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About a decade ago, using a specific expansion scheme, effective, on-brane scalar tensor theories of

gravity were proposed by Kanno and Soda [Phys. Rev. D 66, 083506 (2002)] in the context of the warped

two-brane model of Randall–Sundrum. The inter-related effective theories on both the branes were

derived with the space-time dependent radion field playing a crucial role. Taking another look at this

effective theory, we find cosmological and spherically symmetric, static solutions sourced by a radion-

induced, effective stress energy, as well as additional, on-brane matter. The distance between the branes

(governed by the time or space dependent radion) is shown to be stable and asymptotically nonzero,

thereby setting aside any possibility of brane collisions. It turns out that the inclusion of on-brane matter

plays a decisive role in stabilising the radion—a fact which we demonstrate through our solutions.

DOI: 10.1103/PhysRevD.88.123509 PACS numbers: 98.80.Cq, 04.50.�h, 11.25.�w

I. INTRODUCTION

The possible existence of extra spatial dimensions is
now a well-known theoretical assumption where our four-
dimensional world is considered to be a 3-brane embedded
in a higher-dimensional spacetime. Such a description
emerges naturally in the backdrop of various string-inspired
models [1]. Moreover, extradimensional models were de-
veloped as a nonsupersymmetric, alternative approach in
tackling the well-known fine-tuning/gauge hierarchy prob-
lem in the regime of the Standard Model of particle physics.
It became more and more evident that gravity may become
an integral part to address issues on physics beyond the
Standard Model.

The extradimensional models can broadly be classified
into those having large compact radii [2] or having small
compact radii [3]. Regarding their geometry, these models
are generally compactified under various topological set-
ups. The uncompactified, four-dimensional spacetime then
emerges as a low energy effective theory which contains
signatures of the higher-dimensional theory.

However, among all models proposed so far, we will
confine ourselves to the Randall–Sundrum (RS) model [3],
which has two 3-branes, with equal and opposite brane
tensions, embedded in a five-dimensional spacetime. This
model was initially developed to combat the unnatural fine-
tuning involved in determining the mass of the Higgs
boson. While determining the theoretically predicted
mass of the Higgs boson (100–125 GeV) from higher order
self-energy calculations, this boson gets quantum correc-
tions typically of the order of the Planck energy scale. As a

result, an extreme fine-tuning needs to be carried out at
every order of perturbation theory to obtain the theoreti-
cally predicted value. This fine-tuning is often known as
the Higgs mass hierarchy problem or naturalness problem
in particle physics. Without introducing any intermediate
scale in the theory, the RS model successfully resolved the
fine-tuning problem by exponentially suppressing all mass
scales on one of the 3-branes, known as the visible brane.
Thus, the entire low energy theory is reproduced on the
negative tension visible brane at TeV scale. By far, this is
one of the most successful approaches for addressing the
naturalness problem for a constant interbrane separation.
However, the RS model suffered from the stabilization

problem. In the absence of any stabilization scheme, the

two-brane system can collapse under the influence of equal

and opposite brane tensions. Therefore, a reasonably ge-

neric method for stabilizing the brane separation distance

rc or the modulus field was proposed by Goldberger

and Wise in Ref. [4], in which a stabilizing potential for

the modulus field is generated by a five-dimensional bulk

scalar field with the appropriate value at the boundary.

The minimum of the modulus potential corresponds to

the vacuum expectation value (vev) of the modulus field

(krc). From this condition the vev of the modulus field can

be set as krc ’ 11:5 (to resolve the naturalness problem)

without any fine-tuning of the four-dimensional parame-

ters. In other words, the stabilization is achieved without

sacrificing the conditions necessary to solve the gauge

hierarchy problem.
Besides offering explanations to the problems beyond the

Standard Model of particle physics, the RS model has

attracted the attention of cosmologists due to its unique

interpretation of the cosmological constant fine-tuning prob-

lem. Therefore, over the last decade, various cosmological
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and astrophysical issues like galaxy formation, the exis-
tence of anisotropies in the cosmic microwave background,
dark energy and dark matter, and black hole formation
have been extensively studied in the context of the RS
two-brane model (see Ref. [5] and references therein).

In the present paper, we consider the effective, on-brane,
scalar-tensor theories formulated by Kanno and Soda [6]
where the radion field, which measures the interbrane
separation between the visible brane and the Planck brane
is not a constant quantity. In fact, while studying the
cosmological solution on the visible or the Planck brane,
the radion is taken as a time dependent field. Similarly,
for spherically symmetric, static on-brane geometries, the
radion field depends on the radial coordinate. The spatial or
temporal dependence of the radion therefore leads to the
requirement that it must be nonzero everywhere in order to
avoid brane collisions. We are able to demonstrate that by
assuming the existence of on-brane matter, a stable non-
zero distance between the branes is possible.

In the next section, we provide an overview of the
effective scalar-tensor theories proposed by Kanno and
Soda [6]. Subsequently in Sec. III we deal with cosmologi-
cal solutions, and in Sec. IV we look at spherically
symmetric solutions. In the last section, we provide our
summary and conclusions.

II. GRADIENT EXPANSION SCHEME AND
THE KANNO–SODA EFFECTIVE THEORY

Let us now briefly discuss the low energy effective
theory on a 3-brane developed by Kanno and Soda [6] in
the context of the two-brane model developed by Randall
and Sundrum. The two 3-branes being Z2 symmetric are
located at orbifold fixed points y ¼ 0 and y ¼ l such
that the geometry under consideration in this model is
M1;3 � S1=Z2. Our Universe is assumed to be on the
visible 3-brane, which is a hypersurface embedded in a
five-dimensional anti-de Sitter bulk filled with only a five-
dimensional bulk cosmological constant. The bulk curva-
ture scale is l. Typically, in the RS model, the Einstein
equations are determined by keeping the interbrane dis-
tance fixed and considering a flat 3-brane. However, the
scenario drastically changes once the interbrane separation
distance or the proper length becomes a function of the
spacetime coordinates and the on-brane geometry is
curved. These generalizations are incorporated while de-
riving the effective equations of motion on a 3-brane [6].
Beginning with Ref. [7], there has been a lot of work on the
effective Einstein equations on the brane under various
assumptions [8]. In fact, the effective equations for the
two-brane system as obtained in Ref. [6] were also reder-
ived in a different approach in Ref. [9]. An interesting
recent work on slanted warped extra dimensions and its
phenomenological consequences appeared in Ref. [10].

To determine the effective theory, we assume the follow-
ing five-dimensional action and a five-dimensional metric

with a spacetime varying proper distance between the two
3-branes. The action functional is given as

S ¼ 1

2�2

Z
d5x

ffiffiffiffiffiffiffi�g
p �

Rþ 12

l2

�
� �i¼a;b�i

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gibrane

q

þ�i¼a;b

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gibrane

q
Li

matter; (1)

where the tensions on the Planck brane and visible brane
are, respectively, given by �a ¼ 6

�2l
and�b ¼ � 6

�2l
. Let us

consider the most general five-dimensional line element,

ds2 ¼ e2�ðxÞdy2 þ g��ðy; x�Þdx�dx�; (2)

where �2 is a five-dimensional gravitational coupling con-
stant. Since both cosmological and astrophysical solutions
that we consider in the present case occur at energy scales
much lower than that of the Planck scale, therefore in the
effective theory approach, the brane curvature radius L is
much larger compared to bulk curvature l. As a result,
perturbation theory can be used with a dimensionless
perturbation parameter � such that � ¼ ð lLÞ2 � 1. This

method, called the gradient approximation scheme, is a
metric-based iterative method in which the bulk metric and
extrinsic curvature are expanded with increasing order of �
in perturbation theory. The effective Einstein equations on
a brane are determined with the solutions of these quanti-
ties and the junction conditions. In this method, the RS
fine-tuning condition is reproduced at the zeroth order
when the interbrane separation is constant and the two
3-branes are characterized by opposite brane tensions.
The effective Einstein equations are then obtained at the
first order incorporating nonzero contributions of the ra-
dion field and brane matter. Using the gradient expansion
scheme, the effective Einstein equations on the visible
brane are as follows: [6]

G�� ¼ �2

l�
Tb
�� þ�2ð1þ�Þ

l�
Ta
��

þ 1

�
ð~r�

~r��� f��
~r� ~r��Þ

� 3

2�ð1þ�Þ
�
~r��

~r��� 1

2
f��

~r��~r��

�
; (3)

where � ¼ e2
d
l � 1 and d is the proper distance between

the branes, which in general is a spacetime dependent
quantity. �2 is the five-dimensional gravitational coupling
constant. Ta

��, T
b
�� are the matter on the Planck brane and

the visible brane, respectively. All covariant derivatives in
the above expression are defined with respect to the metric
on the visible brane (denoted by the superscript b) given
by f��.

The proper distance, a spacetime dependent function,
between the two 3-branes in the interval y ¼ 0 and y ¼ l is
defined as
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dðxÞ ¼
Z l

0
e�ðxÞdy; (4)

and the corresponding equation of motion of the scalar
field on the negative tension brane is given by

~r� ~r�� ¼ �2

l

Ta þ Tb

2!þ 3
� 1

2!þ 3

d!

d�
ð~r��Þð~r��Þ: (5)

Here, Ta and Tb are traces of energy momentum tensors on
Planck brane and visible brane, respectively. The coupling
function !ð�Þ in terms of � can be expressed as

!ð�Þ ¼ � 3�

2ð1þ�Þ : (6)

It is, however, known that the gravity on both the branes
is not independent. The dynamics on the Planck brane
situated at y ¼ 0 is related to that of the visible brane by
the following transformation [6]:

�ðxÞ ¼ �

1��
; (7)

where � is the radion field defined on Planck brane. Now,
the induced metric on the visible brane can be expressed in
terms of � as

gb-brane�� ¼ ð1��Þ½h�� þ gð1Þ��ðh��;�; Ta
��; T

b
��; y ¼ lÞ�;

(8)

where gð1Þ�� is the first order correction term.
It is to be noted that in the subsequent calculations, we

will assume that the on-brane stress energy is present only
on the ‘‘b’’-brane, i.e., on the visible brane.

An important feature of the effective equations given
above is that, unlike the ones derived in Ref. [7], there is no
nonlocal contribution (bulk-Weyl dependent E�� [7]) from

bulk geometry.

III. COSMOLOGICAL SOLUTIONS

To study the cosmological solution on the negative
tension, visible brane, we assume the radion field to be
time dependent. Therefore, the proper distance between the
orbifold fixed points, i.e., y ¼ 0 to y ¼ l, is given by

dðtÞ ¼
Z y¼l

y¼0
e�ðtÞdy ¼ le�ðtÞ: (9)

The Friedmann–Robertson–Walker (FRW) solutions of the
Einstein equations can be obtained for three different types
of spatial curvature, k ¼ �1, 0, 1. In this section, we study
the solutions corresponding to each of these values of k
separately. The FRW metric with a nonzero spatial curva-
ture is given by

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin�2d�2Þ

�
;

(10)

where r, �,� are the radial coordinates and aðtÞ is the scale
factor to be determined. Substituting the above metric in
Eq. (3), the Einstein equations with spatial curvature k are
obtained as

3

�
_a

a

�
2 þ 3

_a

a

_�

�
þ 3k

a2
þ 3 _�2

4�ð1þ�Þ ¼
�2

l�
	 (11)

2
€a

a
þ

�
_a

a

�
2 þ k

a2
� _a

a

_�

�
�

_�2

4�ð1þ�Þ
¼ �2

3l
ð�	þ 3pÞ � �2

3l�
	; (12)

and the scalar field equation is given by

€�þ 3
_a

a
_� ¼ �2ð	� 3pÞð1þ�Þ

3l
þ

_�2

2ð1þ�Þ ; (13)

where an overdot represents the derivative with respect
to time t. It is to be noted that Eq. (12) is obtained by
substituting Eq. (13) in ii-th component of the Einstein’s
equations. The scalar field equation is found to be inde-
pendent of spatial curvature k, and hence the equation
remains the same for any value of k. However, the scalar
field profile is different for different k values due to the
different functional forms of aðtÞ.
Let us now consider each value of k separately and study

the cosmological solution in the presence of a radion field
with a time dependence.

A. Spatially flat solution (k ¼ 0)

To construct a spatially flat FRW Universe on the visible
brane in the presence of a time dependent radion field, we
consider the line element given by Eq. (10), which for
k ¼ 0 reduces to

ds2 ¼ �dt2 þ a2ðtÞ
ijdx
idxj: (14)

We initially assume that both the 3-branes are devoid of
brane energy densities and pressures. Therefore, when 	 ¼
0 ¼ p, Eq. (13) can be reexpressed in terms of first integral
of the � equation. The scalar field equation reduces to

_� 2 ¼ C2
1

a6
ð1þ�Þ: (15)

After substituting k ¼ 0 and 	 ¼ 0 ¼ p in Eqs. (11) and
(12) and then adding the two, we get

€a

a
þ

�
_a

a

�
2 ¼ 0: (16)

Integrating Eq. (16), we get

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~C1t� C2

q
: (17)

Now, we can choose the dimensionful factor ~C1 ¼ 1 by a
scaling choice so that the solution of scale factor is
rewritten as
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aðtÞ ¼ ð2t� C2Þ12; (18)

where C2 is a constant of integration. Substituting Eq. (15)
and the scale factor into Eq. (11) (with k ¼ 0) and then
integrating it gives the solution for the time dependent
scalar field as

�ðtÞ ¼ C2
1

4ð2t� C2Þ þ
C1

ð2t� C2Þ12
; (19)

where C1 is a nonzero constant with dimensions of L
1
2. The

constant C2 may be set to zero by time translation so that
að0Þ ¼ 0. However, C1 must be strictly nonzero so that the
scalar field �ðtÞ remains nonzero as well. From the above
solution of �ðtÞ, we can construct the proper distance dðtÞ
as given below:

dðtÞ ¼ l

2
ln

�
1þ C2

1

8t
þ C1ffiffiffiffiffi

2t
p

�
: (20)

The above solution indicates that the scale factor has a
decelerating (but expanding) nature and the scalar field
approaches zero in the later time, whereas it is large in
the early Universe. The obtained solution is similar to that
of the FRW radiation-dominated Universe. However, dðtÞ,
which measures the interbrane distance, tends to zero in the
limit t ! 1, thereby indicating an instability.

Let us now consider a perfect fluid but with the equation
of state p ¼ 	

3 and then construct the solutions. The trace-

less property of the energy momentum tensor for a perfect
fluid with p ¼ 	

3 offers some simplifications. With the

above-mentioned equation of state, the addition of
Eqs. (11) and (12) for k ¼ 0 produces the same differential
equation for the scale factor aðtÞ as before and hence the
same solution, which is

aðtÞ ¼ ffiffiffiffiffi
2t

p
; (21)

where we have set the constant C2 ¼ 0. Using the scale
factor derived above in Eq. (15), the solution of the scalar
field can now be written as

�ðtÞ ¼ C2
1

8t
� C1A

2
ffiffiffiffiffi
2t

p þ A2 � 4

4
; (22)

where we now have an extra parameter A. Now using the
solutions of aðtÞ and�ðtÞ, the energy density on the visible
brane is given by

	ðtÞ ¼ l

�2

3ðA2 � 4Þ
16t2

: (23)

We note that when A ¼ 2, Eq. (22) exactly reduces to the
solution of �ðtÞ given in Eq. (19) (with C2 ¼ 0), which is
the scalar field solution in the absence of the brane matter
on both the 3-branes. The nature of the variation of�ðtÞ vs
t is shown in Fig. 1, where A ¼ 2, C1 ¼ 2

ffiffiffi
2

p
(red curve),

and A ¼ 3, C1 ¼ 2
ffiffiffi
2

p
(green curve). The horizontal line

(blue) shows the nonzero asymptotic value of �ðtÞ when

brane matter is present. Now in the presence of matter, the
proper distance between the branes using Eq. (22) is found
to be

dðtÞ ¼ l

2
ln

�
1þ C2

1

8t
� C1A

2
ffiffiffiffiffi
2t

p þ A2 � 4

4

�
: (24)

As t ! 1, dðtÞ is always nonzero and tends to a constant
value for all A > 2.
Hence, the proper distance never vanishes, and therefore

no instability exists. Thus, the perfect fluid matter on the
brane with equation of state p ¼ 	

3 stabilizes the distance

between the branes. It is to be noted that such an equation
of state corresponds to a perfect fluid comprising of rela-
tivistic particles.

B. Spatially curved solutions (k ¼ �1, þ1)

Let us now construct the FRW solution on the visible
brane with nonzero spatial curvature. The Einstein equa-
tions given by Eqs. (11) and (12) lead to an interesting
observation: for p ¼ 	

3 the known Friedmann solutions for

k ¼ þ1 and k ¼ �1 survive. The scalar field equation
remains unchanged, but the scalar field profile is obviously
different due to the different functional forms of aðtÞ for
k ¼ þ1 and k ¼ �1.
When k ¼ þ1, the addition of Eqs. (11) and (12) (with

p ¼ 	
3 ) yields

€a

a
þ _a2

a2
þ 1

a2
¼ 0; (25)

which on solving gives

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 � ðt� A1Þ2

q
: (26)
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t

vs.t

FIG. 1 (color online). Plot of�ðtÞ vs t in the absence of visible
brane matter [A ¼ 2 and C1 ¼ 2

ffiffiffi
2

p
(red curve)], in the presence

of visible brane matter [A ¼ 3 and C1 ¼ 2
ffiffiffi
2

p
(green curve)], and

the nonzero asymptotic value of �ðtÞ when brane matter is
present (horizontal blue line).
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This is the well-known Friedmann scale factor where the
Universe begins at t ¼ 0 and there is a big crunch at
t ¼ 2A1. Similarly for k ¼ �1, the addition of Eqs. (11)
and (12) results in

€a

a
þ _a2

a2
� 1

a2
¼ 0; (27)

and the scale factor becomes

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððtþ A1Þ2 � A2

1Þ
q

: (28)

With appropriate time translation (tþ A1 ! t), the solu-
tion of the scale factor may, in general, be written as

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ K

p
; (29)

where K is a real integration constant. In our form of the
solution, we have chosen K ¼ �A2

1 < 0 and að0Þ ¼ 0.
Here, the Universe is eternally expanding, though with
deceleration.

If we now write the scalar field as 1þ�ðtÞ ¼ e
2dðtÞ
l , then

using this and Eq. (15), we can express the proper distance
dðtÞ in terms of integral of the scale factor as

e
dðtÞ
l ¼ �C1

2

Z dt

a3ðtÞ þ B1; (30)

where B1 is a constant of integration. Thus, given the scale
factor for any spatial curvature k ¼ 0,�1, 1, Eq. (30) is the
most general expression that determines the proper dis-
tance between the two 3-branes. To verify whether a given
scale factor always admits a nonzero dðtÞ, we need to verify
that the lhs of the Eq. (30) is never be equal to 1.

Substituting the solution of the scale factor for k ¼ �1,
i.e., Eq. (28) in Eq. (30), we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ðtÞp ¼ e

dðtÞ
l ¼ � C1

2A2
1

A1 þ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð2A1 þ tÞp þ B: (31)

Similarly, for k ¼ þ1 using Eq. (26) in Eq. (30), we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ðtÞp ¼ e

dðtÞ
l ¼ � C1

2A2
1

�A1 þ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt� 2A1Þ

p þD; (32)

where B and D are integration constants.
Let us now try to see if �ðtÞ can become zero for any t.

This will be possible for some t if the squares of the rhs of
Eqs. (31) and (32) become equal to 1.

For k ¼ �1, setting the square of the rhs of Eq. (31)
equal to 1, we obtain the following roots for t:

t� ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� C2
1

4B0

s
; (33)

where we have set A1 ¼ 1 (without any loss of generality)
and B0 ¼ ð�1� BÞ � 0. Thus, if C1 > 4B0, the roots are
complex conjugates, and hence �ðtÞ is never zero. For
C2
1 < 4B0, there is a positive root for which �ðtÞ can

become zero. However, choosing B ¼ 1 and the upper
sign in B0, one may eliminate this possibility, too.
Similarly, for k ¼ 1, we can obtain the roots for t when

�ðtÞ may become zero. These turn out to be (with A1 ¼ 1
and D0 ¼ ð�1�DÞ2)

t� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ C2
1

4D0

s
: (34)

Here, it is clear that both roots lie within the domain of t.
which is 0 � t � 2. If D0 ¼ 0 (i.e., D ¼ 1, with the upper
sign in the expression for D0), then there ia a single root at
t ¼ 1. The variation of radion field �ðtÞ with time for both
k ¼ �1, 1 are shown in Figs. 2 and 3 respectively, and they
confirm the above discussion. It is clear that in the k ¼ þ1
case, an instability (brane collision) arises during the evo-
lution of the Universe.
The condition under which dðtÞ can be never equal to 1

for the spatially flat case has already been shown earlier.

IV. SPHERICALLY SYMMETRIC,
STATIC SOLUTIONS

Let us now look at spherically symmetric static solutions
of the effective Einstein equations on the visible brane. In
constructing such a solution, it is legitimate to assume a
radial coordinate, i.e., r dependent radion field �ðrÞ. We
begin with a line element of the Majumdar–Papapetrou
[11] form, which uses isotropic coordinates,

ds2 ¼ � 1

U2ðrÞ dt
2 þU2ðrÞ½dr2 þ r2d�2 þ r2sin 2�d�2�;

(35)

where UðrÞ is the unknown function to be determined
by solving Einstein’s equations. First, let us assume that
the branes are empty, i.e., Ta

�� ¼ Tb
�� ¼ 0. Substituting

the metric ansatz given by Eq. (35) in Eq. (3), we arrive
at the following field equations:

0 2 4 6 8 10
0

2

4

6

8

10

12

14

t

vs.t

FIG. 2 (color online). �ðtÞ vs t for k ¼ �1; C1 ¼ 2, A1 ¼ 1,
B ¼ 1. The blue line shows the asymptotic value.
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�2
U00

U
þ
�
U0

U

�
2�4

U0

Ur
¼� �02

4�ð1þ�Þþ
U0

U

�0

�
(36)

�
�
U0

U

�
2 ¼ � 3�02

4�ð1þ�Þ �
U0

U

�0

�
� 2�0

�r
(37)

�
U0

U

�
2 ¼ �02

4�ð1þ�Þ þ
U0

U

�0

�
þ �0

�r
: (38)

Here, a prime denotes a derivative with respect to r.
Adding Eqs. (37) and (38), one obtains

�0

�

�
�0

2ð1þ�Þ þ
1

r

�
¼ 0: (39)

Since �0ðrÞ � 0 one can consider the term in brackets in
the above equation as a condition on � and its derivative.
However, the scalar field equation for �ðrÞ given by

�00 þ 2
�0

r
¼ �02

2ð1þ�Þ (40)

can be readily integrated once to get

�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�

p ¼ 2C1

r2
; (41)

where C1 is a positive, nonzero integration constant. Con-

sistency of Eq. (39) (i.e., the equation �0
2ð1þ�Þ þ 1

r ¼ 0) and

Eq. (41) for �0ðrÞ leads to a unique form of �ðrÞ given by

�ðrÞ ¼ C2
1

r2
� 1: (42)

Further, we can use the condition in Eq. (39) to rewrite the
Einstein equations in the following form:

� 2
U00

U
þ

�
U0

U

�
2 � 4

U0

Ur
¼ �0

2�r
þU0

U

�0

�
(43)

�
�
U0

U

�
2 ¼ � �0

2�r
�U0

U

�0

�
(44)

�
U0

U

�
2 ¼ �0

2�r
þU0

U

�0

�
: (45)

We note that the rhs of the above field equations lead to the
tracelessness requirement on the lhs. Therefore, UðrÞ must
satisfy the following differential equation:

U00 þ 2
U0

r
¼ 0; (46)

which is the Laplace equationr2U ¼ 0 expressed in spheri-
cal polar coordinates (this result is the same as what follows
in Einstein–Maxwell theory for Majumdar–Papapetrou-type
solutions [11]). The solution for UðrÞ is therefore straight-
forward and is given by

UðrÞ ¼ C2 � C3

r
; (47)

where C2 and C3 are two positive, nonzero constants.
Substituting the solutions obtained for UðrÞ, �ðrÞ and
their derivatives in either of the two Einstein equations,
i.e., Eq. (43) or (44), we find a single condition between
the nonzero constants given as

C2
1C

2
2 ¼ C2

3: (48)

Hence, the final solutions for UðrÞ and �ðrÞ in terms of
C1, C2, and C3 become

�ðrÞ ¼ C2
3

C2
2r

2
� 1 (49)

UðrÞ ¼ C2 � C3

r
: (50)

At r ¼ C1 ¼ C3

C2
,UðrÞ ¼ 0, which implies the existence of a

black hole horizon. Now for the same value of r, the radion
field�ðrÞ or the interbrane distance vanishes, suggesting an
instability which needs to be removed. To keep�ðrÞ always
nonzero, we apply the method adopted in the case of
cosmology (see the earlier section of this article). We add
traceless matter on the visible brane. Therefore, using
Eq. (35) in Eq. (3) once again (but with the presence of
matter on the visible brane), we now obtain the following
Einstein equations on the visible brane:

�2
U00

U
þ

�
U0

U

�
2 � 4

U0

Ur
¼ � �02

4�ð1þ�Þ þ
U0

U

�0

�
þ �2

l�
	

(51)

�
�
U0

U

�
2 ¼ � 3�02

4�ð1þ�Þ �
U0

U

�0

�
� 2�0

�r
þ �2

l�
� (52)

�
U0

U

�
2 ¼ �02

4�ð1þ�Þ þ
U0

U

�0

�
þ �0

�r
þ �2

l�
p; (53)

where 	ðrÞ, �ðrÞ, and pðrÞ are the diagonal components
(in the frame basis) of the energy momentum tensor on the
visible brane. As long as this additional brane matter is
traceless, i.e.,

� 	þ �þ 2p ¼ 0; (54)

there is no change in the scalar field differential equation.
The general solution of the scalar field equation, however,
needs to be taken as

�ðrÞ ¼
�
C1

r
þ C4

2

�
2 � 1; (55)

where C4 is a positive constant which is responsible for
generating the brane matter. Even though with C4 ¼ 0 the r
dependent �ðrÞ produces a nonflat on-brane metric, it in-
volves an unstable radion and also corresponds to the case
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when the visible brane is empty. We can easily see that as
long as C4 > 2, �ðrÞ never vanishes, and by having trace-
less matter on the visible brane, the instability disappears for
this particular spherically symmetric solution with a r de-
pendent interbrane distance �ðrÞ. The plot of �ðrÞ vs r is
shown in Fig. 4. It is to be noted further that the solution for
UðrÞ remains unaltered under the tracelessness condition on

brane matter. However, it is now possible to choose C3

C2
to be

different from C1. We assume

UðrÞ ¼ 1� C5

r
: (56)

From the above expressions for UðrÞ and �ðrÞ, the
visible brane matter energy momentum, i.e., 	, � and p
turn out to be

	 ¼ l

�2

1

ð1� C5

r Þ2
1

r4

�
C5C1C4 þ C2

1 � C2
5 þ

C2
5C

2
4

4

�
(57)

�¼ l

�2

1

ð1� C5

r Þ2

�
�
3C1C4C5�C2

1þC2
5� C2

5
C2
4

4

r4
� 2C1C4

r3
� 2C1C4C

2
5

r5

�
(58)

p ¼ l

�2

1

ð1� C5

r Þ2

�
��C1C4C5 þC2

1 �C2
5 þ C2

5
C2
4

4

r4
þC1C4

r3
þC1C4C

2
5

r5

�
:

(59)

We note that C5 as well as C1 cannot be zero in order to
ensure a nonconstant UðrÞ and �ðrÞ. At the same time,
C4 ¼ 0 is also not desirable because it would lead to an
instability [i.e., �ðrÞ becoming zero at some r]. Further, all
three constants must satisfy C1 > 0, C4 > 0 and C5 > 0. It
is possible to have bothC1 andC4 negative, but this does not
affect the functional forms of 	, �, and p or�ðrÞ. However,
if one chooses C5 < 0, the solution leads to a naked singu-
larity. It is also clear that we cannot have � ¼ p because this
condition leads to a quadratic equation for r which implies
specific r values as its solutions. The only allowed condition
is the one for traceless matter, i.e., 	 ¼ �þ 2p. In addition,
the weak energy condition (WEC) or null energy condition
(NEC) will be violated. In particular,

	þ � ¼ � l

�2

2C1C4

r4
: (60)

Since we must have C1, C4 > 0 for stability, 	þ � < 0, but
one can satisfy 	 > 0 and 	þ p > 0 by choosing the
constants appropriately. Even though the 	, �, and p violate
WEC and NEC, the ‘‘effective matter,’’ which is equal to
the total expressions in the rhs of Eqs. (51)–(53) does satisfy

the WEC or NEC. One can easily check this by renaming
the quantities on the rhs of Eqs. (51)–(53) as 	eff , �eff , peff

and verifying the validity of 	eff > 0, 	eff þ �eff ¼ 0, and
	eff þ peff > 0. The functional forms of 	, �, and p are
shown in Fig. 5 for a specific choice of the parameters, with
C1 ¼ C5. We have also checked (not shown here) that the
profiles of 	, �, and p are similar when C1 � C5. It is now
easy to convert the metric solution (and the scalar field
solution) into the extremal Reissner–Nordström black hole
form by the following identifications:

r ¼ r0 �M; C1 ¼ M: (61)

This leads to the extremal Reissner–Nordström black hole
metric given as

ds2 ¼ �
�
1�M

r0

�
2
dt2 þ dr02

ð1� M
r0 Þ2

þ r02ðd�2 þ sin 2�d�2Þ:

(62)

0 2 4 6 8

0

5

10

15

r

vs.r

FIG. 4 (color online). Plot of �ðrÞ vs r when C1 ¼ 2, C4 ¼ 0
(red curve) and C1 ¼ 2, C4 ¼ 3 (blue curve).
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FIG. 3 (color online). �ðtÞ vs t for k ¼ þ1; C1 ¼ 2, A1 ¼ 1,
D ¼ 1. �ðtÞ equals zero at t ¼ 1.
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We note that r0 ¼ M is the location of horizon as well as the
spacetime singularity.

For such spherically symmetric solutions, we can also
obtain the �ðrÞ by exploiting the relation between �ðrÞ
and�ðrÞ given in Ref. [6]. For example, in the simple case
(without visible brane matter), we have

�ðrÞ ¼ 1� r2

C2
1

(63)

hij ¼ C2
1

r2
fij; (64)

where the hij is the metric on the Planck brane and the

visible brane metric functions, fij, are given in terms of the

UðrÞ obtained above.

V. CONCLUSION

In summary, we have shown the following:
(i) In the cosmological case, for traceless matter

(p ¼ 	
3 ) on the visible brane, we find analytic solu-

tions for the scale factor and the radion field. In the
spatially flat Universe, the scale factor is that of the
radiation dominated FRW case, while the radion is
stable and never zero. Instability arises when there is
no on-brane matter. In a spatially curved Universe

with traceless, radiative matter, the results are similar
for the case of negative spatial curvature. With posi-
tive spatial curvature, instabilities arise even with
on-brane matter.

(ii) In the spherically symmetric, static case, in isotropic
coordinates, we find that the solution obtained is
nothing but the extremal Reissner–Norström solu-
tion. However, there is no physical charge or mass
here (like in the Einstein–Maxwell theory), and the
radion field parameters play the role of an equiva-
lent charge or mass.

For the case when the matter on the brane is not neces-
sarily traceless, we are unable to find analytical solutions.
Numerical work (not discussed here) suggests that the
nature of the solutions for, say, p ¼ 0 or p ¼ �	 are
different from the solutions for p ¼ 	

3 discussed here.

It is noteworthy that our analytic solutions are all
obtained using traceless, on-brane matter. However, we
also note that the stability of the radion may not necessarily
have any connection with the tracelessness of on-brane
matter, though the need for some on-brane matter to
achieve stability has been demonstrated in our examples.
A hint about what kind of matter can achieve stability of
the radion can be obtained by setting C4 ¼ 0 in the ex-
pressions for 	, �, and p. Notice [from Eqs. (57)–(59)] that
for C2

1 >C2
5, the NEC andWEC will be satisfied. Does this

indicate that a stable radion requires energy condition
violating on-brane matter? A general statement is unlikely
here, though one may surely try to explore the exact link
between the nature of on-brane matter and radion stability
in future investigations.
Finally, the fact that we have rediscovered known solutions

(i.e., the FRW scale factors in cosmology and the extremal
Reissner–Nordström in the static, spherically-symmetric
case) in the context of a theory different from general relativ-
ity is certainly welcome. This feature was also noticed in the
first analytic solution in the Shiromizu–Maeda–Sasaki on-
brane, effective theory [7] where the Reissner–Nordström
solution was rediscovered as an exact solution [12]. There,
the interpretation of a charge or mass was entirely geometric
and largely dependent on the presence of the extra dimen-
sions. Here, too, it is the presence of extra dimensions,
through the space or time dependent radion, which is respon-
sible for the nature of the solutions, though on-brane matter
seems to be crucial in maintaining stability.
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