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Parametrized modified gravity constraints after Planck
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We constrain f(R) and chameleon-type modified gravity in the framework of the Berstchinger-Zukin
parametrization using the recently released Planck data, including both the cosmic mircowave background
radiation (CMB) temperature power spectrum and the lensing potential power spectrum. Some other
external data sets are included, such as baryon acoustic oscillation (BAO) measurements from the 6dFGS,
SDSS DR7 and BOSS DR9 surveys; Hubble Space Telescope (HST) H,, measurements, and supernovae
from the Union2.1 compilation. We also use WMAP9 data for a consistency check and comparison. For
Sf(R) gravity, WMAP9 results can only give a quite loose constraint on the modified gravity parameter By,
which is related to the present value of the Compton wavelength of the extra scalar degree of freedom,
By <3.37 at 95% C.L. We demonstrate that this constraint mainly comes from the late integrated Sachs-
Wolfe effect. With only Planck CMB temperature power-spectrum data, we can improve the WMAP9
result by a factor 3.7 (By < 0.91 at 95% C.L.). If the Planck lensing potential power-spectrum data are also
taken into account, the constraint can be further strengthened by a factor 5.1 (By < 0.18 at 95% C.L.). This
major improvement mainly comes from the small-scale lensing signal. Furthermore, BAO, HST and
supernovae data could slightly improve the B, bound (By < 0.12 at 95% C.L.). For the chameleon-type
model, we find that the data set that we used cannot constrain the Compton wavelength B, or the potential
index s of the chameleon field, but it can give a tight constraint on the parameter 8, = 1.0434_'8:%82 at
95% C.L. (B; = 1 in general relativity), which accounts for the nonminimal coupling between the
chameleon field and the matter component. In addition, we find that both modified gravity models we
consider favor a relatively higher Hubble parameter than the concordance ACDM model in general

relativity.
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L. INTRODUCTION

Cosmic acceleration can arise from either an exotic form
of energy with negative pressure, referred to as ‘‘dark
energy,” or a modification of gravity manifesting on large
scales. As shown in [1-3], at the background level dark
energy and modified gravity models are almost indistin-
guishable; hence, one needs to investigate the perturbation
dynamics. The studies of perturbation theory in modified
gravity models, in principle, can be classified into two
different frameworks: the parametrization approach and
the nonparametrization method, such as the principal
component analysis [4—6]. In this paper we focus on the
former. There exist several phenomenological- and theory-
oriented parametrizations of modified gravity, such as the
Bertschinger-Zukin [7] and the Brax-Davis-Li-Winther [§]
parametrizations. These parametrizations are mainly suit-
able for the quasistatic regime, where the time evolution of
the gravitational potentials is negligible compared with
their spatial gradient. Furthermore, if we focus on the
linear fluctuation dynamics, for which the equations in
Fourier space can be reduced to simple algebraic relations,
these techniques allow us to perform some analytic calcu-
lations which make the parametrization technically effi-
cient. However, if we want to go beyond the quasistatic
regime, while remaining in the linear perturbation
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framework, the parametrization of modified gravity be-
comes more complex. This is because on the largest scales,
especially the superhorizon and near-horizon scales, the
time evolution of the gravitational potentials is no longer
negligible; the time derivative terms dominate the dynami-
cal equations, which means that we need to solve some
temporal ordinary differential equations. Actually, there
exists some debate about the range of validity of the
various parametrizations. For example, on one hand, as
shown in [9], using a parametrization with insufficient
freedom significantly tightens the apparent theoretical con-
straints. On the other hand, for some specific modified
gravity models some phenomenological parametrizations
work quite well; for instance, the authors of [10] recently
demonstrated that for the small Compton wavelength case
in the f(R) model, the Bertschinger-Zukin parametrization
[7] is practically good enough for the current data analysis
purpose. This is because, on scales larger than the
Compton wavelength, the deviation from general relativity
is suppressed. Below the Compton scale the gravitational
potential growth is enhanced and the two metric potentials
are no longer equal. Consequently, for the small Compton
wavelength case, whose value is less than the current
horizon size, the most significant modifications with re-
spect to general relativity occur in the subhorizon regime.
In addition to the above explicit parametrizations, some
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quite generic frameworks to study different modified
gravity scenarios have also been proposed, such as the
parametrized post-Friedmann (PPF) formalism, including
the Hu-Sawicki approach [11,12], its calibration version
[13] and Baker-Ferreira-Skordis-Zuntz algorithm [14,15],
and effective field theory (EFT) approaches [16-23].

From the observational point of view, many windows
have been proposed to constrain modified gravity models,
such as the integrated Sachs-Wolfe (ISW) effect [24] in
cosmic microwave background (CMB) anisotropies, in-
cluding the CMB power spectrum [5,25-29], the CMB
ISW-lensing bispectrum [30,31], baryon acoustic oscilla-
tion (BAO) measurements [29,32,33], the galaxy-ISW
cross correlation [29,34-36], cluster abundance [37-40],
peculiar velocity [41,42], redshift-space distortions
[43,44], weak lensing [5,27,29,35,42,45-52], 21 cm lines
[53,54], the matter power spectrum and the bispectrum
[55-58]. In addition, recently some N-body simulation
algorithms in modified gravity models have been devel-
oped [59-61]. As shown in [36,38,56], with WMAP reso-
lution the modification effects on the CMB mainly come
from the ISW effect, which becomes prominent on the
largest scales. However, due to the unavoidable cosmic
variance on large scales, the constraints from these effects
are not significant. On the other hand, since the typical
modification scales are in the subhorizon regime, several
studies show that the most stringent constraints come from
the large-scale structure data sets. For example, the stron-
gest current constraint on f(R) gravity (B, < 1.1 X 1073,
95% C.L.) [38] is obtained through cluster abundance data
sets. Various previous results show that the main constraint
on modified gravity comes from galaxy or cluster scales,
which corresponds to the multipole range / = 500 in CMB
data, where the lensing effect is no longer negligible. The
recent release of Planck data [62] provides us with a
fruitful late-time information both on the ISW and the
lensing scales, which is encoded in the CMB temperature
power spectrum [63] and lensing potential power spectrum
[64], as well as the CMB temperature ISW-lensing bispec-
trum [65,66]. The full sky lensing potential map was first
measured, and the significance of the amplitude of the
lensing potential power spectrum arrives at the 250 level.
The ISW-Ilensing bispectrum was also first detected with
nearly 3o significance. Furthermore, through the lensing
potential reconstruction and the ISW-lensing bispectrum,
the ISW effect was also first detected via the CMB itself.
All in all, with its high resolution the Planck mission
provides us with fruitful information about the Universe’s
late-time acceleration. For example, the authors of [67]
show that the joint analysis of Planck and BAO data could
greatly improve the Brans-Dicke parameter @ constraint.
Further new constraint results related with modified gravity
or dark energy can be found in [68-72].

Due to these considerations, in this paper we investigate
the power of the Planck data sets in constraining modified
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gravity scenarios. In order to break the parameter degener-
acies, apart from Planck data sets, we also use some external
astrophysical data sets, such as BAO measurements from the
6dFGS, SDSS DR7 and BOSS DRY surveys; H, from
Hubble Space Telescope (HST) measurements; and super-
novae from the Union2.1 compilation. We also use WMAP9
data for a consistency check and comparison. Because of
the simplicity of the Bertschinger-Zukin parametrization,
in this paper we study the modified gravity theory through
this method.

II. BERTSCHINGER-ZUKIN PARAMETRIZATION

As pointed out in [8], a large class of modified gravity
theories, e.g., chameleon [73,74], symmetron [75-77] and
dilaton [78] models, can be characterized by the mass of a
suitable scalar field and the coupling between the scalar
field and baryonic or dark matter components. In the
Einstein frame, where the gravitational sector is the stan-
dard Einstein-Hilbert action, the scalar field is exponen-
tially coupled with the matter sector,

2 2
+ 8i(x; e~ Pw), (1)

M?, - -
s = [[axy=g[ SR - Len (9, 0)9,¢) - V@]

where the Einstein frame metric g, is related to the Jordan
frame metric g, through a conformal transformation

glLLV = eKQi((b)g/,LV" (2)

and y; denotes the matter components.

Inspired by some nice properties in the quasistatic re-
gime of the f(R) model, Bertschinger and Zukin in [7] first
wrote the two gravitational potentials in the conformal
Newtonian gauge' in terms of two observation-related
variables, the time- and scale-dependent Newton constant
Gul(a, k) and the so-called gravitational slip y(a, k),

KRV = —47Ga’ u(a, k)pA, 3)

D

@ = ')’(a: k): (4)
where G is the Newton constant in the laboratory. The
corresponding Einstein-Boltzmann solver named MGCAMB
is implemented in [49,79]. In this paper, we implement the
same algorithm in the new version of CAMB [80], which is
compatible with the Planck likelihood.

In the following sections, we will study f(R) gravity and
the quite general chameleon-type model in the framework
of the Bertschinger-Zukin parametrized modified gravity
method, by using the Planck [63,64], WMAP9 [81,82] and
some external astrophysical data.

"We take the convention that ds®> = —(1 + 2¥)d + a2(1 —
20)dx>.
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FIG. 1 (color online). Two-dimensional contour diagram of By
and H,. The appearance of the upper dark gray area is due to the
nonlinear dependence of the ISW effect on By,.
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based on the quasistatic approximation. The above parame-
trization is improved by Giannantonio et al. in [34] to
take the ISW effect into account through some empirical
formula

1 1+4 022
— 14X 108\, Pa® 1+ Ak%a*

ula, k) = T (10)

For this reason, in our numerical calculation we use (10)
instead of the original expression (8).

Through a few simple computations, one can easily find
that A; is nothing but the present Compton wavelength

BZ: WMAP9

1.0
BZ: Planck+WP
BZ: Planck+lensing+WP
08 BZ: Planck+lensing+WP+BAO-+HST+Union2.1

P/Pmax

FIG. 2 (color online). The likelihood of B,. The second peak
in the gray curve is due to the nonlinear dependence of the ISW
effect on B,.
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A? = Byc?/(2H?). Remember that Song et al. in [2]
pointed out that there exists a one-parameter family solu-
tion in f(R) gravity which could mimic any background
evolution. Conventionally, we choose this one-parameter
family labeled by the Compton wavelength at present B
or A? in the Bertschinger-Zukin parametrization. Given the
above analysis, we can see that in f(R) gravity, compared
with the concordance ACDM model, there is only one
extra parameter, By, which makes the effects of gravita-
tional modification quite manifest.

B. Chameleon-type model

The chameleon models [73,74] are characterized by a
runaway potential and a nearly constant coupling «. Since
the f(R) model can be seen as a specific chameleon model,
it is straightforward to generalize the Bertschinger-Zukin
parametrization for f(R) gravity (8) and (9) into

1+ B, A2K%as

)k =
wla k) =

, (1n

1+ By A2K%a*

¥(a, k) :m, (12)

where the parameters need to satisfy the following relation,

)\2
Bi=3=2-5
A

A3
X (13)
and 1 = s = 4. Via the above constraints the number of
free parameters can be reduced to 3; usually, one chooses
them as (s, 81, A;). In [34,79] this kind of parametrization
is called a Yukawa-type model, due to the Yukawa-type
interaction between dark matter particles.

Because of the nonminimal coupling, the dynamics of
the scalar field is determined jointly by the scalar field and
the matter component; for example, the effective potential
of the scalar field is defined by

Ver(@) = V() + piexil®), (14)
which gives an effective mass of the chameleon field
m? = Vi =V"—k(a" + a?)V', (15)

where primes denote differentiation with respect to the
field. For simplicity, here we assume that the chameleon
field couples to all the matter components uniformly.
Following some calculations as in [49,74], we can obtain
the following relations:

n
arr="0 p 1 =i2(1 +a—),
m mg mg 2
a’? 2 —
R R (1o
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FIG. 3 (color online).

where m, is the chameleon effective mass at present.
Furthermore, for the case of the inverse power-law poten-
tial, V(¢) « ¢, with n > 0, we have

17)

Here A; can be replaced with the conventional parameter
By, with the same expression in the f(R) model, namely,
A} = Byc?/(2H3). Through the above relations, we can
easily see that the parameters 8, By and s correspond to
the nonminimal coupling between the chameleon field and
the matter sector, the relative Compton wavelength of the
chameleon field, and the potential index of the chameleon
field, respectively. Moreover, the general relativity limit
corresponds to 8, = 1, B; = 0, s = 4 [49].

III. DATA ANALYSIS METHODOLOGY

The purpose of this paper is to test possible deviations
from general relativity on various cosmic scales by using the
recent Planck data, including both the CMB temperature

0.70

0.75 68 72 76
Qn Ho

Full set of parameter likelihoods in f(R) gravity.

and lensing potential power spectra and also some external
astrophysical data sets. In the following section, we will
briefly review the Planck likelihood and data set which we
used in this work.
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FIG. 4 (color online). Two-dimensional contour of 8; and H,.
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FIG. 5 (color online).

The total Planck CMB temperature power-spectrum like-
lihood is divided into low-/ (I < 50) and high-/ (I = 50)
parts. This is because the central limit theorem ensures that
the distribution of the CMB angular power spectrum C; in
the high-/ regime can be well approximated by Gaussian
statistics. However, for the low-/ part the C; distribution is
non-Gaussian. For these reasons the Planck team adopts two
different methodologies to build the likelihood. In detail, for
the low-/ part, the likelihood exploits all Planck frequency
channels from 30 to 353 GHz, separating the cosmological

70

75 80

Ho

Full set of parameter likelihoods in the chameleon-type model.

CMB signal from diffuse Galactic foregrounds through a
physically motivated Bayesian component separation tech-
nique. For the high-/ part, the Planck team employed a
correlated Gaussian likelihood approximation, based on a
fine-grained set of angular cross spectra derived from
multiple detector combinations between the 100, 143, and
217 GHz frequency channels, marginalizing over power-
spectrum foreground templates. In order to break the
well-known parameter degeneracy between the reionization
optical depth 7 and the scalar index ng, the Planck team
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TABLE III. Best-fit values and 68% confidence limits for the chameleon-type model (and 95% confidence limits in parentheses
for By).

CM: WMAP9 CM: Planck + WP +lensing +BAO + HST + Union2.1
Parameters Best fit 68% limit Best fit 68% limit Best fit 68% limit Best fit 68% limit
Q,h? 0.02279 0.02286 = 0.00059 0.02256 0.02241 =0.00035 (.02226 0.02225 £ 0.00032 (02240 0.02235 = 0.00026
Q h? 0.1184 0.1122 = 0.0052 0.1168 0.1171 = 0.0031 0.1162 0.1174 = 0.0029 0.1168 0.1166 * 0.0017
1006 1.0391 1.0406 = 0.0024 1.04158 1.04174 =0.00068 104183 1.04158 =0.00065 1.04159 1.04173 = 0.00057
T 0.092 0.090 *+ 0.015 0.088 0.087 = 0.013 0.089 0.088 = 0.013 0.090 0.089 £ 0.013
n, 09879  0.9825 = 0.019 09686  0.9676 = 0.0084 09659  0.9658 =0.0079 09698  0.9678 = 0.0057
log (10104;) 3.131 3.092 + 0.033 3.082 3.079 * 0.026 3.079 3.081 = 0.025 3.085 3.080 + 0.025
B 0.954 0.89310:647 1.127 1.14819.274 1.033 1.027+0:149 1.020 1.04375163
By 0.496 0.849 0473 0.079
s 1.143 e 3.398 aE 3.152 e 3.635 e
Q, 0.691 0.726 = 0.029 0.705 0.703 = 0.018 0.701 0.700 + 0.017 0.704 0.705 = 0.0098
H, [km/s/Mpc] 67.64 70.58 = 2.59 68.88 68.73 = 1.46 68.93 68.43 = 1.36 68.75 68.82 = 0.78
sznin /2 3778.939 4900.274 4907.445 4975.853

assumed the low-/ WMAP polarization likelihood (WP).
Apart from the CMB power spectrum, the first Planck data
release provides, for the first time, a full-sky lensing poten-
tial map, by using the 100, 143, and 217 GHz frequency
bands with an overall significance greater than 250. As we
know, the lensing potential distribution follows that of the
large-scale structures which form and grow mainly in the
late-time universe. Thus, this map carries fruitful informa-
tion about dark energy and modified gravity in this period.
Hence, we expect that the lensing potential power spectrum
could provide us with a stringent constraint on deviations
from general relativity.

Given the above considerations, we perform our pa-
rameter estimation algorithms by using two different data
sets from the Planck mission, namely, the Planck CMB
power spectrum [63] and the lensing potential power
spectrum [64]. In order to compare with the previous
WMAP results, we also do the same analysis by using
the WMAP9 data [82]. Furthermore, in order to break the
parameter degeneracies we also use some other external
data sets, including baryon acoustic oscillation (BAO)
measurements from the 6dFGS [84], SDSS DR7 [85],
and BOSS DRO [86] surveys; Hubble Space Telescope
(HST) Key Project [87] H, measurements; and super-
novae from the Union2.1 compilation [88]. For BAO
data sets, we use three redshift surveys: the 6dF Galaxy
Survey measurement at z = 0.1, the reanalyzed SDSS-
DR7 BAO measurement [89] at effective redshift
Zett = 0.35, and the BOSS-DR9 measurement at z. =
0.2 and z.; = 0.35. For the direct measurement of the
Hubble constant, we use the result Hy = 73.8 =
2.4 kms~ ! Mpc~! [90], which comes from the supernova
magnitude-redshift relation calibrated by the HST obser-
vations of Cepheid variables in the host galaxies of eight
SNe Ia. For supernovae, we use the Union2.1 compilation,
consisting of 580 SNe, calibrated by the SALT2 light-
curve fitting model.

As previously stated, we implement the same algorithms
of MGCAMB [49,79] in the new version of CAMB [80],
which is compatible with the Planck likelihood. We sample
the cosmological parameter space, which can be read in
Table I, with a Markov chain Monte Carlo (MCMC)
method with the publicly available code cosmMoMC [91].

IV. RESULTS AND DISCUSSION

As a first step we checked the reliability of the code in
the general relativity limit [B, = 0 for the f(R) gravity
case, By = 0, B, = 1, s = 4 for a chameleon-type model].
We find that our results are in quite good agreement with
the Planck results [92]. Here we show our consistency
check for the f(R) case explicitly in Table II.

The global analysis results for f(R) gravity can be
read in the second, third, fourth and fifth columns of
Table II, which are based on WMAP9, Planck + WP,
Planck + WP + lensing and Planck + WP + lensing +
BAO + HST + Union 2.1 data sets.

First, we can see that the Planck CMB temperature
power spectrum with WP can give an upper bound
of By <0.91 (hereafter, we quote the significance at
95% C.L. for a modified gravity parameter, such as B,
and ;). Compared with the WMAP9 result, B, < 3.37, it
improves the upper bound by a factor 3.7. Second, by
adding lensing data the results can be further improved by
a factor 5.1 (By <0.18). Finally, we arrive at our best
bound of By < 0.12 by using all data sets. In addition, we
notice that, due to the degeneracy between B, and the
dark matter density, the Planck data prefer a slightly
lower value of Q 4% in the f(R) model. Consequently,
this implies that f(R) gravity favors a slightly larger value
of H,. This can be helpful to relax the tension between
Planck and the other direct measurements of the Hubble
parameter, such as that from the HST [87]. The degener-
acy between B, and Q) h? is illustrated in Fig. 7, where it
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is evident that we can fit a lower value of the third peak
by increasing B,, while keeping Q) h? fixed.
Marginalized likelihoods for all the parameters are
shown in Fig. 3. We also highlight the 2D likelihood in
the parameter space of B, and H, in Fig. 1 and the
marginalized likelihood for Bj in Fig. 2. Let us notice
that the By likelihood from WMAP9 data (gray curve)
has a prominent second peak around B, = 2.5. This is
due to the nonlinear dependence of the ISW effect on B,
in f(R) gravity. Since with WMAP resolution the lensing
signal is quite weak, the main contribution to the B, con-
straint in WMAP data comes from the ISW effect. As
shown in Fig. 6, under our parameter value choice (we
fix all the other cosmological parameters as the mean
values of the Planck base ACDM model), from B, = 0
to By ~ 1 the slope of the spectrum in the ISW-dominated
regime becomes gradually flat and approaches the

ISW effect in f(R) gravity
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FIG. 6 (color online). The nonlinear dependence of the ISW
effect on By in f(R) gravity.
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FIG. 7 (color online). The second and third peaks in f(R)
gravity. The larger By is, the lower the third peak is.
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Sachs-Wolfe plateau. After that, if it continues to increase
until By ~ 2, the power spectrum will bounce again and get
closer to that of general relativity. If one further increases
the B value, the spectrum curve in the ISW regime will
rise up above that of general relativity. Moreover, once we
marginalize over all the other cosmological parameters, the
turning point By ~ 1 will shift to around By ~ 1.5, and the
second peak By ~ 2 will move to By ~ 2.5.

Compared with f(R) gravity, the chameleon-type model
includes the other two free parameters 8, and s, which are
fixed to 4/3 and 4 in the former case. Due to the amount of
extra modified gravity parameters and the degeneracy
among them, we find that the Planck constraints on the
parameters B, and s are still quite loose, with no obvious
improvement when comparing to WMAPY results.
However, we are able to improve the constraints on S;:
we find B; = 1.043*3183 at 95% C.L. compared with B, =
0.89370%7 at 95% C.L. from WMAP9. The detailed global
analysis results can be found in Table III and Fig. 5.
Confidence regions in the 8;-H, plane, after marginalizing
over the other parameters, are shown in Fig. 4. One could
notice that the value B; = 4/3, corresponding to f(R)
models, is well outside the 3o confidence region.
However, this does not rule out the f(R) model by any
means, given the very loose constraints on the other two
relevant f(R) parameters By and s. In Fig. 8, we compare the
likelihood of B, with(out) marginalization over B, by using
Planck + WP + lensing + BAO + HST + Union2 data
sets. It clearly shows that the stringent constraint on 3 is
due to the marginalization effect on B, whose constraint is
very loose for the chameleon-type model via current data
sets. And we have also tested that if we fix B, = 0.001 and
use the same data sets, the marginalized 20 confidence
level for B is 0.971707%  which reconciles with f(R)
gravity very well. We can also see in Table III that the

Marginalized over By

Unmariginalized over By
0.8

0.6

P/Pmax

0.4}

0.2}

0.0

0.8 1.0 1.2 1.4 1.6
B

FIG. 8 (color online). Likelihood of ; with(out) marginaliza-
tion over B, by using Planck + WP + Lensing + BAO +
HST + Union 2 data sets.
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chameleon-type model favors a slightly higher Hubble pa-
rameter, for the same reason as explained for f(R) gravity.
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