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Complete density perturbations in the Jordan-Fierz-Brans-Dicke theory
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In the context of scalar-tensor theories we study the evolution of the density contrast for Jordan-Fierz-
Brans-Dicke theories in a Friedmann-Lemaitre-Robertson-Walker universe. Calculations are performed in
the Einstein frame with the cosmological background described as A-cold dark matter (ACDM) and
supplemented by a Jordan-Fierz-Brans-Dicke field. By using a completely general procedure valid for all

scalar-tensor theories, we obtain the exact fourth-order differential equation for the density contrast
evolution in modes of arbitrary size. In the case of sub-Hubble modes, the expression reduces to a simpler
but still fourth-order equation that is then compared with the standard (quasistatic) approximation.
Differences with respect to the evolution as predicted by the standard concordance ACDM model are

observed depending on the value of the coupling.
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I. INTRODUCTION

The present accelerated phase that the Universe seems to
be experiencing nowadays [1] constitutes an open and
major problem in modern cosmology. With the assumption
of general relativity (GR) as the gravitational underlying
theory, standard Einstein equations (EEs) in either matter
or radiation dominated universes give rise to decelerated
periods of expansion. These fluids are unable by them-
selves to violate the strong energy condition that would
provide cosmological acceleration once that for suffi-
ciently large scales a homogeneous and isotropic universe
is assumed. Thus some kind of mechanism to guarantee
acceleration is required. These mechanisms are usually
classified in two different ways. The first one considers
that the total stress-energy tensor appearing on the right-
hand side of the EEs should be dominated at late times by a
hypothetical negative pressure fluid usually dubbed dark
energy (see [2] and references therein). The second ap-
proach consists of modifying the left-hand side of EEs,
thus modifying gravity itself and interpreting the accelera-
tion as a geometrical effect rather than as a consequence of
the inclusion of exotic fluids.

However, both points of view are mathematically
equivalent since geometrical modifications can be inter-
preted as curvature fluids and therefore interpreted as dark
energy contributions. Some examples of these mechanisms
are provided by Lovelock theories [3], Gauss-Bonnet mod-
els [4], scalar-tensor theories [5] or vector-tensor theories
[6], gravitational theories derived from extra dimensional
models [7]; supergravity models [8], disformal theories [9]
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or Lorentz violating and CPT breaking models of gravity
[10]. With the exception of a cosmological constant A,
scalar fields models of quintessence [11] are the easiest
way to add a new fluid (or field) in an attempt to explain the
late-time cosmological acceleration. However, these mod-
els present several drawbacks such as potential violations
of the equivalence principle [12].

Another paradigmatic example of geometrical modifi-
cations of the gravitational interaction are the scalar-tensor
theories which add a scalar field to the gravitational inter-
action. This scalar field can be interpreted as a new kind of
fluid which does not have to verify the usual energy con-
ditions. In fact, the so-called f(R) theories [13,14], where
the usual Einstein-Hilbert gravitational action is replaced
by a more general f(R) term, can be understood as a kind
of scalar-tensor theory. One of the earliest works for devel-
oping an alternative to GR was conducted by Brans and
Dicke and was related with some previous work of Jordan
and Fierz [15]. This theory is usually referred to as Jordan-
Fierz-Brans-Dicke theory (JFBD), or also Brans-Dicke
theory (see [16] for a recent review). The action for such
theories can be written as

d*x

@o
= J=gl eR— =29"pd, 0 |+ L],
M

where G. holds for the bare gravitational coupling con-
stant, R the scalar curvature associated to the metric g,,,
/—¢& the determinant of the metric, S,, the action corre-
sponding to matter fields ¢ and the metric, ¢ the scalar
field and w, the coupling between the scalar field and
the metric. The main difference in (1) with respect to GR
is that the gravitational constant is in fact nonconstant
but dependent on the scalar field ¢. This scalar field
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contributes to the Lagrangian density with its own kinetic
term. In addition, it can be shown that the evolution of the
scalar field has as a source term the contracted matter
stress-energy tensor. Therefore, making the scalar field
dependent on the mass distribution and subsequently mak-
ing the gravitational constant dependent of the mass as
well. This effect provides a manifestation of the Mach’s
principle as interpreted by Dicke [16].

JFBD theories are included in a more general set of the
so-called scalar-tensor theories. These theories allow for a
constant w, depending on the scalar field itself and may
also include a potential to the scalar field Lagrangian
density. Scalar-tensor theories are usually formulated in
two different frameworks, the Jordan frame (JF) and the
Einstein frame (EF). The former defines lengths and times
as would be measured by ordinary laboratory apparatus so
that all observables (time, redshift, among others) have
their standard interpretation in this frame. The metric is
minimally coupled to matter in the JF and the scalar field is
coupled with the Ricci curvature. Action (1) is defined in
this frame. However, it is easier to work in the EF. This
frame has the advantage of diagonalizing the kinetic terms
for the spin-0 (the scalar field) and spin-2 (the graviton)
degrees of freedom so that the mathematical consistency of
the solutions of the theory are more easily discussed. In this
case, the scalar field is coupled with matter [17,18].

There are also strong theoretical arguments to take into
account scalar-tensor theories. Among others, these argu-
ments include the fact that scalar partners of the graviton
naturally arise in most attempts to quantize gravity or unify
it with other interactions. Also, as we previously men-
tioned, other theories of gravity, such as f(R) theories,
can be expressed as scalar-tensor theories [13]. A different
line of reasoning claims that the coupling between the
scalar field and the matter density could provide a mecha-
nism to alleviate the coincidence problem [19].

Once the late-time acceleration has been generated, the
most important question to address is how to discriminate
between competing dark energy models or theories that
mimic the cosmological evolution as predicted by the
ACDM or concordance model [20]. Studies of the cosmic
expansion history through high-redshift Hubble diagrams
from SNIa [21], baryon acoustic oscillations [22] or cos-
mic microwave background shift factor [23] cannot settle
the underlying nature of dark energy by themselves, due to
the fact that different theories can provide the same global
expansion properties in a Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe [24]. Therefore, other types of
cosmological and astrophysical observations are required
in order to break this degeneracy [25]. At this point it is
necessary to study the growth of structures and extend the
standard theory of cosmological perturbations from GR to
more general gravity theories since these calculations can
provide additional information and help to distinguish
between similar expansion histories.
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Scalar cosmological perturbations have been widely
studied in fourth-order gravity theories mainly in the met-
ric formalism [26-28] originally developed for GR by
Bardeen [29] as well as in the 1 + 3 covariant approach
[30]. Moreover, in the last years, attempts to numerically
compute the matter power spectrum for classes of modified
gravity theories by using several parametrizations, instead
of solving the full set of equations have received increasing
attention [31]. Modifications to the linear order Einstein
equations are thus introduced in terms of general functions
of scale and time. In general all these investigations proved
that the perturbations growth depends on the scale (while
in GR the evolution of dust matter is scale-independent
[30] and that models claimed as viable are in fact almost
ruled-out due to the matter power spectrum [32,33].
Perturbations in scalar-tensor theories have been consid-
ered from different approaches, for example: the recon-
struction problem was addressed in [18], the density
contrast evolution was studied in [34—36] where in general,
some intermediate approximations were performed, the
integrated Sachs-Wolfe effect was determined in [37] and
finally second-order perturbations were presented in [38].
In all the aforementioned studies where an equation for the
evolution of the density contrast was sought, the study was
developed in the JF (with the exception of [36] which was
carried in EF) and under the so-called quasistatic approxi-
mation. This approximation is performed disregarding all
the time derivative terms for the gravitational potentials in
the first order perturbed equations. In the context of modi-
fied gravity theories, this approximation has been consid-
ered as too aggressive [27,28] since neglecting time
derivatives may remove important information preventing
it from encapsulating all the features that correctly describe
the perturbations evolution.

In this work we shall focus in the aforementioned type of
scalar-tensor theories, the JFBD theories. Also, we shall
work in the EF. The following transformations [16—18]

J— 3 — a72 .
2 2
turn the action in the JF (1) into the EF [16-18]:

Wy = p=e" =Ale.)% ()

d*x
S = =g [R. —2A + 2479, 0.9, 0.
/1677(;*\/ gL g% 0,0.0,0.]

+ Sule** gl ¥l 3)

where we have added a cosmological constant A. Note that
in this frame the gravitational constant G, is not dependent
on the scalar field. However, the matter term is now
coupled directly to the scalar field through the coupling
parameter «. This coupling would mean that test particles
do not follow geodesics, nor is the inertial mass conserved
in this frame [16].

In the present work, we address the problem of deter-
mining the exact equation for the evolution of matter
density perturbations for JFBD theories in the EF. The
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quasistatic limit of this equation was was obtained in [35]
in the JF and in [36] in the EF, where in both the standard
quasistatic a priori approximations were performed. This
equation is similar to that in GR but instead of the bare
gravitational constant G, the quasistatic equation appears
with an effective gravitational constant, which depends
on the model through the parameter w, or « (and in the
JF on the scalar field also) but it is independent of the scale
k as in the GR case.

Once we obtain such an exact equation, we shall focus
on obtaining solutions for the evolution of the matter
density contrast with a ACDM cosmological background
supplemented by a JFBD field under certain viability con-
straints for the coupling. We shall then compare the results
with those obtained in the standard ACDM model, i.e.,
without any additional field.

This work is organized as follows: In Sec. I A we revise
the results for the concordance ACDM model as well as
introducing the notation and several concepts. We further
deepen the discussion between the different frames in
JFBD theories in Sec. IB. In Sec. II we introduce the
background equations and obtain the perturbed equations
of JFBD theories. Section III is devoted to solving the
perturbed equations in order to obtain the evolution of
the density contrast. Then, in Sec. IV, we particularize
our results for several JFBD models. In Sec. V we sum-
marize the conclusions of the present investigation. Finally,
in the Appendix we show the coefficients of the general
equation for the evolution of density perturbations.

A. Density perturbations in ACDM

Below, we summarize the results for density perturba-
tions in the ACDM model as an introduction to the subject
of density perturbations. The corresponding first order
perturbed EEs read

6G*, = —87GéTH,, 4)

with G*, the Einstein’s tensor and T#, the stress-energy
tensor for matter. At this stage we need to consider the
perturbed metric. In this work we are interested in obtain-
ing the evolution for density perturbations so, we just need
to consider scalar perturbations in the metric. We work in
the longitudinal gauge and in conformal time, so the per-
turbed FLRW metric reads

ds? = a*(n)(1 + 2®)dn? — (1 —2¥)(dr* + r*dQ3)],
%)
where ® = O(n, X), ¥ = V(n, X) are the Bardeen’s po-
tentials [39]. Once the metric has been introduced, we can

obtain the first order perturbed Christoffel symbols as well
as the Einstein tensor in the longitudinal gauge [40]." If we

'Note that in [40] the authors use another convention for the
Riemann tensor so, a change needs to be performed, but the
Christoffel symbols remain unchanged.
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restrict ourselves to adiabatic perturbations and barotropic
fluids we conclude that the perturbed stress-energy tensor
can be expressed as

5T00 = 0p = pyo, aTij = _6P5ij = _C§6i]'/)05y
8T°; = —8T'y = —(1 + D)pyd;v, (6)

1

where p is the unperturbed average cosmological energy
density for a fluid and p is the perturbed energy density of
the same cosmological fluid, J is the density contrast, c, is
the speed of sound and v holds for the potential for velocity
perturbations. In the following, we shall assume that both
perturbed and unperturbed matter obey the same equation
of state, i.e., 6P/8p = c2 = Py/p,. From (4) and the
corresponding stress-energy tensor conservation and after
using the definitions above, we can obtain a second-order
differential equation for 8. In particular for dust matter,
ie., ¢2 =0, it reads [13]

4 _ f~12 ~2
T k* — 6pk 18p
k* — p(3k* + 9H?)
kK +9p(2p —3H?) — K2(9p — 3H?)
p K — 5(3k2 + 912

!

0=0,

(7

where prime denotes derivative respect to conformal time
n, p =4mGa’py and H = a'/a. In the extreme sub-
Hubble limit, i.e., k > FH, (7) becomes

8"+ HS' — ps=0. (8)

In the case of GR, the sub-Hubble limit matches the
quasistatic limit (k — o0) because the sub-Hubble approxi-
mation is not dependent on the mode k.

B. Discussion on the transformation
between frames

Despite presenting our results in the EF we shall com-
pare them with results obtained in the JF at the end of
Sec. III. Therefore the quantities &, and g},,, defined in the
EF need to be related with their counterparts 6 and g,,,
defined in the JF. The relations between the aforemen-
tioned quantities is as follows [17,18]:

a.(n.) = A(e.) 'a(n), p. =Al@)'p, (9

where A(p,) = e“%+ is related to the coupling of the scalar
field and the metric in the EF. The conformal time 7 is the
same in both frames (7. = 7).

Taking into account these relations, the density contrast
and Hubble parameter change as follows:

o(ps
5, = (p)=6+4a5g0*,

Pox

/ .

! A
g{*zz;zg{_zgp;:}[—asoi, (10)

123507-3



J.A.R. CEMBRANOS et al.

where = 9. From now on, let us drop the notation (*) for
EF quantities, since we shall work throughout the manu-
script in this frame.

I1. JFBD THEORIES

A. Background evolution in JFBD theories

The corresponding modified EEs obtained from the
action (3) read

Guv +[2V(e) = 8*PVa0Vgelg,, +2V, 0V, ¢
= —8wGT,,, (11)
and the equation of motion for the scalar field yields
Oe = VeV, = —47GaT, (12)

where a = const defines the coupling between the metric
and the scalar field. In addition, if we take the trace of the
covariant derivative in (11) and use (12) the conservation
equation becomes

V,T¢, = aTd,e. (13)
For a spatially flat FLRW metric the components (00)

and (rr) of (11) with ¢ = ¢(7n) and a perfect fluid read
[17,18]

3H? - ¢ =2p + Ad?, (14)
H2—H' =% =1 + ), (15)

Then, Eq. (12) for the FLRW metric background gives
" +2H o' = —p(1 — 3c?)a, (16)

and for the temporal component of the conservation
equation (13) we get

!
PO — 391+ 2) +all —3D)¢. (17
Po

In summary we are left with four background equations,
two from the gravitational field (14) and (15), one from
the scalar field (16) and one from the conservation
equation (17).

B. Perturbations in JFBD theories

The first order perturbed equations of the gravitational
field in JFBD theories (11) become
8GY — V,oV5085(8gF) + 2V, 0V, 0(8g#4)
+ 2(_5’;fgaﬁvﬁ¢va + g“ﬂvy¢va + VM¢VD)5¢
= —87GSTY. (18)
Using the perturbed metric (5), the perturbed stress-energy

tensor (6) and assuming that the background equations
hold, the components of Eq. (18) (00), (ii), (0i) = (i0)
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and (ij), where i, j =1, 2, 3, i # j in Fourier space,
respectively read

— PV = 3H (V' + HD) + P — ¢'5¢' = p8,
(19)

W 2H? + 2HND + 2H (D + 2W) — k2(D — WP)

+20p” —2¢'85¢' = 2pc325, (20)
W+ HD— o8¢ =—p(1 + ), 1)

The last equation (22) implies that both scalar potentials &
and ¥ are equal as in GR, so the previous equations, for
(00), (if) and (0i) = (i0) components can be rewritten
respectively as

BHD + (K +3H? — o)+ ¢'5¢' = —p5,  (23)

O+ 3HD + (H?+2H' + ¢*)D — ¢'8¢’ = pc2s,
(24)

D+ HD - ¢'5p =—p(1 + A)v. (25)

For the scalar field equation (12) the first order perturbed
equation yields

8PV N + g*F (8¢ 0p = 6T a0, — Tha8¢.,)

= —47GabT, (26)

which for the metric (5) and after using the fact that ® =
W reads

40'®D + 2(p" + 2H YD — 8¢" —2H 8¢’ — K26
=(1—3cHaps. 27

Finally, the conservation equation (13) up to first order in
perturbations becomes

9,6Ty + 6U6, Ty + 16, 6Ty — 61, Tk — %, 6T4

= abTd, ¢ + aTd,d¢, (28)

whose temporal and spatial components using (17) and
(22) read respectively
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6/
1+ ¢c2

o 1=3¢
ve T 2
1+ c;

3q)/ —

adgo’, (29)

c3

O +v +(1—-3AH + ap)v+ 5
1 +c;

o

1 —3¢2

III. EVOLUTION OF DENSITY PERTURBATIONS
IN JFBD THEORIES

The goal of this section consists of getting a differential
equation for dust matter, i.e., c2 = 0, density contrast §.
We detail below the method we have followed to obtain
such an equation. First, we must identify which equations
are independent from each other. Thus it turns out that
Eq. (24) can be obtained by combining (23), its first
derivative with respect to time, (25), (27), and (29). The
same happens with Eq. (30), which is dependent on some
of the aforementioned equations and their derivatives.
Therefore, we are left with a system of four equations,
namely (23), (25), (27), and (29). As usual v can be
obtained from Eq. (29) in terms of other perturbed quan-
tities so we end up with a system of three equations and
five variables {®, ', ¢, d¢', 5¢"}. This forces us to
differentiate and combine the aforementioned three equa-
tions (23), (25), and (27) in order to get a differential
equation for 8.

After substituting v in Egs. (23), (25), and (27) we can
combine them and algebraically isolate the variables
{8¢, 8¢', 5¢"}. Thus we obtain

6o =6¢(5,8, D, D), ¢ = 6¢'(8, D, D), a0
6¢// — 5@”(6, 6/) (I)’ (I)l)’

where we can see that 8¢’ does not depend on &'
Differentiating §¢’ and equating the result with §¢” we
can solve for ®” and obtain

P = (8, D, D), (32)

since the &’ coefficients turn out to cancel.

At this stage, we need to obtain ® and @’ in terms of &
and its derivatives and hence we need two further equa-
tions. We obtain them by combining Eqgs. (23) and (25) in
such a way that ®’ cancels. Then we differentiate
the obtained equation and substitute the variables we
already know from (31). Thus, from this combination
we get

0 (5,8, 6" @, &) = 0. (33)

Furthermore, we can differentiate this last equation
again to obtain

PHYSICAL REVIEW D 88, 123507 (2013)
Q1(8,8,8", 8", &) =0, (34)

where we have used the already obtained expression for ®”
given in (32). From last two equations (33) and (34) we can
obtain algebraically ® and ®':

O =d(5,5,8",8"), O =d/(5,8,5",8"). (35)

The last step just consists of differentiating ® in (35) and
equate the result with ®' also given in (35). This way, a
fourth-order differential equation for & is obtained:

C4d™ + C38" + 28" +C8' + 6 =0. (36

The actual coefficients C; (i = 0, 1, 2, 3, 4) are shown in
the Appendix. As a consistency check, we remark at this
stage that the well-known second-order differential equa-
tion for GR (7) is recovered provided that the scalar field
and its derivatives tend to zero by a careful procedure.
Note also that the above described procedure is com-
pletely general to first order for scalar perturbations in
metric formalism for arbitrarily general scalar-tensor
theories such as those including potential or nonconstant
coupling a.

If one is now interested in studying sub-Hubble
modes, we can perform the sub-Hubble approximation
(k> ) in (36). In order to do so, let us define the
parameter € = JH /k that allows us to perform a pertur-
bative expansion on the C; coefficients and keep only the
leading terms in €. Once the approximation is performed,
(36) reads

C4p8" + C328" + (Cyg + C22)8" + (Cr9 + C12)8'
+ (CO,O + 00‘2)8 = 0, (37)

where the coefficients C; ; are also given in the Appendix.

Furthermore, the quasistatic approximation, which at
this point is equivalent to make (k— oo or € — 0) in
(36) or (37), reads

8"+ (H + ag)é' — (1 + a?)pd = 0. (38)

In this case the equation becomes second order in 8, since
the 6% and 8" coefficients comprise a power of k> less
than the coefficients corresponding to 8”, &', & and there-
fore are severely suppressed. Now by using Egs. (9), (10),
and (38) can be translated into the JF yielding

8"+ HE — 4wG.A%X(1 + a?)pd = 0. 39)

Note that last equation involves the quantities 8, J{ and p
written in the JF. Here we can see how in the equation
for the EF (38) the gravitational constant G (included in the
p definition) does not depend on the scalar field (even
though it does on the theory through «) while in the
equation for the JF (39) the gravitational constant depends
on A = A(p).
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FIG. 1 (color online). Model & = 1073 for initial conditions a0 =(— 10740, 10™%). Left panel: Redshift evolution of the scalar
field derivative. Right panel: Comparison of ¢>—note that prime denotes conformal time derivative—with 74 2. We conclude that the
requirement of a negligible stress-energy tensor of the scalar field is satisfied regardless of the initial conditions for a9, ¢.

Finally let us mention that the quasistatic approximation
has been obtained in the EF, as given in (38), in [36] and in
the JF, as given in (39), in [35]. We present this result
as a consistency check for the more general equations (36)
and (37).

IV. RESULTS

In order to solve the equations obtained in the previous
section and describe the evolution of the density contrast
6 let us consider the scalar field ¢ contribution to the back-
ground to be negligible. Thus, the cosmological background
would coincide with the ACDM solution, where Friedmann
equation for the spatially flat and dust plus cosmological
constant mixture universe becomes H?(z)=H3[Qy(1+
23+ Q)] with Qy=1—0Q,, and Q,,~0.3 [41].

In addition, as we shall present our results as a function
of redshift, we are required to translate our equations from
conformal time to cosmic time and accordingly we are able
to use the analytic solution for the cosmological factor as
given in the ACDM model for dust (see for instance [13])

—_ 1/3
alt) = (IQA) P inh <2/3>(3" Oa Hoz).

Q, 2

(40)

We still need to compute the background evolution of the
scalar field, which as we can see in Eq. (16) is second order
in ¢ so it requires two initial conditions. We shall consider
¢(z = 1100) = 0 as the scalar field initial value while we
shall take the values ’fi—"z" l,.—1100 = (—107%,0, 107*) for the
derivative with respect to the redshift of the scalar field.
We also need to specify the value of the coupling «.
The values under study shall be @ = 1073 and a = 1071
The first value is chosen because it constitutes an upper

limit for the currently valid values [42]2 whereas the
second value is chosen for a better understanding on the
a parameter dependence. Once the evolution of the scalar
field is computed, we shall check that it is indeed negligible
when compared with standard matter components and that
therefore the aforementioned assumption is well founded.

Now that the background is totally specified, we can
solve Egs. (36)—(38) and compare the evolution with the
ACDM predictions as given by (7). As (36) and (37) are
fourth-order equations, they require four initial conditions
for 8. We use 8(z = 1100) = 103 and 8/(z = 1100) = 0
as arbitrary conditions of the model and we obtain the
conditions for the second and third derivatives from the
GR equation (7) and its first derivative.

A.Casea = 1073

For this case, the evolution of the background scalar
field ¢ is represented in Fig. 1 for several initial conditions.
It can be seen in the left panel that at recent epochs the first
derivatives of the scalar field are undistinguishable from
each other, but for the negative initial condition, d,¢
crosses zero at some redshift. Right panel shows that the
scalar field stress-energy tensor is smaller than the ACDM
counterpart. Consequently our approximations for the
background are fully justified in this case.

We show in Figs. 2 and 3 the evolution of the scalar
perturbations for several k modes. Figure 2 shows the
evolution of several modes described by the general equa-
tion (36) and the sub-Hubble approximation (37). We can
observe how the sub-Hubble approximation is able to

*More precisely, the actual upper limit established by the
Cassini spacecraft for « is @ < 3.54 X 1073 [42].
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Model @ = 1073: §; evolution for 9.0, = 10™* (left), 9,0y = 0 (center) and 9,¢y = —10~* (right), for the

modes k = 50H,, 100H,, 1000 ,. Both general equation (36) and sub-Hubble approximation (37) have been plotted in
the redshift range from 1100 to 0. We can see in the center panel that the sub-Hubble approximation is an upper limit for every
specific k but that it depends on k in contrast with the ACDM case. 8(z = 1100) = 1073 and &'(z = 1100) = 0 have been used as

initial conditions.
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FIG. 3 (color online).
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Model o = 1073: § for 3¢ = 107* (left), 3,y = 0 (center) and d,¢y, = —10~* (right), for the modes k =

503, and 300 , described by the general equation (36), sub-Hubble approximation (37) and ACDM (7) in the redshift range from
1100 to 0. 8(z = 1100) = 1073 and &'(z = 1100) = 0 have been used as initial conditions. We can see that ACDM and the general
equation are very similar and that the sub-Hubble approximation represents a good approximation for the highest mode k = 3007 ,.

describe the evolution for the biggest k modes but it fails
when it is dealing with smaller modes. Figure 3 shows the
evolution for modes k = 507, 300 , (H , denotes the
Hubble parameter evaluated today) in the general equation
and the sub-Hubble approximation in addition to the evo-
lution as predicted by the ACDM model. We can observe a
slight deviation from the ACDM evolution in the models
with nonzero initial condition for ¢’ and for modes with
k~ 503 ,.

Additionally, given that the evolution of perturbations
is similar to that of ACDM, we compare in Fig. 4 the
relative error. In this figure we plot the evolution of
two modes (k = 507 ,, 300 ) and observe that the
difference with ACDM is bigger for the smallest mode
(k=50H o) for the cases with nonzero initial condition

for ¢'. Furthermore, we observe that the difference in-
creases monotonously with the redshift for both modes.
Finally in Fig. 5 (left panel) we plot the density contrast
evaluated today as a function of k for the initial conditions
under consideration. In the center panel we then depict the
relative difference between the today values as predicted by
JFBD theories (36) and by ACDM (7). As can be seen in the
center panel the value predicted by JFBD theories oscillate
around the ACDM values, and the relative difference de-
pends on the initial condition for ¢’. The difference between
ACDM and the case with null initial condition for ¢’ is of
order 1073. We can deduce from these facts that in this case
all the difference with ACDM is ruled by the scalar field ¢
while the coupling a hardly produces any difference.
Accordingly, for this coupling any possible discrepancy
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FIG. 4 (color online). Model a = 1073: Predicted separation of §; for 9,¢, = 107* (left), 9. ¢, = 0 (center) and 9,¢, = —107*
(right) described by the general equation (36) with respect to ACDM solution. The studied modes were k = 507y, 3007, in the

redshift range from 1100 to 0. §(z = 1100) = 1073 and &’(z = 1100) = 0 have been used as initial conditions. As we can see, the
difference with ACDM increases when d,¢, # 0 and for the smallest mode.
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FIG. 5 (color online). Model @ = 1073: Left panel: Value of §; today for d,¢ = (—107%,0,107%), for a wide range of modes
described by the general equation and ACDM. Center panel: Relative difference of the value of §; today with respect to the value
predicted by the ACDM model. Depending on the d, ¢ initial condition oscillations in such difference can be observed. Right panel:
Relative error when using sub-Hubble or quasistatic approximations instead of the general equation. For the sub-Hubble approxi-
mation, the deviation with respect to ACDM strongly depends on the ¢’ initial conditions. §(z = 1100) = 1073 and §'(z = 1100) = 0

have been used as initial conditions in all cases.

with respect to the ACDM fittings in the processed matter
power spectra is expected to be negligible. In Fig. 5 right
panel we depict the relative error of either the quasistatic
approximation (38) or sub-Hubble (37) approximations with
respect to the general solution given by (36). It is shown how
the sub-Hubble approximation is always a better approxi-
mation than the quasistatic approximation. The k£ modes
when described by the sub-Hubble approximation have a

strong dependence on the ¢’ initial conditions whereas the
quasistatic evolution hardly depends on ¢'.

B. Case @ = 107!

For this case, we have also checked that the scalar
contribution to the background stress-energy tensor is
always negligible (lower than 1% of the standard ACDM
at any time in the evolution). Therefore, background ap-
proximations are also justified in this case.

We present in Fig. 6 a brief summary of the obtained
results for this case. We plotted there the density contrast
evolution as provided by the general equation, sub-Hubble
approximation and ACDM for two k modes (k = 50,
3004 ). Thus we can see how for higher values of the
coupling «, the JFBD density contrast evolution becomes
more different from the ACDM evolution. The center
panel in Fig. 6 shows the relative difference of 6 evaluated
today from the general equation when compared with
ACDM values. This difference turns out to be of the order

6% and consequently bigger than in the previous case
(smaller coupling, a = 1073). Therefore, the growth of
perturbations in this model is mainly ruled by the coupling
a with a slight dependence on the initial condition for ¢’.
Finally, we can also observe in this figure (right panel) that
the sub-Hubble approximation provides a better descrip-

tion of the & evolution than the quasistatic approximation.
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FIG. 6 (color online). Model a = 107!: Left panel: §; for d,¢, = 0, for the modes k = 507, 300FH , as described by the general
equation (36), the sub-Hubble approximation (37) and ACDM (7) in the redshift range from 1100 to 0. We can see that ACDM and the
general equation predict different evolutions and that the sub-Hubble approximation represents a good approximation of the general
equation for the highest mode (k = 3007 ). Center panel: Relative difference on the value of &, today, predicted by the models with
d,¢ = (—107%,0, 10~*), with respect to the value predicted by the ACDM model. The deviation is almost constant for every mode k
with a slight dependence on the initial condition for d,¢. Right panel: Relative error when using quasistatic or sub-Hubble
approximation instead of the general equation. For the sub-Hubble approximation, the relative deviation depends on the ¢’ initial
conditions. 8(z = 1100) = 1073 and 6’(z = 1100) = 0 have been used as initial conditions in all cases.

In fact, for this value of «, the sub-Hubble approximation
is able to describe accurately a wider range of k modes than
with a smaller coupling regardless of the initial conditions
for ¢'.

V. CONCLUSIONS

In this work we have studied the evolution of matter
density perturbations in Jordan-Fierz-Brans-Dicke theories
in the Einstein frame. We have presented for the first time
in the available literature a completely general procedure
to obtain the exact differential equation for the evolution of
density contrast departing from an Einstein-Hilbert gravi-
tational action with cosmological constant and supple-
mented by a scalar field with kinematical term and a
coupling between standard matter and the scalar field.

Firstly, we have derived the modified Einstein equations
in these kinds of theories both for the background and for
the first order perturbed equations. Then, after algebrai-
cally combining the involved equations and without per-
forming any intermediate simplification, we have shown
that the fully general density perturbations equation is a
fourth-order differential equation. This is a key result of
this investigation which is in agreement with the usual
results for other modified gravity theories, such as f(R)
theories, for which the density contrast evolution equation
is also fourth order. In the absence of the scalar field the
general equation as predicted by general relativity is natu-
rally recovered.

For these kinds of theories, we have also studied the so-
called sub-Hubble approximation equation which is valid
for sub-Hubble modes. This equation turns out to be
fourth-order and k-mode dependent, in contrast with its
counterpart in general relativity which is second-order and

k-mode independent. We recover as well, but this time
from the completely valid equation, the quasistatic ap-
proximation presented in other works in the literature
both in the Einstein frame and the Jordan frame.

In order to illustrate our results, we have chosen two
couplings, a = 1073, 107!, between the scalar field and
standard matter. The former is an allowed value for a
whereas the latter was chosen to illustrate the parameter
dependence. We have then studied the evolution of the
perturbations for different initial values for the scalar field
and compared the sub-Hubble evolution and the full equa-
tion in order to determine the validity of such approxima-
tion depending on the k mode under consideration. The
sub-Hubble approximation was proved to be valid for
different scales and generally covers a wider range than
that described by the quasistatic approximation.

For each coupling and three different initial conditions
for the scalar field first derivative, we also compared the
general evolution with respect to that predicted by the
concordance ACDM model. We concluded that for al-
lowed parameters « the relative difference today is always
lower than 5%. We have also shown that as the coupling «
becomes bigger the difference with ACDM increases.
Furthermore we could observe that when the coupling «
is small, the difference with ACDM is mainly driven by the
scalar field.

The implemented method for solving the perturbed
equations is general and could be used to study the per-
turbed equations for other scalar-tensor theories with non-
constant coupling and/or with scalar field potential. Further
work in this direction is in progress. Thus, it should be
possible to use this general approach to constrain which
scalar-tensor theories continue to be consistent with matter
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power spectra current data even if at the level of the FLRW
cosmological background they remain indistinguishable
from ACDM model.
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APPENDIX: COEFFICIENTS OF THE
DIFFERENTIAL EQUATION OF THE EVOLUTION
OF THE DENSITY PERTURBATIONS

In this appendix we show the coefficients Cy;,34 of
Egs. (36) and (37) as a sum of powers in the € coefficient

(where € = H /k), ie., C; =4 (€/H)*C;s,, where

Mmin

Hmin = 0 for Cy 15 and ny,, = 1 for Cy 4.

(i) Coefficients for 6 term:

Coo = —4a?(a® + 1)p, (A1)

Cor = —(a? + Dp{[TH? + 2(5a% — 7)pla?
+2(15a2 + 34) H o' + (—Ta* — 500>
+16) ¢}, (A2)

Cos = p{2a® —30a® — 53a* + 5502 + 276) ™ + 2a(6a® + 24a* + 23a® + 205)H ¢
+ [2(a® — 23a® — 29a* + 45a% + 138)p — (37a® — 153a* + 49502 + 237) H ]
—2aH[(6a* + 39a? + 57) H? + (6a® — 109a* + 160a® — 285)5]¢’

+ a[—(a? +5T)H* = 2(Ta* + 240> — 39)pH? — 4(a? — 3)(a* — o + 14)p%]},

(A3)

Cos = P{(—10a® + 101a® — 66a* + 245a% — 1224)¢"® — 2a(12a® — 158a* + 18502 + 399) H ¢
+ [(—59a® + 51a* — 279502 + 4437) H? — 2(19a® — 201a® + 269a* — 261a? + 1332)p]¢"
+ 20 H[2(29a* — 427a% + 864) H? + (6a° + 135a* — 772a> + 483)ple"
+ [(441a* + 15100 — 765)H* + 4(9a® — 519a* + 7312 + 657)pH? — 2(22a® — 197a®
+ 382a* — 26302 + 720)5% )¢ + 2aH[—(a? + 357) H* + (65a* + 194a> + 537)p H >
+ (39a® — 455a* + 977a? — 225)p*]¢’ + 2a*[3H + 6(4a* — 1) pH*

+ (=35a* + 92a% + 207)p2 H? — 8(a® — 1542 + 18)p°]},

(A4)

Cos = 2P(3FH? — ¢ — 2p){(—4a® + 60a’ — 165a* + 354a® — 567)¢"° + a(—14a®
+ 167a* — 72402 + 945) H ¢” + [(—30a® + 133a* — 1818a? + 3159) FH?
—2(8a® — 124a® + 411a* — 62402 + 567)p o™ + aH[(89a* — 316a® + 1215)H?
— 4(7ab — 86a* + 52902 — 810)5]¢” + [2(8a* + 141a2 — 162) H* + 2(—9ab — 154a* + 22542
+ 486)p H? + (—22a® + 315a° — 1155a* + 1461a® — 567)p* ] + 3aH [2a> H*
+ 8Ba* +8a? + 9)pH? + (—5a° + Sa* — 95a® + 279)p% ¢’ + 12a2p[—a? H*

+ (—a* + a? + 18)p H? — (a® — 3)3 %]}

(ii) Coefficients for &' term:

Cio= 402(H + ag)),

(A5)

(A6)

C1, ={ala* —38a% + 16)¢" + (15a* + 22a% + 16)H ¢” + a[2(7a* + 11)pa® + (9a? + 68) H ?]¢’

+ > H[19H? + 6(a® — 3)p]},

(A7)
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Ci4 = {a(—11a* + 181a? — 264)¢" — (19a* + 57a% + 324) H o™ + a[(2a* + 3050 — 277) H?
+ (3a8 — 103a* + 21002 — 272)p]e" + H[(Qa* — 23302 + 413) H?
+ (19a® + 175a* — 148a2 — 420)p]¢"”? + a[2(17a? + 99) H* + (—11a* + 243a>
—446)pH? +2(3ab — 32a* + 41a? — 68)p% ]’ + a? H[-2H* + 73> — 1)pH?
+2(at + 9602 — 145)52]), (A8)

Cie ={2a(19a* — 23202 + 481)¢"" + 2(43a* — 468a? + 945) H ¢'® + a[(—19a® + 258a*
— 159102 +2542)p — 2(27a* — 42402 + T41) H )" + H[(—294a* + 2696a> — 4722) H >
+ (—23a® + 724a* — 2681a* + 3150)ple"* — a[24(a® + 36) H* + (255a* — 3662a> + 6567) 5 JH >
+4(11a® — 120a* + 54902 — 605) 52" + H[72(3 — 5a?) H* + (—505a* + 758a* — 3525)p H 2
+4(24a° + 375a* — 98202 + 558) p2 )0 + 2ap[(116a2 — 243) H* — 2(116a* — 221a® + 558) 5 H 2
+2(89a* — 380a? +291)p%]¢’ + 22 H p[3H* + 2(68a% — 123)p H? — 2(a* — 200 + 3) 2]}, (A9)

Cig = +2{—4a(5a* — 69a® + 120)¢” — 4(17a* — 115a% + 270) H ¢® + a[8(9a* — 134a? + 156) H >
+ (14a® —207a* + 1278a% — 1755)ple"” + H[8(36a* — 194a> + 585) H 2
+ (13a® —787a* + 1889a? — 2727)ple’® + a[12(—3a* + 63a% + 56) H *
+2(—3a® +253a* — 1671a% + 2724) p H? + (60ab — 611a* + 23252 — 2394) p2] ¢’
— H[36(7Ta* — 15a% + 120) H* + (75a° — 1595a* + 1357 a* — 4365)p H > + (12a® — 11a®
+ 1451 a* — 308202 + 2538)p%]e™ — a[72(a? + 4) H O + (555a* — 293642 + 8607) p H *
+ (36a° — 1221a* + 2422a% — 3741) 5> H? + (—82a° + 709a* — 204642 + 1659)5°]¢"
—3H[24a> HO +2(19a* +217a* — 198)p H* + (61a® — 934a* + 2385a% — 192)p> H?
+ (10a® + 137a* — 404a? +297) 53 ]@"? — 3ap[(8a? — 30) H © + (132a* + 209a% — 321)p H*
+ (a® — 446a* + 9430 — 162)p> H? — 4(a® — 3)*(3a® — 5)p ¢’ + 30> H p*[(57a* — 45) H*
+ (=3la* —132a% + 171)pH?* — 4(a® — 3)*(a® + 1) p*]}. (A10)

(iii) Coefficients for 6" term:

Cro = 4a?, (A11)
Cay = {[19H? + 2(a® — 3)pla? + 2(3a® + 3 H ¢'a + (a* — 54a* + 16)¢"}, (A12)

Cyq = {(=9a* + 327a% — 292)p™ + 2a(a* — 61a® — 203) H ¢” + [(14a* — 139a? + 413) H?
— 4(20a* — 59a% + 61)ple”? + 2a H[(20a? + 99)H? + 2a* + 57a> — 85)p]¢’
+ 20 [—H* + (11a? — 9)pH? + 6(a? — 3)p2]}, (A13)

Coe = 2{(33a* — 341a” + 690)¢® + a(—15a* + 12502 — 252) H ¢” + [(—90a* + 11410
—2361)H?2 + (—7a® + 177a* — 744a® + 1182)ple™ + a H[(39a? — 81) H?
+ (—55a* + 378a% — 945)ple” + [36(3 — Sa?) H* + (—128a* + 70502 — 1245)pH?
+ (—20a® + 139a* — 40902 + 492)5%]¢”? + aH p[(220a® — 438) H >
+ (—29a* + 172a? — 303)ple’ + 3a2H?p[3(13a2 — 31)p — 28 H ?]}, (A14)
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Cyg =2{(—25a* + 3750 — 756) 9" + a(a® — 3)(8a® — 105) H ¢" + [6(23a* — 3432 + 606) FH ?
+ (3a® —230a* + 1284a% — 1890) 5]’ + a H[(—24a* + 430a® — 690) H 2
+ (6a® +49a* — 879a% + 1872)ple”® + [—3(63a* — 949a2 + 1368) H *
+3(—5a8 + 2420 — 105602 + 1236)p H 2 + (182’ — 427 a* + 146702 — 1512) p*] "™
+3aH[—(43a? +255) H* + (—99a* + 832a2 — 1337)p H? + (2a° + 57a* — 258a? + 375) p]¢"
—3[48a2 H + (58a* — 18502 + 288) s H * + 2(14a° — 161a* + 360 — 201) 52 H ?
—2(a? = 3)%(4a® —1)p*]e”? —3aH p[3(Ta? + 85) H* + (85a* — 192a2 + 219)p H ?
+4(a® = 3)(a® —2)p* e’ + 92 H 2 p[H* + (150> —49)p H > — 2(a® — 3)2p%]%

(iv) Coefficients for 6" term:

Cyy = da*(ap' +3H),
Cis = {a?H[2(Ta> + 5)p — H*] + a¢[(23a? + 144) H? + 2(a* — 23a? + 34)p]
+ (13a* — 148a? + 112) H ¢ + a(a* — 20a® + 52)¢"},
Cs6 =202 H p[2(29a> —75)p — 45 H ]+ a@”[7(5a* — 19) H? — 2(10a* — 13822 + 253)3]
+ H o"[5(69 — 35a%) H?* — 2(28a* — 80a> + 363)5] — 2a¢'[3(42 — 37a®) H?p
+2(8a* — 4302+ 69)5% + 30 H*]+ (—47a* + 511a% — 1050) H ¢"* + a(—5a* + 61a% — 122)¢"},
Cag =2{3a>H p[3(9a? —=31)H?p — 4(a® — 3)*p*> + 3H*]+ a¢”[3(2a* —49a% + 86)p
—2Ba* — 5602+ 117) H ]+ H ¢"*[(129a* — 568a2 + 1170)p — 3(21a* — 280a? + 603) H ?]
+ a@”[(351 —93a2) H* + (—78a* + 655a% — 1593) H 2 p + (14a* — 19502 + 327) 5?]
—3ape[(26a + 165)H* — 4(a® — 3)?p% + (35a* — 121a> + 156) H?p]
+ (21a* —268a% + 639) H ¢® + a(2a* — 27a? + 39)¢"" — 3H ¢?[36(a?® + 3) H*
+5@a* —43a% +36) H?p + 2a® — 76a* + 185a% — 177)p?1}.

(v) Coefficients for 8" term:

Cyn = 4a?,
Cys = H6(a® + 6)aFH o' + &?[2(a? = 3)p — FH2] + (a* — 260> + 16)¢"},

Che = +{2aH ¢'[2(14a% — 15)p — 15H ] + 2a(4a® — TV H " + 6a?p[2(a® — 3)p — 5FH?]
+ ©[(69 — 29a?) H? — 2(5a* — 2002 + 54)5] + (—5a* + 53a® — 108)¢™},

Chs = +2{3a(a® = 8) H ¢ + 9> H*p[(3a? — 5)p — H?2] + ¢"*[(—6a* + 103a? — 153)H?
+ (1la* — 72a% + 126)p] — 3aH ¢*[(Ba® — 23) H? + 2(a* — 5a* + 16)p]
—3¢?[(13a? + 36) H* + (a* = 35a% + 6) H?p + (—4a* + 15a% — 21)p?]

—3aH ¢'[2Q2a* — 3a? +3)p% + 36 H2p — 3H*] + 2a* — 30a? + 63)¢'}.
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