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We show that the Stephenson-Kilmister-Yang (SKY) equation combined with Camenzind’s matter

current term naturally provides the cosmological constant and dark radiation as integration constants of

the Stephenson-Kilmister-Yang-Camenzind (SKYC) field equation. To characterize the property of the

dark radiation, we develop a method to separate it from the ordinary radiation. We find a special property

of Camenzind’s matter current, namely that the solution space for radiation in fact belongs to that of the

vacuum solution of the SKYequation. We also find that this matter current does not obey the conservation

condition suggested by Kilmister. Finally, we discuss the possible role of dark radiation emergent

from the SKYC theory in recent cosmic microwave background observations and its implications to the

inflation scenario.
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I. INTRODUCTION

Various attempts have been made throughout the last
century to unify all fundamental interactions. One pioneer-
ing effort was made by Weyl in 1918 [1,2], where he
assumed that all physical laws should be invariant under
conformal transformation. This seminal viewpoint intro-
duced by Weyl is now known as the gauge invariance.
Based on the principle of gauge invariance, Weyl reformu-
lated the connection in Riemannian geometry to unify
gravity and electromagnetism. However, this theory is
problematic because of the path-dependent nature of the
observer’s clock, as pointed out by Einstein [3].

The gauge theory of Yang and Mills has inspired a new
type of relationship between geometry and physics [4].
Such a theory can be considered as a vector bundle on a
Riemannian manifold [5–7], where a section of a vector
bundle corresponds to a matter field and a connection on
the Riemannian manifold corresponds to a gauge field. A
gauge theory can therefore be recognized as a functional
(called the Yang-Mills functional) that acts on a metric
connection on a vector bundle. The Yang-Mills functional
is also invariant under a gauge transformation. Thus, Yang-
Mills theory exhibits a close correspondence with the
vector bundle theory in differential geometry.

We now know that all fundamental interactions except
general relativity (GR)— that is, the electromagnetic,
weak, and strong interactions—can be described in the
language of gauge theory. The pioneering works that

formulated Einstein’s GR into a gauge theoretical frame-
work started with Utiyama, who suggested that GR can be
written in the language of gauge theory if the symmetry
group is chosen either as the Poincaré group or the trans-
lational gauge group [8–11].
Stephenson, Kilmister, and Newman proposed a gravity

theory analogous to the gauge theory [12,13], where the
action is composed of quadratic curvature tensor terms
without a linear one. The action gives rise to not only a
higher-derivative equation that is consistent with Einstein’s
GR, but additional constraint equations as well. Later,
Yang put forward another gauge theory of gravity that
satisfies the GLðnÞ symmetry group [14], and succeeded
in deriving the same higher-derivative equation without the
additional constraint equations. Following this convention,
we shall refer to the higher-derivative field equation of
gravity as the Stephenson-Kilmister-Yang (SKY) equation.
The SKY equation reproduces all solutions of the vacuum
Einstein equation [12–18]. Later, Camenzind proposed a
matter current term for the SKY field equation [19],
although it was not deduced from an action. This task
was fulfilled by Cook in 2009 [20]. We shall call the
complete theory that includes both pure space and matter
contributions the Stephenson-Kilmister-Yang-Camenzind
(SKYC) gravity.
A renormalizable quantum theory of gravity based on

the Einstein-Hilbert action is known to be difficult to attain
[21–23]. The extension of GR that includes quadratic
curvature tensor terms, i.e., the so-called higher-derivative
gravity theory, on the contrary, has been shown to be
renormalizable [24–26] and asymptotically free [27,28].
This is mainly because issues such as renormalization are
determined by the high-energy or ultraviolet behavior of
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the theory where the higher-derivative terms dominate,
which converge faster than the linear Einstein-Hilbert
term does. These investigations into the renormalization
of higher-derivative gravity theories should be applicable
to SKYC gravity, which is quadratic in curvature tensors.

While a higher-derivative theory of quantum gravity is
better behaved in the ultraviolet limit and is renormaliz-
able, it generally induces ghost excitations, which would
render the theory pathological. Salam and Strathdee ar-
gued, based on the consideration of quantum running
effects, that if the cutoff scale of the theory is smaller
than the mass scale of the ghost mode, then the latter
would be innocuous in such higher-derivative gravity
theories [29]. Setting the cutoff at the Planck scale, a
higher-derivative gravity theory may on the other hand
be regarded as a provisional effective theory [30,31].
Antoniadis and Tomboulis showed, in addition, that the
presence of such a massive spin-2 ghost in the bare propa-
gator is inconclusive, since the excitation is unstable [32].
They further showed that such a ghost is gauge dependent,
while the S-matrix of such a theory is unitary and gauge
invariant. Therefore the ghost cannot contribute to the
gauge-invariant absorptive part of the theory. We expect
that, with similar considerations, the tensor ghost stem-
ming from higher-order derivatives of the theory can be
rendered harmless. These issues, however, are not the focus
of this paper. We will be mainly concerned with the clas-
sical aspects of the higher-derivative, or higher-order,
SKYC gravity theory.

The cosmological constant has been a long-standing
problem [33]. The nature of the cosmological constant
(CC) term introduced by Einstein to his field equation is
a priori undefined. On the other hand, the quantum vacuum
energy satisfies the properties of the CC, yet its value is
about 124 orders of magnitude larger than the critical
density of the Universe, which is comparable to what is
required for the CC to explain the observed accelerating
expansion of the Universe [34,35]. Because of mathemati-
cal considerations, the CC term cannot be removed from
the Einstein-Hilbert action. The SKYC equation is second
order in terms of the affine connection. While the metric is
a priori not a dynamical variable, in order to reduce the
SKYC equation to the Einstein equation one must define
the relation between the connection and the metric in the
usual way. As a result the SKYC equation can be redressed
as a third-order differential equation of the metric where
the CC term is necessarily absent. The CC term, however,
is recovered as an integration constant in reducing the
SKYC equation to the Einstein equation. In this approach
the CC is no longer arbitrary, but rather is determined by
the boundary condition of the Universe, which is geomet-
rical in nature and has nothing to do with the quantum
vacuum energy. For example, it has been proposed that
the underlying geometry of the Universe is de Sitter and
this integration constant is associated with its radius of

curvature [20,31,36]. The SKYC formulation of gravity
may therefore provide a solution to the CC problem.
Aside from the CC problem, recent observational data

suggests the possible existence of ‘‘dark radiation’’ (DR),
which is conventionally parametrized by Neff [37–41]. The
standard model predictsNeff ¼ 3:04 at the epoch where the
Universe was dominated by photons and neutrinos after
the electron-positron annihilation. However, recent experi-
mental data suggests a larger Neff [37–41]. It has been
suggested that the difference, �Neff � Neff � 3 ’ 1 at
nearly the 2� level, may indicate the existence of an
additional, heretofore unobserved DR density. On the theo-
retical side, this additional radiation was also called upon
by the braneworld-inspired and other cosmological models
[42–48]. It happens that another integration constant in the
SKYC theory has exactly the required character of dark
radiation. We note however—as has been pointed out
recently by Birrell et al. [49]—that the fact that neutrinos
have rest mass and that their distributions are nonthermal
under free-steaming can well explain such an increase of
Neff without the need to invoke dark radiation. With this in
mind, the dark radiation arising from SKYC gravity is
nonetheless a free bonus at our disposal subject to obser-
vational constraints.
The purpose of this paper is to examine explicitly the

salient features—in particular the CC and dark radiation—
of the SKYC gravity mentioned above. To do so, we derive
the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) equa-
tion associated with the SKYC gravity with integration
constants. We identify one integration constant as the CC
and the other as dark radiation. Subsequently, we develop a
method to investigate the property of dark radiation and
demonstrate that the density of dark radiation is a constant
on the constant-time hypersurface in every metric.
This paper is arranged as follows. In Sec. II, we review

the SKYC gravity. In the next section, the SKYC field
equation on the FLRW metric is derived and investigated.
We discuss the property of nullity in Camenzind’s matter
field in the perfect fluid model. In Sec. IV, we characterize
the properties of the dark radiation. In Sec. V, we summa-
rize and discuss our findings. In the appendices, we discuss
the problem with Cook’s theory, which intends to give rise
to the SKYC equation from the action level.

II. SKYC EQUATION

In a non-Abelian gauge theory, the field strength is
defined as

F�� ¼ i

g
½D�;D��; (1)

where D� ¼ @� � igA� and A� is the gauge potential.

The field strength F�� can therefore be expressed in terms

of the gauge potential A� as

F�� ¼ @�A� � @�A� � ig½A�; A��: (2)
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When connecting Riemmanian geometry with the non-
Abelian gauge theory, the Christoffel symbol, ��

��, and the

Riemann tensor, R����, play the role of the gauge potential

A� and the field strengthF��, respectively.Motivated by this

gauge connection, Stephenson, Kilmister, and Newman in-
vestigated an alternative theory of gravity and obtained the
following equation of motion (EOM):

r�R
�
��� ¼ 0; (3)

which is a higher-order derivative with respect to the metric
[12,13]. Invoking the second Bianchi identity, it can be read-
ily verified that Eq. (3) is equivalent to

r�R�� �r�R�� ¼ 0: (4)

In fact, Eq. (3) is exactly Yang’s gravitational field equation
for pure space under the GLðnÞ gauge symmetry [4].

To complete the gravitational field equation, Kilmister
introduced the matter current I such that [13]

r�R�� �r�R�� ¼ I���: (5)

He found that I has 20 independent components under the
constraint of the conservation law,

r�I
��� ¼ 0: (6)

However, he did not provide the explicit form for the
current density I.

Later, Camenzind wrote down a Yang-Mills field equa-
tion for SO(3,1) with a current J that was different from
Kilmister’s I,

r�R
�
��� ¼ 8�GJ���; (7)

where the current density J��� has the form

J��� ¼ r�ðT�� � 1=2g��T�
�Þ

� r�ðT�� � 1=2g��T�
�Þ: (8)

Here T�� is the energy-momentum tensor [19].
Nevertheless, an action associated with this matter current
remained lacking. Inspired by the analogy with Maxwell’s
theory, Cook later proposed an action term for the matter

current, ��
��J

��
� , from which the SKYC field equation can

be derived [20]. It can be verified that solutions of Eq. (7)
cover the entire solution space of the Einstein equation
with source [50].

III. THE SKYC EQUATION IN THE
FLRW METRIC

In this section we will use the FLRW metric to derive a
modified Friedmann equation from the SKYC field equa-
tion (7), and discuss the nullity of Camezind’s current
density in the radiation-dominated case.

A. EOM in a homogeneous universe

We consider a homogeneous and isotropic universe and
use the FLRW metric to study Eq. (7). The metric is

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2d�2

�
; (9)

where aðtÞ is the scale factor. From the symmetry property
of the FLRWmetric, the energy-momentum tensor T�� can

be written as

T�� ¼ ð�þ pÞu�u� þ pg��; (10)

where u� ¼ ð1; 0; 0; 0Þ. In Eq. (7), we assume that T��

satisfies the conservation law,

r�T
�� ¼ 0; (11)

which in turn leads to the usual equation

_� ¼ �3Hð�þ pÞ; (12)

where H � _a=a.
The only nontrivial components of Eq. (7) are

r�R
�
i0i ¼ 8�J0ii; (13)

where no summation over the repeated index ‘‘i’’ occurs.
Other components vanish due to the symmetry of the
metric. The expression for T��, Eq. (10), leads to

a2a
:::þa _a €a�2 _a3� 2k _a¼ 8�G

�
1

2
að _�� _pÞþ _að�þpÞ

�
;

(14)

which can also be expressed as

€Hþ4H _H�2k
_a

a3
¼8�G

�
1

2
ð _�� _pÞþHð�þpÞ

�
: (15)

Equation (15) is the modified Friedmann equation in
SKYC theory. By integrating Eq. (15) with Eq. (12), we
can arrive at

_H þ 2H2 þ k

a2
¼ 8�G

2

�
1

3
�� p

�
þ 2C1; (16)

where C1 is an integration constant. By performing another
integration on Eq. (16), one obtains

H2 ¼ 8�G

3
�� k

a2
þ C1 þ C2

a4
: (17)

This is the Friedmann equation for the SKYC theory.
Equation (17) can be interpreted as follows. In the

FLRW universe, C1 plays the role of the CC term. As
will be shown in the following section, the constant C1

plays the same role as the CC even in an inhomogeneous
universe; this fact has been shown by Cook [20]. (Our C1 is
identical to the trace part of X�� in his article.) The term

involving C2, on the other hand, scales the same as radia-
tion. Since it does not couple with any matter except
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gravity, it can be identified as the dark radiation. We
emphasize that the constant of integration C2 originates
from the lhs of Eq. (7), not Camenzind’s current density.
Specifically, the C2 term is a vacuum solution in the SKYC
theory. We note that although the C2 term is not induced by
the matter current, it does affect the evolution of the
universe.

B. Nullity in the current density tensor

In this subsection we show that Camenzind’s current
density associated with homogeneous radiational fields
must be null in the FLRW universe. This, however, is
not inconsistent with the basic notions of the radiation-
dominant Universe. Actually, the integration constant C2

can play the role of the sum of the ordinary radiation in
standard cosmology and the dark radiation.

For our purpose, we decompose the energy-momentum
tensor T�� as

T�� ¼ TðRÞ
�� þ TðCCÞ

�� þ TðotherÞ
�� ; (18)

where TðRÞ
�� , T

ðCCÞ
�� and TðotherÞ

�� are the energy-momentum
tensors for radiation, the cosmological constant, and the
sum of all other contributions, respectively. Each energy-
momentum tensor can be written in the same form as in
Eq. (10) with p ¼ w�, where w equals 1=3 for radiation,
0 for the cosmological constant, and any value for the
sum of the other contributions, respectively. Since
Camenzind’s current density J��	 comprises T��, it can

be decomposed into

J��	 ¼ JðRÞ��	 þ JðCCÞ��	 þ JðotherÞ��	 : (19)

Substituting T�� into Eq. (8), one can easily verify that

TðRÞ
�� and TðCCÞ

�� do not affect J��	. That is, JðRÞ��	 and JðCCÞ��	

are null. This means that radiation and the cosmological
constant do not couple with gravity in the FLRW
background.

The nullity is apparently inconsistent with Eq. (17)
because � in Eq. (17) represents the sum of all energy
densities, including radiation and the cosmological con-
stant. A possible resolution to this inconsistency would be
to re-express Eq. (17) as

H2 ¼ 8�G

3
�ðotherÞ � k

a2
þ ~C1 þ

~C2

a4
; (20)

where �ðotherÞ is the energy density derived from TðotherÞ
�� ,

while there are no contributions by TðRÞ
�� and TðCCÞ

�� because

of the nullity. While the new constants of integration, ~C1

and ~C2, follow the same a dependences as those of �ðCCÞ

and �ðRÞ in GR, respectively, their values need not be the
same as C1 and C2. Therefore, extracting the a dependence

of �ðRÞ as �ðRÞ ¼ E=a4, we can decompose ~C1 and ~C2 as
~C1 ¼ C1 þ� and ~C2 ¼ C2 þ E. As a result of the decom-
position, Eq. (20) can be transformed back to

H2 ¼ 8�G

3
�ðotherÞ � k

a2
þ C1 þ�þ C2 þ E

a4

¼ 8�G

3
�� k

a2
þ C1 þ C2

a4
; (21)

i.e., the same form as that in the original Eq. (17). We
therefore conclude that Eq. (17) is exact even though the
original equation (7) is null for radiation and the cosmo-
logical constant.
We see that in spite of the nullity of radiation and the

cosmological constant, the SKYC theory can still provide a
consistent FLRW equation. Even so, the fine-tuning prob-
lem remains. From observations, we know that the inte-
gration constants C1 and C2 must be tiny and therefore
their values need to be fine-tuned. Nevertheless, this fine-
tuning problem of the cosmological constant is milder than
that in the usual GR. In GR the cosmological constant is
a priori arbitrary and is generally identified with quantum
vacuum energy, which is inevitably much larger than the
critical energy density of the Universe, resulting in the
infamous 124 orders of magnitude discrepancy between
the two. On the other hand, in the SKY approach C1 is an
integration constant subjected to the boundary condition of
the Universe, which is apparently unrelated to the quantum
vacuum energy. Thus the new fine-tuning problem may not
be as stringent as that in GR. In addition to the fine-tuning

of C1, it is also necessary to fine-tune ~C2, which may be
even more unnatural than that of C1. Observations show

that the value of ~C2 should be comparable to that of E. This
seems to imply that the two are actually related.

IV. CHARACTERISTICS OF DARK RADIATION

In the previous section, we have seen the fact that one
cannot separate the effect of the dark radiation from that
of the ordinary radiation in the homogeneous universe. In
order to distinguish them, we consider the case of an
inhomogeneous universe.
First, we solve Eq. (7) in the inhomogeneous universe.

We define the effective energy-momentum tensor as

T̂�� � 1

8�G
G�� � T��: (22)

Because of Eq. (11), the divergence of this gives

r�T̂�� ¼ 0: (23)

Substituting Eq. (23) into Eq. (7), we have

r�T̂�	 �r�T̂�	 � 1

2
ðg�	r�T̂ � g�	r�T̂Þ ¼ 0; (24)

where T̂ is the trace of T̂��. Multiplying g�	 by Eq. (24),

we can obtain

r�T̂ ¼ 0; (25)

where we use Eq. (23). Integrating this, we have
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T̂ ¼ 4�eff ; (26)

where�eff is a constant. As we have commented at the end
of Sec. III A, it plays exactly the role of the CC.

We now separate the contributions other than the effec-

tive CC from T̂��,

S�� � T̂�� ��effg��: (27)

We know from Eqs. (23) and (24) that the following
equations must be satisfied:

S ¼ 0; (28)

r�S�� ¼ 0; (29)

r�S�	 �r�S�	 ¼ 0: (30)

If the form of S�� is the same as that of the radiation fluid on

the FLRWmetric, then it can be shown that these equations
are satisfied. Therefore, S�� is related to the C2 term.

In order to see the difference of the effective energy-
momentum tensor S�� from a real radiation fluid, we

analyze its property on a general metric in the form of a
fluid,

S�� ¼ ð�þ pÞu�u� þ pg��; (31)

with

u�u
� ¼ �1: (32)

The traceless condition (28) fixes the relation between �
and p as

� ¼ 1

3
p: (33)

Then S�� becomes

S�� ¼ 4

3
�u�u� þ 1

3
�g�� (34)

¼ �u�u� þ 1

3
�h��; (35)

where

h�� ¼ g�� þ u�u� (36)

is the induced metric on the hypersurface which is orthogo-
nal to u�.

Equation (29) can be written as

4

3
u�u

�@��þ 1

3
@��þ 4

3
�ðu�r�u� þ u�r�u�Þ ¼ 0:

(37)

Multiplying u� and h�
� by the above expression, respec-

tively, we can obtain

u�@�� ¼ � 4

3
�r�u�; (38)

h�
�@�� ¼ �4�u�r�u�; (39)

where we use

u�r�u� ¼ 1

2
r�ðu�u�Þ ¼ 0; (40)

h�
�r�u� ¼ ð
�

� þ u�u
�Þr�u� ¼ r�u�: (41)

Multiplying u� by Eq. (38) and subtracting it from Eq. (39),
we have

@�� ¼ 4

3
�u�r�u� � 4�u�r�u�: (42)

On the other hand, Eq. (30) can be written as

u�u	@���u�u	@��þ 1

3
h�	@��� 1

3
h�	@��

þ 4

3
�ðu�r�u	�u�r�u	�u	r�u�þu	r�u�Þ ¼ 0:

(43)

Multiplying u	u� by Eq. (43), we have

h�
�@��� 4

3
�u�r�u� ¼ 0: (44)

Combining it with Eq. (39), we have

u�r�u� ¼ 0; (45)

h�
�@�� ¼ 0: (46)

Multiplying h�
	u� by Eq. (43), we have

� 1

3
h��u

�@��� 4

3
�r�u� ¼ 0; (47)

where we have used Eq. (45). Combining it with Eq. (38),
we find

r�u� ¼ 1

3
h��r�u�: (48)

Multiplying u	h�
� and h�

	h�
� by Eq. (43), respectively,

gives

u�h�
�@��þ 4

3
�r�u� � 4

3
�r�u� � 4

3
u�u

�r�u� ¼ 0;

(49)

1

3
h��@��� 1

3
h��h�

�@��� 4

3
�u�r�u� ¼ 0: (50)

Substituing Eqs. (42), (45), (46), and (48) into Eqs. (49) and
(50), we see that they are automatically satisfied and no
additional condition is obtained.
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In summary, we have transcribed the original equations
for S�� into Eqs. (38), (45), (46), and (48), and

@�� ¼ 4

3
�u�r�u�; (51)

which govern the characteristics of � and u�. In turn, these

conditions constrain the form of the effective energy-
momentum tensor. Equation (39) means that the energy
density must be constant on the hypersurface that is or-
thogonal to u�. Therefore, the dark radiation from the
effective energy-momentum tensor can affect only the
background dynamics and we confirm the existence of
the real radiation fluid from its perturbation.

V. CONCLUSION

We investigated the SKYC theory of gravity by way of
solving its field equation, Eq. (7), in an FLRWuniverse and
arrived at a modified SKYC Friedmann equation, Eq. (15).
Being a higher-order derivative equation than that for GR,
the SKYC Firedmann equation gives rise to two integration
constants when it is reduced to a lower order. One of the
two is clearly related to the cosmological constant, while
the other is related to the dark radiation. We have also
demonstrated, in a homogeneous universe, that this dark
radiation is indistinguishable from the ordinary radiation.
In addition, we pointed out the nullity of the current density
J in the radiation case under the FLRW metric.

In order to further pin down the nature of our dark
radiation, we turned to a general, inhomogeneous universe
and introduced a methodology to look for its possible
differences from ordinary radiation. We solved Eq. (7) in
the inhomogeneous universe and constrained the form of
the tensor S�� in Sec. IV. We found that if � is fixed at one

point, then it will be a constant on the hypersurface or-
thogonal to u�. This means that there does not exist any
degree of freedom for the perturbed dark radiation. That is,
this SKYC dark radiation only has the zero-mode term and
no perturbed term. In contrast, the ordinary radiation can
be perturbed and can therefore propagate in all of space-
time. We conclude that the SKYC dark radiation is indeed
different from the ordinary one. We would like to com-
ment, however, that in our derivation in Sec. IV, the ex-
pression S�� ¼ ð�þ pÞu�u� þ pg�� is not the most

general form. We will pursue a more general expression
for it in our future work.

Some comments are in order with regard to the relation-
ship between the SKYC dark radiation and the inflation.
The dark radiation C2 term is an integration constant in this
theory. That is, it is determined by the initial or boundary
conditions of the Universe. If the SKYC theory is incorpo-
rated with inflation, then the density of the dark radiation
�DR must start from a tiny value. Otherwise the inflation
can not be trigged because �DR scales as a�4 and domi-
nates at early times. At the end of inflation and after �60
e-foldings, the scale factor has grown by�1020 times. This

means that �DR must be smaller by 80 orders of magnitude
than �DR at late times. Being so tiny, we may as well set C2

to zero. On the other hand, if SKYC theory does not
include the inflation scenario, then the C2 term can in
principle be identified with the dark radiation and be fixed
by the observational data. The recent Planck data gives
Neff ¼ 3:36þ0:68

�0:64ð95%Þ based on the combination of

WMAPþ highL data [41]. However, this fit produces a
2.5 s.d. tension with direct astrophysical measurements
of the Hubble constant. Including priors from supernova
surveys removes this tension and results in Neff ¼
3:62þ0:50

�0:48ð95%Þ. The larger Neff suggests a need for the

dark radiation. Without combining SKYC gravity with
inflation, we fix C2 with the Planck data and find C2 �
5:59� 10�32 kg=m3, while when including supernova pri-
ors the Planck data gives C2 � 1:02� 10�31 kg=m3.
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APPENDIX A: DIFFERENCE BETWEEN
STEPHENSON’S AND YANG’S APPROACHES

Stephenson’s gravitational equation is similar to Yang’s,
but there are some important differences between the two
theories. In brief, Stephenson’s theory covers less solutions
than Yang’s even if the connection in Stephenson’s theory
is identified as the Christoffel symbol. We will discuss this
point in more detail in this appendix.
In the Palatini formalism, the affine connection and

the metric are treated as independent variables and the
derived EOMs can determine the relation between the
two. For example, the relation between the connection
and the metric can be identified as the condition for
the metric compatibility when applying the Palatini for-
malism to derive EOMs from the Einstein-Hilbert action.
Stephenson and Cook obtained EOMs by applying the
Palatini formalism to the quadratic curvature Lagrange
density for pure gravity without matter. Regarding the
matter field in the SKYC theory, Cook introduced his
current density tensor at the action level. However, there
are problems with his approach, which we will comment
on in Appendix B.
In Yang’s theory, the gravitational force is described by

theGLð4Þ gauge field ba�. Here the latin letters stand for the
indices of the GLð4Þ gauge group. The action is

Sb ¼
Z

dx4
ffiffiffiffiffiffiffi�g

p ðg��g��Cd
acC

c
bdf

a
��f

b
��Þ; (A1)
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where fa�� is the field strength,

fa�� ¼ ba�;� � ba�;� � Ca
bcb

b
�b

c
�; (A2)

and Ca
bc is the structure constant.

In order to connect his gauge field ba� to the metric, Yang

introduced a higher-order curvature term in the action. The
final form of his gravitational action is

Sgðba�; g��Þ
¼

Z
d4x

ffiffiffiffiffiffiffi�g
p ðg��g��Cd

acC
c
bdf

a
��f

b
�� � R��	
R��	
Þ:

(A3)

Performing variations of the action with respect to the
gauge field ba� and the metric, one arrives at two types of

equations of motion. The index a in ba� has 4� 4 values

and it can be redefined as a � fklg, where k and l run from
0 to 3. Yang used an ansatz bfklg� 
k�
l� ¼ f���g that satisfies
the equation derived from the variation of the action with
respect to the metric. It gives the relation

fð��Þ�� ¼ �R�
���; (A4)

and the other equations become

r�R�� ¼ r�R��: (A5)

This is Yang’s gravitational equation based on the gauge
theory and it covers the solutions of Einstein’s equation for
pure space, that is, without matter [14].

In Stephenson’s theory, there are two EOMs which stem
from the variations of the action with respect to the metric
and the connection, respectively [12],

� R���	R���	 þ R���	R���	 þ 2R���	R���	

� 1

2
g�� R��	
R��	
 ¼ 0; (A6)

r�ðR���
�

ffiffiffiffiffiffiffi�g
p Þ ¼ 0: (A7)

The relation between the metric and the connection, how-
ever, is different from that in GR. In particular, the affine
connection in his theory can in principle be different from
the Levi-Civita connection. If one identifies the affine

connection as the Levi-Civita connection in Stephenson’s
theory, the resulting EOMs are not equivalent to Yang’s.
Then, Stephenson’s equations become

R���	R���	 � 1

4
g�� R��	
R��	
 ¼ 0; (A8)

r�R
���
� ¼ 0: (A9)

These equations can be recognized as Yang’s gravitational
equation [Eq. (A8)] under the additional constraint of
Eq. (A9). In this sense, the solution space of the resultant
Stephenson’s equations must be a subset of Yang’s gravi-
tational equation. Without specifying the connection as the
Levi-Civita connection, Stephenson’s equations should in
principle have different solutions than Yang’s.

APPENDIX B: PROBLEMS WITH
COOK’S THEORY

Cook introduced the matter action to Stephenson’s
theory. His recipe, however, not only retains the original
problem of Stephenson’s theory but also introduces an-
other one. The action he proposed is

SG ¼ �1

16�

Z
�
ðR����R���� þ 16�J�

����
��Þ

ffiffiffiffiffiffiffi�g
p

d4x;

(B1)

where the tensor J�
�� is Cook’s current density, which has

the same form as Camenzind’s. This matter action term,
however, is not general covariant because the connection is
not a covariant tensor [51].
The lack of general covariance must be closely related to

the nonconservation of the current density J. According to
Noether’s theorem, a symmetry property of the action
always goes hand-in-hand with the conservation of the
current. Therefore, it seems impossible to construct a
general-covariant action based on Camenzind’s current
density. This suggests that one should search for a different
form of the current density other than that of Camenzind’s,
under the constraint that GR must be recovered. We will
investigate this further.
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