster than
the outer shells because all shells have the same angular
momentum distribution.

We take the gravitational potential � to be spherically
symmetric. The first term on the rhs of Eq. (3.7) is then
independent of the angular variables and irrelevant to what
follows. We will ignore it henceforth. Since

l ¼
Z

d�A� 1
i

@

@�
A; (3.9)

we have

�¼
Z

d�A�
�

1

2IðtÞ
�
� 1

sin


@

@
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@

@

� 1
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@�2

�

�!ðtÞ1
i

@

@�

�
A

¼
Z

d�A�
�

1

2IðtÞ
�
� 1

sin


@

@

sin


@

@

þ 1

sin 2


�
1

i

@

@�

�!ðtÞIðtÞsin 2


�
2
�
� 1

2
!2ðtÞIðtÞsin2


�
A

¼
Z

d�

�
1

2IðtÞ
��������dAd


��������2�1

2
!2ðtÞIðtÞsin 2
jAj2

þ 1

2IðtÞsin2


��������
�
1

i

@

@�
�!ðtÞIðtÞsin 2


�
A

��������2
�
: (3.10)

The � dependence of A that minimizes � is

Að
;�; tÞ ¼ �ð
; tÞei!ðtÞIðtÞsin 2
�: (3.11)

However, that exact � dependence is not allowed, because
the wave function must be single valued. Instead, we have

Að
;�; tÞ ’ �ð
; tÞei!ðtÞIðtÞsin 2
�; (3.12)

by which we mean that Að
;�; tÞ is as given in Eq. (3.11)
except for the insertion of small defects (vortices) that
allow A to be single valued. The vortices are discussed
below.
After Eq. (3.12) is satisfied, we have

� ’
Z

d�

�
1

2IðtÞ
��������d�d


��������2�1

2
!2ðtÞIðtÞsin 2
j�j2

�
: (3.13)

� is further minimized by having � peaked at 
 ¼ �
2 , i.e.

at the equator. The width of the peak is of order 

	 1ffiffiffiffiffi
!I

p .

Equation (3.12) shows that L � !I is the angular momen-
tum per particle in the galactic plane. A typical value is

L	
�
500

km

s

�
ð10 kpcÞm ’ 2:6� 1019

�
m

10�5 eV

�
: (3.14)

Therefore, in their state of lowest �, the axions are
almost all within a very small angular distance, of order
10�10 radians, from the galactic plane.
The state just described is the state most axions would be

in after a sufficiently long period of thermalization.
Because the thermalization criterion of Eq. (3.2) is only
satisfied by a factor of order 30, we expect that although the
axions start to move towards the equator, there is not
enough time for all the axions to get localized there. We
expect the system to behave as follows: As the axions
acquire angular momentum, they go to a state, described
by Eqs. (3.5) and (3.12), in which each spherical shell
rotates rigidly with angular velocity proportional to r�2,
where r is the shell radius. The axion velocity field is

AXIONS AND THE GALACTIC ANGULAR MOMENTUM . . . PHYSICAL REVIEW D 88, 123517 (2013)

123517-11



~v ’ vrr̂þ v

̂þ 1

mr
LðtÞ sin 
�̂: (3.15)

The ’ sign indicates that the lhs and rhs equal each
other except for the presence of vortices. The vortices
have direction and density per unit surface given by
[see Eqs. (2.30) and (2.31)]

m

2�
~r� ~v ’ ~r�

�
LðtÞ
mr

sin
�̂

�
¼ LðtÞ

�r2
cos 
r̂: (3.16)

They point in the radial direction, and are more dense near
the poles than near the equator. The total vortex number
penetrating the northern hemisphere is

Z 2�

0
d�

Z �
2

0
sin 
d
r2

m

2�
~r� ~v ¼ L: (3.17)

As discussed in Sec. II, axion vortices attract each other.
When two vortices combine, their diameters are added.
(Two vortices of equal diameter, and hence of equal cross-
sectional area, combine into a vortex with four times that
cross-sectional area). Assuming that a fraction of order 1 of
all the vortices combine with one another, a huge vortex
appears along the ẑ axis. We will refer to it as the ‘‘big
vortex.’’ The intersection of the big vortex with the galactic

plane is a circle whose radius a0 ’ L0
k , where k is the

momentum of axions in the equatorial plane at their closest
approach to the galactic center and L0 is the angular
momentum carried by the big vortex. The distance of
closest approach to the galactic center of axions in the
equatorial plane is a ¼ L

k . a is also the radius of the caustic

ring made by the axions as they fall through the galaxy for
the first time. Because of incomplete thermalization, we
expect that some fraction of the vortices has not joined the
big vortex, implying that L0 <L, and hence a0 < a.

The factor n̂� ðẑ� n̂Þ in the angular momentum
distribution on the turnaround sphere, Eq. (3.3), is thus
accounted for by the fact that the axions on the turnaround
sphere rotate rigidly. After turnaround, there is not enough
time for further thermalization, and whatever further
thermalization may occur would not make an appreciable
difference. Thus, after turnaround, the axions fall in and
out of the galaxy like ordinary cold collisionless particles,
but they do so with net overall rotation, whereas ordinary
cold dark matter falls in with an irrotational velocity
field [6].

Why and how the angular momentum distribution of
Eq. (3.3) yields caustic rings is explained in Refs. [8,9].
However, those papers, written before the discovery of
Bose-Einstein condensation of dark matter axions [3],
assume that the infall is isotropic, i.e. that the mass falling
into the galaxy per unit time and unit solid angle dM

d�dt does

not depend on 
 (nor on�). The above discussion suggests
that this assumption should be modified, since a big vortex
is now expected along the ẑ axis, implying that the infall
rate is suppressed near 
 ¼ 0 and �. In the self-similar

infall model, the total massM of the halo grows as t
2
3� [41].

Therefore, dM
d�dt ¼ M

6��t in the isotropic case. We replace this

with

dM

d�dt
ð
; tÞ ¼ N�ðsin
Þ� M

6��t
; (3.18)

where � (lowercase upsilon, not to be confused with v, the
magnitude of velocity) is a parameter describing the size of
the big vortex. The normalization factor

N� ¼ �ð�þ 2Þ
2�ð�ð�2 þ 1ÞÞ2 (3.19)

is such that the total infall rate, integrated over a solid
angle, remains the same as before. The new model for the
infall rate, Eq. (3.18), does not change the prediction that
the inner caustics are rings, nor the prediction of Eq. (3.4)
for the caustic ring radii [43]. It does, however, imply
(for large �) that the caustic rings are more prominent
than in the isotropic infall case, since the axions fall in
preferentially along the galactic plane. This will be
discussed in Sec. IV.

4. RðtÞ
2

t

We now show, repeating the argument of Ref. [4], that

the RðtÞ2
t time dependence on the rhs of Eq. (3.3) follows

from tidal torque theory in the linear order of perturbation
theory. Consider again the comoving sphere of radius SðtÞ
introduced above. The total gravitational torque applied to
the volume VðtÞ of the sphere is

~�ðtÞ ¼
Z
VðtÞ

d3r 
�ð ~r; tÞ~r� ð� ~r�ð~r; tÞÞ; (3.20)

where 
�ð~r; tÞ ¼ �ð~r; tÞ � �0ðtÞ is the density perturba-
tion. �0ðtÞ is the unperturbed density. In first order of
perturbation theory, the gravitational potential does not
depend on time when expressed in terms of comoving
coordinates, i.e. �ð ~r ¼ aðtÞ ~x; tÞ ¼ �ð ~xÞ. Moreover,


ð ~r; tÞ � 
�ð~r;tÞ
�0ðtÞ has the form 
ð ~r ¼ aðtÞ ~x; tÞ ¼ aðtÞ
ð ~xÞ.

Hence,

~�ðtÞ ¼ �0ðtÞaðtÞ4
Z
V
d3x 
ð ~xÞ ~x� ð� ~rx�ð ~xÞÞ: (3.21)

Equation (3.21) shows that the direction of the torque is
time independent. Hence, the rotation axis is time inde-
pendent, as in Eq. (3.3). Furthermore, since �0ðtÞ / aðtÞ�3,

�ðtÞ / aðtÞ / t
2
3, and hence the angular momentum in-

creases with time proportionally to t
5
3. Since RðtÞ / t

2
3þ 2

9�,
tidal torque theory predicts the time dependence of
Eq. (3.3) provided � ¼ 0:33. This value of � is in the range,
0:25< �< 0:35, predicted by the evolved spectrum of
density perturbations and supported by the evidence for
caustic rings. So the time dependence in Eq. (3.3) is
accounted for.
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5. jmax

Here we compare the average value of jmax implied by
the evidence for caustic rings with the amount of angular
momentum expected from tidal torquing. The amount of
angular momentum acquired by a galaxy through tidal
torquing can be reliably estimated by numerical simula-
tion, because it does not depend on any small feature of the
initial mass configuration, so that the resolution of present
simulations is not an issue in this case. The amount of
galactic angular momentum is usually given in terms of the
dimensionless quantity [44]

� � LjEj12
GM

5
2

; (3.22)

where L is the angular momentum of the galaxy, M its
mass and E its net mechanical (kinetic plus gravitational
potential) energy. � was found in numerical simulations to
have a broad distribution with median value 0.05 [45]. �
may also be estimated from observations of the luminous
matter by making some assumptions, in particular the
assumption that the angular momentum per unit mass of
the disk and the halo are equal. Using such methods,
Hernandez et al. [46] derived the � distribution of a large
sample of spiral galaxies from the Sloan Digital Sky
Survey and found it to be consistent with the expectations
from numerical simulations.

On the other hand, in the caustic ring model, the
dimensionless measure of galactic angular momentum is
jmax . The evidence for caustic rings implies that the jmax

distribution is peaked at jmax ’ 0:18. In case of isotropic
infall (� ¼ 0), the relationship between jmax and � is [4]

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

5� 3�

s
8

10þ 3�

1

�
jmax : (3.23)

For � ¼ 0:33, Eq. (3.23) implies �=jmax ¼ 0:283. Hence,
there is excellent agreement between jmax ’ 0:18 and �	
0:05 when � ¼ 0. That the agreement is so good is likely
somewhat fortuitous since neither the � nor the jmax dis-
tribution is very well established. Also, because the extent
of galactic halos is not uniformly agreed upon, there is
some amibiguity in the definition of the quantities, L, E
and M, that enter �. In deriving Eq. (3.23), the halo was
taken to extend all the way to the turnaround radius [4]. In
obtaining the � distribution from numerical simulations, a
definition of a galactic halo convenient in numerical simu-
lations is used [45]. The two definitions are not clearly
equivalent. All together, the agreement between � and jmax

is significant only within some factor of order 1, perhaps as
large as 2.

For � � 0, the relationship between � and jmax is more
difficult to derive because of the lack of spherical symme-
try. A calculation implies that the rhs of Eq. (3.23) is

multiplied by a factor of order 1þ�=2
1þ�=3 . In a future publica-

tion, we will justify this factor and produce refinements to

it [43]. If � is much larger than 1, the rhs of Eq. (3.23) is
multiplied by 3=2, so that �

jmax
’ 0:426 for � ¼ 0:33. The

values �	 0:05 and jmax ’ 0:18 are then consistent at the
50% level only.

B. Baryons and WIMPs

The gravitational forces produced by the axion BEC act
not only on the axions themselves but also on all other
particles present. In particular, the axion BEC interacts
gravitationally with baryons, and with WIMPs if WIMPs
are present. The condition for baryons/WIMPs to acquire
net overall rotation by gravitational interaction with the
axion BEC is heuristically

4�Gnmm0‘ > m0 _v; (3.24)

where m0 is the baryon/WIMP mass. The accelerations _v
necessary to acquire net overall rotation are the same for
baryons/WIMPs as for axions. Since m0 cancels out of the
inequality in Eq. (3.24), conditions (3.24) and (3.2) are the
same. It was found in Ref. [5] that, if the dark matter is
composed entirely of axions, the inequality in Eq. (3.2) is
satisfied by a factor of order 30. Therefore, conditions (3.2)
and (3.24) are equivalent to

nm *
1

30
�DM; (3.25)

where �DM is the total cold dark matter density. If the axion
fraction of cold dark matter is larger than order 3%, we
expect the axion BEC to acquire net overall rotation and to
entrain the baryons and WIMPs along.
The baryons and WIMPs do not form a BEC but, by

being in thermal contact with the axion BEC, they behave
in very much the same way. Indeed, thermal contact be-
tween baryons/WIMPs and axions implies that they have
the same temperature T and the same angular velocity! as
was discussed in Sec. II A. The temperature of axions is
certainly smaller than the typical kinetic energy of axions
in a galactic halo, because axions with larger kinetic
energy would escape. Since the typical halo velocity is
v	 10�3c,

T &
1

2
mv2 ’ 6� 10�8 K

�
m

10�5 eV

�
: (3.26)

The velocity dispersion of the baryons and WIMPs, being
much heavier than the axions but at the same temperature,
is tiny: less than 30 cm=s if m0 � 1 GeV and m<
10�3 eV. The temperature of baryons and WIMPs is thus
effectively zero. Baryons and WIMPs are therefore in their
own state of lowest available� ¼ ��!l, with the same!
as the axions. That state may be derived by the same
methods as we used for the axions in Sec. II A. The out-
come is that the baryons/WIMPs are in a state of rigid
rotation (again not in the three-dimensional sense, but in
the sense that each spherical shell rotates rigidly with
angular velocity proportional to r�2, where r is the shell’s
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radius) with the same velocity field, Eq. (3.15), as the axion
BEC. The underlying reason for this outcome is simple: if
the baryons and WIMPs were not locally at rest with
respect to the axion BEC, entropy could be generated by
bringing them to such a state. Furthermore, as was the case
for the axions, the lowest-� state is one where all the
baryons and WIMPs are near the equator. We assume
again, as we did for axions, that the baryons/WIMPs start
to move towards the equator but that there is not enough
time for them to all get there. Thus, the baryon/WIMP
infall rate is taken to have the same functional dependence
on t and 
 as for axions,

dM0

d�dt
¼ N�0 ðsin 
Þ�0 M0

6��t
; (3.27)

but we allow a different value �0 for the � parameter.
Indeed, we expect that the axions move to the equator first
and that the baryons/WIMPs follow them there. Since the
baryons/WIMPs are locally at rest with respect to the axion
BEC, their angular momentum distribution on the turn-
around sphere is the same as in Eq. (3.3), but with m
replaced by m0:

~l 0ðn̂; tÞ ¼ m0jmax n̂� ðẑ� n̂ÞRðtÞ
2

t
: (3.28)

Since the WIMPs fall in with the same initial velocity
distribution as the axions, they move in the same way
after falling into the galaxy and produce the same caustic
structures. The baryons also fall in the same way initially,
but being collisionful, separate from the axions and
WIMPs after shell crossing starts.

IV. COMPARISON WITH OBSERVATIONS

Here we discuss two observations that appear related to
the physics described in Sec. III. The first is a measurement
of the angular momentum distribution of baryonic matter
in dwarf galaxies by van den Bosch et al. [12]. The second
is the typical size of the observed rises in the Milky Way
rotation curve, compared to the prediction from caustic
rings of dark matter [11].

A. Baryonic angular momentum distribution

In the first part of this subsection, we recount a discrep-
ancy between the observed and predicted angular momen-
tum distributions of baryons in galaxies if the dark matter
is composed of ordinary cold dark matter, such as WIMPs.
This discrepancy is commonly referred to as the ‘‘galactic
angular momentum problem.’’ In the second part, we show
how the discrepancy is resolved if the dark matter is
composed of axions. Note that the galactic angular
momentum problem has potential solutions that are more
widely accepted by the community than the solution,
exploiting the special properties of axion dark matter,
that we propose here. At present, the most widely
accepted solution is that gas outflows driven by supernova

explosions preferentially remove low-angular-momentum
baryons from galaxies [15].

1. If the dark matter is all composed of WIMPs

Since we assume in this subsection that none of the dark
matter is composed of axions, the considerations of Sec. III
do not apply.
By the principle of equivalence, tidal torquing gives the

same amount and the same distribution of specific angular
momentum (i.e. angular momentum per unit mass) to
baryons and to dark matter before they fall into galactic
halos. Let us assume, to start with, that the individual
angular momentum of each particle is conserved from its
turnaround till today. In that case, the observed amount and
distribution of baryonic specific angular momentum is the
same as that predicted for dark matter by numerical simu-
lations. It was mentioned already in Sec. III A 5 that the
amount of specific angular momentum observed in the
baryonic components of disk galaxies is consistent with
the amount expected from numerical simulations, lending
support to the hypothesis that the angular momentum of
each particle is conserved. However, the observed specific
angular momentum distribution of baryons in disk galaxies
differs markedly from that predicted by numerical simula-
tions for WIMP dark matter. The predicted distribution has
many more particles with low specific angular momentum
than the observed distribution and a compensating (to keep
the average the same) population of particles with much
higher specific angular momentum. The simulations pre-
dict too high a concentration of baryons at the centers of
galaxies.
At first it may appear that the solution to this discrep-

ancy is simply to abandon the notion that the angular
momentum of individual particles is conserved after they
have fallen into the galaxy. However, when the processes
that allow angular momentum exchange are modeled, it is
found that they aggravate the discrepancy rather than re-
solve it. Frictional forces among baryons have the general
effect of removing angular momentum from baryons that
have little angular momentum and transferring it to bary-
ons that have a lot. Dynamical friction of dark matter on
clumps of baryonic matter has the general effect of trans-
ferring angular momentum from the baryons to the dark
matter. Both processes tend to concentrate baryons at
galactic centers even more, aggravating the discrepancy
[13]. This discrepancy is commonly referred to as the
‘‘galactic angular momentum problem.’’ See Ref. [14] for
a review. As mentioned already, the problem may have a
solution other than the one we propose here. At present,
the most widely accepted proposal is that gas outflows
driven by supernova explosions preferentially remove
low-angular-momentum baryons from the galaxies [15].
The problem is thrown into sharp relief by comparing

the universal angular momentum distribution obtained by
Bullock et al. from numerical simulations [47] with the
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observed angular momentum distribution of baryons in
dwarf galaxies [12]. Bullock et al. found that the specific
angular momentum distributions of the galaxies in
simulations are all well fitted by a single two-parameter
function:

dM

dl
¼ �Mvl0

ðl0 þ lÞ2 for 0 
 l 
 lmax ¼ l0
�� 1

; (4.1)

where�> 1, andMv is the halo’s virial mass. Each galaxy
has its own value of � and lmax . The distribution of
log 10ð�� 1Þ values for the galaxies in the simulations is
nearly Gaussian with average�0:6 and standard deviation
0.4, implying that 90% of halos have 0:06<�� 1< 1:0.
The median � value is 1.25. The ratio of the average

specific angular momentum lav to the maximum specific
angular momentum is given in terms of the parameter� by

lav
lmax

¼ ð�� 1Þ
�
� ln

�
�

�� 1

�
� 1

�
: (4.2)

The broad distribution of � values implies a correspond-

ingly broad distribution of lav
lmax

values with an average near

0.25 [12].
van den Bosch et al. [12] derived the baryonic angular

momentum distribution of 14 dwarf galaxies from obser-
vations by Swaters [48]. The distributions are shown in
Fig. 1, which is a reproduction of the relevant figure in
Ref. [12]. The prediction of Eq. (4.1) with � ¼ 1:25,
the median value, is shown as a solid line in each panel.

FIG. 1. Reproduction of Fig. 4 in Ref. [12]. The shaded areas indicate the specific angular momentum distributions of baryons in 14
dwarf galaxies. In terms of the quantities defined in the text, s ¼ l

lav
and pðsÞ / dM

dl ðlÞ. The solid curve is the distribution in Eq. (4.1),

predicted by numerical simulations of galaxy formation with ordinary cold dark matter, for � ¼ 1:25.
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The observed distributions are markedly different from the
prediction of Eq. (4.1). Perhaps the most striking difference
is that Eq. (4.1) predicts dM

dl to be maximum at l ¼ 0,

whereas the observed distributions appear to go to zero at
l ¼ 0 and have their maxima around l ¼ lav. Another
striking difference, pointed out in Ref. [12], is that the

observed values of lav
lmax

are strongly peaked near 0.375.

This is apparent from the fact that many of the distributions
in Fig. 1 end at lmax ’ 2:6lav. As mentioned, the numerical

simulations predict lav
lmax

to have a broad distribution with

median value 0.25. If this were so, the distributions in Fig. 1

would end at a wide variety of lmax

lav
values, and half of these

values would be larger than 4.

2. If the dark matter is composed of axions, at least in part

As described in Sec. III, the angular momentum
distributions of the baryons and WIMPs are modified by
gravitational interactions with the axion BEC. The out-
come is Eq. (3.28) for the angular momentum distribu-
tion on the turnaround sphere and Eq. (3.27) for the infall
rate. We assume that the angular momentum of each
particle is conserved after it crosses the turnaround
sphere. Equation (3.28) implies for the angular momentum
distribution on the turnaround sphere at time t

lð
; tÞ ¼ ẑ � ~lð ~n; tÞ ¼ lmax ðsin
Þ2
�
t

t0

�5
3
; (4.3)

where t0 is the present age of the Universe and

lmax ¼ mjmax

R2
0

t0
(4.4)

is the angular momentum of particles falling in along the
galactic plane today. R0 is the present turnaround radius.

We are removing the primes from ~l0,m0,M0, and so forth to
avoid cluttering the equations unnecessarily. To obtain

Eq. (4.3) from Eq. (3.28), we used the fact that l / t
5
3; see

Sec. III A 4. The angular momentum distribution today is

dM

dl
ðlÞ ¼

Z
d�

Z t0

0
dt

dM

d�dt
ð
; tÞ
ðl� lð
; tÞÞ: (4.5)

Substituting Eqs. (3.27) and (4.3) and carrying out the
t integration, one finds for � ¼ 1=3

dM

dl
ðlÞ ¼ 6

5

M0

lmax

�
l

lmax

�1
5
I�

�
l

lmax

�
; (4.6)

where

I�ðrÞ ¼ N�

Z ffiffiffiffiffiffiffi
1�r

p

0

dx

ð1� x2Þ65��
2

: (4.7)

The predicted angular momentum distributions are shown
in Fig. 2 for � ¼ 0, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0, 10., 50., and
100. For � ¼ 0, dM

dl ðlÞ has a sharp cusp at l ¼ 0 with
dM
dl ð0Þ ¼ 3 M0

lmax
. However, as soon as � > 0, dM

dl / l
1
5 near

l ¼ 0. For � in the range 0.5 to 2.0, dM
dl ðlÞ is qualitatively

similar to the angular momentum distributions found by
van den Bosch et al. in dwarf galaxies.
The average angular momentum is

lav ¼ 1

M0

Z lmax

0
dl l

dM

dl
ðlÞ

¼ lmax

3

11

ffiffiffiffi
�

p
2�

�
�

2
þ 1

�
�ð�þ 2Þ

�ð�2 þ 1Þ�ð�2 þ 5
2Þ
: (4.8)

lmax =lav, plotted in Fig. 3, decreases monotonically with
�, from 2.75 at � ¼ 0 to 1.83 at � ¼ 1. In the range
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FIG. 2 (color online). Specific angular momentum distribu-
tions if the dark matter is composed of axions, for various values
of the parameter �.
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0:5< �< 2:0, lmax =lav ranges from 2.56 to 2.29. So we
find that in the axion case, (1) the lmax =lav distribution is
sharply peaked, like the observed distribution, and (2) it is
peaked at roughly the same value [Eq. (2.6)] as the
observed distribution.

B. Enhanced caustic rings

The observational evidence in support of the caustic ring
halo model is summarized in Ref. [9]. A large part of that
evidence is based on the existence of statistically signifi-
cant correlations between bumps in galactic rotation
curves, consistent with the assumption that some of the
bumps are caused by caustic rings of dark matter and that
the caustic ring radii obey Eq. (3.4) [11,49]. Additional
evidence is provided by the fact that the bumps in the high-
resolution inner rotation curve of the Milky Way published
in Ref. [50] are kinky; i.e., they start with an upward kink
and end with a downward kink [11]. The kinks are ex-
plained by the fact that the dark matter density diverges at
caustic surfaces [8]. Yet more evidence is provided by the
existence of a triangular shape in the IRAS (Infrared
Astronomical Satellite) map of the Galactic plane in one
of the two tangent directions to the nearest caustic ring
(n ¼ 5). The position of the triangular shape coincides in
Galactic longitude with the position of the rise in the
rotation curve associated with that caustic ring. The trian-
gular shape is explained as the imprint of the gravitational
field of the caustic ring on dust and gas in the Galactic disk.

There is, however, a puzzle with the interpretation of the
evidence: the effects attributed to caustic rings are too large
compared to theoretical expectation. Specifically, the
bumps in the Milky Way rotation curve are on average a

factor of 5 larger [11] than expected in the caustic ring
model if the infall is isotropic [7–9] and if the bumps are
due solely to the caustic rings themselves. The sizes of the
bumps are not actually predicted precisely by the caustic
ring model. They are given as a product of two factors, one
of which is predicted by the model. The other factor
depends on details that the model (in its present state)
does not predict and which fluctuate from one caustic
ring to the next. Nonetheless, this second factor is expected
to be generally of order 1. There is no reason why its
average should be 5. See Refs. [8,11] for details.
To account for this discrepancy, Ref. [11] proposed that

the rises in rotation curves are amplified by gas that is
gravitationally attracted to, and accreted onto, the caustic
rings. The square of the velocity dispersion of gas in the
Galactic disk is sufficiently small compared to the gravi-
tational potential ripples caused by caustic rings that a
large amplification factor is plausible. However, in this
proposal it is hard to understand the kinkiness of the bumps
in the Milky Way rotation curve, since the gas distribution
would follow the gravitational potential of the caustic
rings, which is much smoother than the density of the
caustic rings.
The physics discussed in Sec. III suggests a simpler and

more compelling explanation, to wit that the infalling
axion BEC has a big vortex along the Galactic symmetry
axis, and hence that the infall is not isotropic. The caustic
rings are enhanced because more dark matter falls in near
the Galactic plane. If the infall rate is given by Eq. (3.18),
the density of the flow producing the caustic ring is
increased by the factor N� given in Eq. (3.19). For N� to
be of order 5, � must be of order 40.
There is a restriction on how large � can be, because a

caustic ring is partly erased if the infalling dark matter is
too concentrated near the Galactic plane. Using the
description in Ref. [8], one readily finds that caustic rings
are formed in the flow of particles whose declination
� � �

2 � 
 at their last turnaround is less in magnitude

than �m ¼ 1
2

ffiffi
u
s

p
�0 ’

ffiffiffiffi
p
2a

q
, where p is the width of the

caustic ring. See Ref. [8] for definitions of u, s, �0. Some
of the caustics may be partly erased, but not n ¼ 5 since, as
mentioned above, its full cross section appears in IRAS
maps of the Galactic plane; see http://www.phys.ufl.edu/
sikivie/triangle/index.htm. For that ring, p ¼ 0:018a, and
hence �m ¼ 5:5�. Requiring ðcos�mÞ� > 0:5 allows � as
large as 150, and hence an enhancement by the factorN� as
large as 10. The rise in the Milky Way rotation curve
associated with the n ¼ 5 ring is a factor of 3 larger [11]
than expected in the isotropic model (� ¼ 0), and therefore
consistent with the appearance of the full cross section of
the caustic ring in the aforementioned IRAS map.
If the existence of a big vortex is the correct explanation

for the enhanced effect of caustic rings of dark matter on
Galactic rotation curves, we may derive a lower limit on
the fraction Xa of dark matter that is composed of axions.

0 5 10 15
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lmax
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FIG. 3 (color online). The ratio of maximum to average angu-
lar momentum if the dark matter is composed of axions, as a
function of the parameter �. For the 14 dwarf galaxies observed
by van den Bosch et al., this ratio is narrowly peaked near 2.6. In
numerical simulations of galaxy formation with ordinary cold
dark matter, this ratio is predicted to vary from galaxy to galaxy
over the range 2.6 to 8.1 (90% C.L.), with median value 4.0.
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Let XW ¼ 1� Xa be the dark matter fraction in WIMPs or
some other form of ordinary cold dark matter. We need

XaN� þ XWN�0 ’ 5 (4.9)

to account for the average strength of the rises in the
Milky Way rotation curve. On the other hand, N� & 10;
otherwise the corners of the triangular feature in the IRAS
map get erased. Also, �0 & 5; otherwise the angular
momentum distribution of baryonic matter becomes too
dissimilar to the distributions observed by van den Bosch
et al.; compare Figs. 2 and 3. Equation (3.19) implies then
that N�0 & 2. Combining all this, one obtains

Xa *
3

8
; (4.10)

i.e. a lower limit of approximately 37.5% on the axion dark
matter fraction.

V. SUMMARY

The goal of this paper was to increase our understanding
of the behavior of axion BEC dark matter before it
falls into the gravitational potential well of a galaxy. In
particular, we wanted to see how axion BEC vortices
appear and evolve, and whether they have implications
for observation.

In Sec. II, we discussed the properties of rotating many-
body systems in thermal equilibrium. We showed that the
widely used self-gravitating isothermal sphere model is an
unacceptably poor description of galactic halos as soon as
angular momentum is introduced. We showed that the
vortices that appear in a BEC of quasicollisionless parti-
cles, such as an axion BEC, attract each other, in contrast to
the repulsive behavior of the vortices in superfluid 4He and
dilute gases. We showed that vortices in any BEC appear
only as part of the process of rethermalization after the
BEC has been given angular momentum. Neither the ther-
malization of a BEC nor the appearance of its vortices is
described by the Gross-Pitaevskii equation. That equation
describes the behavior of the BEC, including the motion of
its vortices, only after it has formed.

In Sec. III, we used the results of Sec. II to predict the
behavior of axion BEC dark matter before it falls into
the gravitational potential well of a galaxy. As angular
momentum is acquired by the axion BEC through tidal
torquing, the axions go to a state where all spherical shells
rotate rigidly about a common axis, with angular velocity
proportional to r�2, where r is the radius of the shell. The
resulting angular momentum distribution on the turn-
around sphere, Eq. (3.3), is precisely and in all respects
that which accounts for the evidence for caustic rings of
dark matter. Because axion BEC vortices are attractive, we
expect that most join into one big vortex. The radius of this
big vortex is smaller than, but of the same order as, the
radius of the first caustic ring made by the axion BEC as it
falls in and out of the galaxy. We modified the caustic ring

model of galactic halos to include the presence of the big
vortex. Whereas the previous version of that model
assumed that the infall is isotropic, the new version
assumes that the infall rate is given by Eq. (3.18), where
� parametrizes the size of the big vortex.
The rate at which baryons and WIMPs reach thermal

equilibrium with the axion BEC was found to be qualita-
tively the same as the rate at which axions reach thermal
equilibrium among themselves. That thermalization rate is
larger than the Hubble rate, provided the axion dark matter
fraction is more than of order 3%. Because baryons and
WIMPs are much heavier than axions, the temperature of
baryons and WIMPs is effectively zero when they are in
thermal contact with the axions. In that case, baryons and
WIMPs acquire the same velocity distribution as the axion
BEC before falling onto galactic halos, andWIMPs produce
the same caustic rings as axions do, and at the same loca-
tions. We expect the baryons and WIMPs to produce their
own big vortex, although with a radius smaller than the
radius of the big vortex in axions. The specific angular
momentum distribution of baryons and WIMPs on the turn-
around sphere is the same as for axions. The infall rate is also
the same, but with a smaller value �0 of the parameter �.
In Sec. V, we compared the specific angular momentum

distribution predicted for baryons, when the axion dark
matter fraction is more than of order 3%, with the specific
angular momentum distribution of baryons observed in
dwarf galaxies. They are qualitatively similar for 0:5 &
�0 & 2. Moreover, in this range the ratio lmax =lav of maxi-
mum to average specific angular momentum is predicted to
be near 2.4. This is in qualitative agreement with the
observed distributions, since most of the latter have
lmax =lav ’ 2:6. In contrast, if the dark matter is all
WIMPs, the specific angular momentum distribution dif-
fers markedly from the observed distributions; see Fig. 1.
Furthermore, lmax =lav is predicted in the WIMP case to
vary from galaxy to galaxy, the median value being 4 and
the 90% range from 2.6 to 8.1. The ability of axion dark
matter to qualitatively explain the observed angular mo-
mentum of baryons in dwarf galaxies is further evidence
that at least part of the dark matter is composed of axions.
The appearance of a large vortex in the axion BEC

provides a plausible solution to a past puzzle, namely
that the rises in galactic rotation curves attributed to caustic
rings of dark matter are typically a factor of 5 larger than
expected when the dark matter infall is assumed to be
isotropic. The presence of a big vortex implies that more
dark matter falls in along the galactic plane, and hence that
the density of the flows producing the caustic rings is
increased. If all the dark matter is composed of axions,
the factor-5 enhancement is accounted for if � is of order
40. If the dark matter is composed partly of axions and
partly of WIMPs, with the axion fraction more than of
order 3%, axions and WIMPs coproduce the caustic rings.
If one requires �0 < 5 to have an acceptable fit between the
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predicted and observed specific angular momentum
distribution of baryons in dwarf galaxies, the caustic ring
enhancement of a factor of 5 can only be accounted for if at
least 37% of the dark matter is composed of axions.
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