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We revise the conditions for the physical viability of a cosmological model in which dark matter has

bulk viscosity and also interacts with dark energy. We have also included radiation and baryonic matter

components; all matter components are represented by perfect fluids, except for the dark matter one that is

modeled as an imperfect fluid. We impose upon the model the condition of a complete cosmological

dynamics that results in an either null or negative bulk viscosity, but the latter also disagrees with the local

second law of thermodynamics (LSLT). The model is also compared with cosmological observations at

different redshifts: type Ia supernova, the acoustic peak of baryon acoustic oscillation, the Hubble

parameter HðzÞ, and the angular scale of the cosmic microwave background encoded in the first peak.

Taken together, observations consistently point to a negative value of the bulk viscous coefficient, that is in

disagreement with the LSLT. From the different cases that we study, the best model that we find

corresponds to the case of a dark matter with a null viscosity, interacting with a phantom dark energy.

Also, overall the fitting procedure shows no preference for the model over the standard �CDM model.
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I. INTRODUCTION

Cosmological models with interacting dark components
have gained interest because there is the possibility that the
most abundant components in the present Universe, dark
energy (DE) and dark matter (DM), interact one with each
other, and some authors claim that some of these interac-
tion terms are promising mechanisms to solve the problems
of the standard cosmological model, the so-called �CDM
model (see for instance [1–3] and references therein).

On the other hand, it has been known since before the
discovery of the present accelerated expansion of the
Universe that a bulk viscous fluidmay induce an accelerating
cosmology [4]. Hence, it has been proposed that the bulk
viscous pressure can be one of the possible mechanisms to
accelerate the Universe today (see for instance [5–8]).
However, this idea still needs some physically motivated
model to explain the origin of the bulk viscosity. In this
sense some proposals have been already put forward in [9].

In the presentwork, we have the interest to explore and test
an interacting dark sector model which also takes into ac-
count a bulk viscosity in the DM component. Similar combi-
nations of two interacting relativistic fluids with bulk
viscosity have been also proposed in studies for the origin
of the large-scale temperature fluctuations of the cosmic
microwave background [10]. Our purpose is twofold: first,
we explore the general conditions for the model to have a
complete cosmological dynamics, and second, we use cos-
mological observations tofit the free parameters of themodel.

The full dynamics of the model is found through a
dynamical system analysis, a common tool in the analysis
of cosmological models [11,12], and then the DM-DE in-
teraction term is chosen such as to allow the writing
of the equations of motion as an autonomous set of differ-
ential equations. We are then able to write general condi-
tions for the existence of radiation and matter eras at early
times that are useful for a wide variety of interacting models.
The bulk viscous coefficient in our model is directly

proportional to the Hubble parameter, and we impose upon
it a constraint that comes from the local second law of
thermodynamics (LSLT). In general, as it also happens for
our model, this latter condition selects only positive defi-
nite values of the bulk viscous coefficient [13,14].
The model is also compared with different cosmological

observations: type Ia supernovae, the acoustic peak of
baryon acoustic oscillation (BAO), the Hubble parameter
HðzÞ, and the location of the first peak l1 of the CMB, in
order to constrain its free parameters. As we shall show, the
fitted values acquire different values depending on whether
we use low-redshift or intermediate-redshift observations.
In a similar way as in the condition for a complete cosmo-
logical dynamics, wrong conclusions may be obtained if
the analysis is only made with observations in the lowest
range of redshifts (late times).
One major difference with respect to other previous

studies is that we have included as a requirement a so-
called complete cosmological dynamics, which means that
all physically viable models must allow the existence of
radiation and matter domination eras at early enough
times, so that the known processes of the early Universe
are not significantly changed with respect to those of the
standard big bang model. This seems to be an usually
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overlooked condition in most studies of alternative
cosmological models, for which the primary concern is
the present accelerated expansion of the Universe, and then
it is commonly thought that a low-redshift analysis is quite
enough for the task.

The paper is organized as follows. In Sec. II we present
the full characteristics of the model, the main equations of
motion, and the dynamical system analysis. The bulk
viscosity of the model is represented by a single free
parameter, whereas the DM-DE interaction term is consid-
ered a free function of the DM and DE density parameters,
as long as the dynamical system of equations remains
autonomous. The cosmological eras of the model are given
in terms of the critical points of the dynamical system,
whose existence conditions depend upon the values of the
free parameters of the model. A detailed discussion about
the existence or not of appropriate cosmological eras is
provided in terms of the aforementioned constraint of a
complete cosmological dynamics.

In Sec. III, we focus our attention in a particular form for
the DM-DE interacting term that is directly proportional to
the DE energy density. Full details are given about the
existence and stability of the critical points, which are in
turn transformed into conditions upon the free parameters
of the model. Also, we show some particular examples of
the dynamics of the model for selected values of the free
parameters.

We explain in Sec. IV the cosmological probes that are
used to constrain the model, and give separate examples of
the fitting procedure for different subcases of the model.
For completeness, we include here low- and intermediate-
redshift constraints, so that we can track the changes in the
values of the parameters for those cases. Finally, the main
results are summarized and discussed in Sec. V.

II. INTERACTING BULK VISCOUS DARK FLUIDS

We study a cosmological model in a spatially flat
Friedmann-Robertson-Walker (FRW) metric, in which
the matter components are radiation, baryons, DM, and
DE. Radiation and baryons are assumed to have the usual
properties of perfect fluids, whereas DM is treated as an
imperfect fluid having bulk viscosity, with a null hydro-
dynamical pressure, and in interaction with DE. This phe-
nomenological model is a natural extension of that
proposed by Kremer and Sobreiro [2].

The Friedmann constraint and the conservation equa-
tions for the matter fluids can be written as

H2 ¼ 8�G

3
ð�r þ �b þ �dm þ �deÞ; (1a)

_�r ¼ �4H�r; (1b)

_�b ¼ �3H�b; (1c)

_�dm ¼ �3H�dm þQþ 9H2H�; (1d)

_�de ¼ �3H�de�de �Q; (1e)

where G is the Newton gravitational constant, H the
Hubble parameter, ð�r; �b; �dm; �deÞ are the energy
densities of the radiation, baryon, DM, and DE fluid
components, respectively, and �de is the barotropic index
of the equation of state (EOS) of DE, which is defined
from the relationship pde ¼ ð�de � 1Þ�de, where pde is the
pressure of DE. The term 9H2� in Eq. (1d) corresponds to
the bulk viscous pressure of the dark matter fluid, with �
the bulk viscous coefficient, whereas Q is the DM-DE
interaction term.
Bulk viscosity arises typically in fluids that are com-

posed of several types of particles [15–18], and is intrinsi-
cally related or produced by the interaction of expanding
mixed fluids that are slightly out of local thermodynamic
equilibrium during short periods of time. It is then consid-
ered that the bulk viscosity cannot depend on just one
component (perhaps the bulk viscous component), but it
has to depend on other cosmological components too,
given that it typically arises in the interaction (or decay)
between two or more different fluids that compose the total
cosmological fluid.
Typical examples of this bulk viscous dissipative mecha-

nism are found in a fluid built up of radiation and matter
components [17] (actually many dissipative processes are
well described by this mixture [15]), in a Boltzmann gas
composed of low and high energy particles, and in mix-
tures of massive gauge bosons and ultrarelativistic particles
[18]. Also, the decay of particles is another mechanism to
produce bulk viscous dissipation. The nonconservation of
the particle number increases the entropy, which then gives
rise to a bulk viscosity.
Following the discussion above, we take the bulk

viscous coefficient � to be proportional to the square root
of the total matter density, �t¼�rþ�bþ�dmþ�de, in
the form

� ¼ �0ffiffiffiffiffiffiffiffiffiffiffiffiffi
24�G
p �1=2

t ¼
�

1

8�G

�
H�0; (2)

where �0 is a dimensionless constant to be estimated from
the comparison with cosmological observations. From
Eq. (1a), we can see that this parametrization also corre-
sponds to a bulk viscosity proportional to the expansion
rate of the Universe, i.e., to the Hubble parameter. As
explained before, a bulk viscosity proportional to the
square root of the total energy density allows us precisely
to consider the dependence with respect to all the other
cosmological fluids. Finally, the Raychadury equation of
the model is

_H ¼ �4�G
�
4

3
�r þ �b þ �dm þ �de�de � 3H�

�
: (3)

In our analysis, we will take into account an important
restriction over the bulk viscous coefficient that comes
from the local second law of thermodynamics (LSLT).
The local entropy production for a fluid on a FRW
space-time is expressed as [14]
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Tr�s
� ¼ �ðr�u

�Þ2 ¼ 9H2�; (4)

where T is the temperature of the fluid, andr�s
� is the rate

of entropy production in a unit volume. Then, the second
law of the thermodynamics can be stated as Tr�s

� � 0;
since the Hubble parameter H is positive for an expanding
universe, Eq. (4) implies that � � 0. For the present model,
this inequality in turn becomes [see Eq. (2)]

�0 � 0: (5)

A. The dynamical system perspective

In order to study all possible cosmological scenarios of
the model, we proceed to a dynamical system analysis of
Eqs. (1) and (3). Let us first define the set of dimensionless
variables:

x ¼ 8�G

3H2
�de; y ¼ 8�G

3H2
�dm; (6a)

u ¼ 8�G

3H2
�b; z ¼ 8�G

3H3
Q: (6b)

Then, the equations of motion can be written in the
following, equivalent, form:

dx

dN
¼ �zþ xð4� u� y� 3�de � 3�0Þ � x2ð4� 3�deÞ;

(7a)

dy

dN
¼ yð1� u� y� xð4� 3�deÞ � 3�0Þ þ zþ 3�0;

(7b)

du

dN
¼ uð1� u� y� xð4� 3�deÞ � 3�0Þ; (7c)

where the derivatives are with respect to the e-folding
number N � ln a. In term of the new variables, the
Friedmann constraint (1a) can be written as

�r ¼ 8�G

3H2
�r ¼ 1� x� y� u; (8)

and then we can choose ðx; y; uÞ as the only independent
dynamical variables.

Taking into account that 0 � �r � 1, and imposing the
conditions that both the DM and DE components are both
positive definite and bounded at all times, we can define the
phase space of Eq. (7) as

� ¼ fðx; y; uÞ: 0 � 1� x� y� u � 1; 0 � x � 1; 0 � y

� 1; 0 � u < 1g: (9)

Other cosmological parameters of interest are the total
effective EOS, weff , and the deceleration parameter,
q ¼ �ð1þ _H=H2Þ, which can be written, respectively, as

weff ¼ 1

3
ð1� u� y� xð4� 3�deÞ � 3�0Þ; (10a)

q ¼ 1

2
f2� u� y� xð4� 3�deÞ � 3�0g: (10b)

In order to obtain an autonomous system of ordinary
differential equations from Eq. (7), we will focus our
attention hereafter only in general interaction functions
of the form Q ¼ 3Hfð�dm; �deÞ that can lead to closed
functions z ¼ zðx; yÞ. As we shall see in the next section,
this election will allow us to impose general conditions
over the variable z (and on the Q term as well) in order to
achieve a well behaved dynamics (see [12] for a similar
exercise). Some examples of the interaction Q that lead to
the desired form of z are listed in Table I.

B. General conditions for a complete
cosmological dynamics

If the system of equations (7) is autonomous, one then
expects that important stages in the evolution of the model
be represented by critical points in phase space. We will
work on this hypothesis here to make a description of the
existence, or not, of the different domination eras that have
to be present in any model of physical interest.
We then demand that our model must follow a complete

cosmological dynamics: namely, it should start in a radia-
tion dominated era (RDE), later enter into a matter domi-
nated era (MDE), and finally enter into the present stage of
accelerated expansion; every one of these statements can
be translated in definite mathematical equations, which we
are going to discuss in detail in the sections below.
Before that, we need to calculate the critical points

ðx�; y�; u�Þ of the dynamical system (7), which are to be
found from the conditions:

0 ¼ �z� þ x�ð4� u� � y� � 3�de � 3�0Þ � x2�ð4� 3�deÞ;
(11a)

0 ¼ y�ð1� u� � y� � x�ð4� 3�deÞ � 3�0Þ þ z� þ 3�0;

(11b)

0 ¼ u�ð1� u� � y� � x�ð4� 3�deÞ � 3�0Þ; (11c)

where z� � zðx�; y�Þ is the interaction variable evaluated at
the critical points, see Eq. (6).

1. Radiation domination

Let us start with the conditions for a purely RDE.
According to the Friedmann constraint (8), �r ¼ 1 corre-
sponds to ðx�; y�; u�Þ ¼ ð0; 0; 0Þ, and then Eq. (11) further
dictates that

TABLE I. Some proposed forms of Qð�de; �dmÞ for which
the dynamical system (7) becomes an autonomous system of
differential equations.

Model Qð�de; �dmÞ zðx; yÞ References

i 3Hð�1�de þ �2�dmÞ 3ð�1xþ �2yÞ [12,19]

ii 3H� �de�dm

�deþ�dm
3� xy

xþy [20]

iii 3H��dm 3�y [21,22]
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z� ¼ 0; z� ¼ �3�0: (12)

The first condition on the DM-DE interaction term holds
for many of the interacting functions z ¼ zðx; yÞ in the
specialized literature, like for those examples listed in
Table I; but the second condition strongly implies that it
is not possible to reconcile a purely RDE with a nonzero
bulk viscosity, �0 � 0.

However, there are other less extreme possibilities for
radiation domination in which a bulk viscosity exists,
as long as we allow the coexistence of radiation and other
matter components early in the evolution of the Universe.

As the bulk viscosity term only appears actively for the
equation of motion of DM, see Eqs. (7b) and (11b), we see
that the early presence of DM could allow the existence
of bulk viscosity in a RDE. The critical point we are
looking for is of the form ðx�; y�; u�Þ ¼ ð0; y�; 0Þ, under
the assumption y� � 1, and then we obtain the following
conditions:

y� ¼ �3�0; z� ¼ 0: (13)

Thus, a RDE is possible as long as the DM-DE interacting
term is null, and the bulk viscosity is negative, �0 < 0 (in
order to preserve the condition y � 0). However, this is at
variance with the condition from the LSLT in Eq. (5).

The null condition for the interaction term can be
obtained if z is a function with mixed x� y terms like
that of model (ii) in Table I, or with a dependence only on
x, an instance of which is model (i) with �2 ¼ 0.

Another possible critical point for a RDE would be
ðx�; y�; u�Þ ¼ ðx�; 0; 0Þ, which by means of Eq. (11), leads
to the conditions

x� ¼ �3�0
4� 3�de

; z� ¼ �3�0: (14)

As the DE EOS satisfies �de < 1, then a RDE is achieved if
x� � 1 and �0 < 0, but the latter condition is again at
variance with the LSLT in Eq. (5).

2. Matter domination

The existence of a MDE requires a scaling relation
between the baryonic and CDM densities in the form
ðx�; y�; u�Þ ¼ ð0; �; 1� �Þ, where � 2 ½0; 1�,1 so that
y� þ u� ¼ 1, as dictated by the Friedmann constraint (8).
This time, Eq. (11) dictates that

0 ¼ �z�; 0 ¼ �3ð1� �Þ�0 (15)

are the simultaneous independent conditions to fulfill a
MDE.

The first condition requires again the interaction term z
to be a function with mixed x� y terms like that of model
(ii) in Table I, or with a dependence only on x, like model

(i) with �2 ¼ 0. For this latter case, and also model (iii),
a nonzero value of �2 needs a baryon dominated critical
point, ðx�; y�; u�Þ ¼ ð0; 0; 1Þ, which we consider as
nonrealistic.
The second condition allows two possibilities:
(i) �0 ¼ 0. As in the condition for a successful RDE, the

model needs a null bulk viscosity to reach a correct
MDE.

(ii) � ¼ 1 [8 �0 2 ½0;1Þ] represents a critical point
of pure CDM domination, which is at variance
with the well established fact that baryons have a
non-negligible contribution to the matter contents.

Another scenario to describe the MDE is a scaling
relation among baryonic matter, CDM and DE. This re-
quirement implies a fine-tuning over the very small amount
of DE allowed for this period, without preventing or slow-
ing structure formation. This translates into ðx�; y�; u�Þ ¼
ð1� y� � u�; y�; u�Þ, so that x� þ y� þ u� ¼ 1, as indi-
cated by the Friedmann constraint (8). With the above
values, Eq. (11) leads to two independent possibilities.
The first one is

z� ¼ 3ð1� y�Þðð1� �deÞy� � �0Þ; u� ¼ 0; (16)

where the null contribution of baryons, and the scaling
relation between CDM and DE, suggest that it is impos-
sible to recover a successful MDE, even though this critical
point could correspond to a possible late time scenario. The
second one is

z� ¼ �3�0; x� ¼ �0=ð�de � 1Þ; (17)

where we have either: �0 > 0 and �de > 1, which agrees
with the LSLT in Eq. (5), but corresponds to a nonrealistic
DE EOS, wde > 0; or �0 < 0 and �de < 1, which violates
Eq. (5), but somehow allows a valid MDE if x� � 1.

3. Accelerated expansion

In order to describe the present stage of accelerated
expansion, and at the same time alleviate the coincidence
problem, we need a scaling regime between the DM and
DE components. This requirement leads to the critical
point ðx�; y�; u�Þ ¼ ðx�; 1� x�; 0Þ, and then Eq. (11) leads
to the single condition:

z� ¼ 3x�ð1� x� � �de þ x��de � �0Þ: (18)

This last equation can be solved once the interaction term
is given for a particular model, and we can foresee that
there must be valid solutions of it for any values, positive or
negative, of the bulk viscosity constant �0. Moreover, if we
impose the condition for strict DE domination, x� ¼ 1,
then z� ¼ �3�0; this can be possible, for instance, for
model (i) in Table I.

4. Final comments

The requirement of a complete cosmological dynamics
discussed above, from the dynamical system point of view,

1Only the values of � in the range [0, 1] belong to the phase
space (9), and therefore make physical sense.
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rules out any model that obeys the equations of motion (1)
with the ansatz (2), because the presence of the bulk
viscosity blockades the existence of standard RDE and
MDE, if we are to believe in the LSLT as stated in
Eq. (5); this is true even for the noninteracting case,
zðx; yÞ � 0, as shown in conditions (12)–(17). It must be
noticed, though, that an accelerated expansion of the

Universe at low redshifts is indeed compatible with the
presence of a bulk viscosity.
In Secs. III and IV below, we will perform a full dy-

namical system analysis of the field equations for the
particular case Q ¼ 3H��de, and then we will show the
importance of taking into account the full evolution of
the Universe to constraint cosmological models.

TABLE II. Location, existence conditions according to the physical phase space (9), and stability of the critical points of the
autonomous system (7a)–(7c) under Q ¼ 3H��de. The eigenvalues of the linear perturbation matrix associated to each of the
following critical points are displayed in Table IV.

Pi x y u Existence Stability

1a 0 �3�0 0 � 1
3 � �0 � 0 Unstable if �0 >� 1

3 , �< 4
3� �de

Saddle if �0 >� 1
3 , �> 4

3� �de or

1b x �x� 3�0 0 �de ¼ 1, � ¼ 1
3 and (�0 ¼ 0, x ¼ 0 or

� 1
3 � �0 < 0, 0 � x � �3�0)

Removed from phase space.

See discussion in Sec. III A.

1c x xð�4þ 3�deÞ � 3�0 0 � ¼ 4
3� �de, together with those

in Table III below.

Saddle if �0 <� 1
3

2a 0 1 0 Always Unstable if �0 <� 1
3 , �< 1� �de � �0

Stable if �0 > 0, �> 1� �de � �0
Saddle if �0 <� 1

3 , �> 1� �de � �0 or

� 1
3 < �0 < 0, � � 1� �de � �0 or

�0 � 0, �< 1� �de � �0
2b 0 y 1� y �0 ¼ 0, 0< y � 1 Saddle if �< 1� �de

2c �0
�de�1 y 1� y� �0

�de�1 � ¼ 1� �de and

(�0 > 0, 0 � y < 1, �de � 1� �0
y�1 or,

�0 < 0, 0 � y < 1, �de � 1� �0
y�1 or

�0 ¼ 0, 0< y � 1, �de � 1)

Saddle if �0 > 0

2d x y 1� x� y �0 ¼ � ¼ 0, �de ¼ 1 and

(y ¼ 1, x ¼ 0 or y ¼ 0, 0< x � 1 or

0< y< 1, 0 � x � 1� y)

Removed from phase space.

See discussion in Sec. III A.

3a 1� �þ�0
1��de

�þ�0
1��de

0 �de < 1, ��0 � � � 1� �de � �0 or

�de > 1, 1� �de � �0 � � � ��0
Unstable if �0 >� 1

3 , �> 4
3� �de or

�0 � � 1
3 , �> 1� �de � �0

Stable if �0 > 0, �< 1� �de � �0 or

�0 � 0, �< 1� �de

Saddle if �0 > 0, 1� �de <�< 4
3� �de or

�0 > 0, 1� �de � �0 <�< 1� �de or

� 1
3 < �0 � 0, 1� �de � �0 <�< 4

3� �de or

� 1
3 < �0 < 0, 1� �de <�< 1� �de � �0 or

�0 � � 1
3 , 1� �de <�< 4

3� �de or

�0 <� 1
3 ,

4
3� �de <�< 1� �de � �0

3b 1� y y 0 � ¼ ��0, �de ¼ 1 Removed from phase space.

See discussion in Sec. III A.

TABLE III. Existence conditions for the critical point P1c according to the physical phase space (9).

Pi Existence

1c (�0 <� 1
3 and (�de <

4
3� �0,

1þ3�0
�3þ3�de

� x � 3�0
�4þ3�de

or �de ¼ 4
3� �0, x ¼ 3�0

�4þ3�de
)) or

(�0 ¼ � 1
3 and (�de < 1, 0 � x � 1

4�3�de
or �de > 1, x ¼ 0)) or

(� 1
3 < �0 < 0 and (0 � x � 1, �de ¼ 4

3þ �0 or 0 � x � 3�0
�4þ3�de

, 1< �de <
4
3þ �0 or 0 � x � 3�0

�4þ3�de
, �de < 1 or

0 � x � 1þ3�0
�3þ3�de

, �de >
4
3þ �0)) or

(�0 ¼ 0 and (x ¼ 0, �de < 1 or x ¼ 0, 1< �de <
4
3 or 0 � x � 1, �de ¼ 4

3 or 0 � x � 1
�3þ3�de

)) or

(�0 > 0 and (x ¼ 1, �de ¼ 4
3 or

3�0
�4þ3�de

� x � 1þ3�0
�3þ3�de

, �de >
4
3þ �0))
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III. THE CASE FOR Q ¼ 3H��de

This model of interaction was studied by [2] in the
context of interacting DM-DE with the presence of bulk
viscosity. The model can be recovered from model (i) in

Table I with �1 ¼ �
ffiffiffi
3
p

�0 and �2 ¼ 0. Nonetheless, our
study below generalizes the model in [2] by taking a
general interaction constant �, and two new components
in the cosmic inventory: radiation and baryonic matter. We
will comment on the model of [2] at the end of this section.

The selected Q term leads to the following dimension-
less interaction variable z:

z ¼ 3�x: (19)

The nine critical points of the autonomous system (7),
together with the interaction term in Eq. (19), are summa-
rized in Table II, whereas details about their stability and
relevance for cosmology are given in Table IV.

A. Critical points and stability

The first point P1a corresponds to the coexistence of
radiation and DM, and exists if the bulk viscosity takes
values in the range � 1

3 � �0 � 0. It also represents a

decelerating expansion solution with q ¼ 1 and weff ¼
1=3. Critical point P1 exhibits two different stability
behaviors:

(i) Unstable if �0 >� 1
3 and �< 4

3� �de;

Saddle if �0 >� 1
3 and �> 4

3� �de.

In this point, the dimensionless energy parameter for ra-
diation and DM takes the following values �r ¼ 1þ 3�0
and �dm ¼ �3�0 respectively, as shown in Table IV.
Therefore this point could represent a true RDE if
�dm � 1, as long as �0 takes a negative value very close
to zero, or, in the most extreme case, if �dm ¼ 0 then
�0 ¼ 0, meaning no bulk viscosity. In both cases, the
existence interval and the needed values for the bulk
viscosity, to archive a successful RDE, are outside the
region of validity of the LSLT (�0 > 0).2

The nonhyperbolic critical point P1b exists if �de ¼ 1
and � ¼ 1

3 . The first one condition is at odds with our

expectation of a genuine DE fluid (�de < 1), and then we
will not take into account this critical point in our analysis.
P1c correspond to a decelerated solution (q ¼ 1) in

which there is radiation, DM, and DE. In effective terms,
this point is able to mimic the behavior of a radiation fluid
(weff ¼ 1

3 ) but, a truly RDE is only reached if x� 1 and

�1� �0 < 0, being the latter condition in contradiction

with the LSLT. If x ¼ �3�0
4�3�de

, then this critical point repro-

duces the analysis developed in the previous section, see
Eq. (14). Despite its nonhyperbolic nature, P1c always has
a saddle behavior if �0 <� 1

3 , since it possesses nonempty

stable and unstable manifolds, see Table IV.
Critical point P2a represents a pure DM domination

solution (�DM ¼ 1) and always exists, this fact is moti-
vated by a null contribution of baryonic matter. The stabil-
ity of this fixed point is the following:
(i) Saddle if �0 <� 1

3 , �>1��de��0 or �1
3<�0<0,

� � 1� �de � �0 or �0 � 0, �< 1� �de � �0
(ii) Stable if �0 > 0, �> 1� �de � �0
(iii) Unstable if �0 <� 1

3 , �< 1� �de � �0.

An interesting fact of P2a is the value of the effective
EOS parameter (weff ¼ ��0): because of the nonnegative
value of the bulk viscosity constant required by the LSLT,
weff � 0, which means that we cannot recover a standard
DM dominated picture, unless �0 ¼ 0. P2a is represented
by a red point in Fig. 1.
The nonhyperbolic fixed point P2b represents a scaling

relation between the baryonic and DM components. As we
claimed before in Sec. II, this critical point behaves as a
realistic MDE and exists only under a null bulk viscosity
contribution (�0 ¼ 0). If �< 1� �de this critical point has
a saddle behavior.
P2c is a scaling solution between three components:

baryons, DM, and DE, and, unlike point P2b, it exists for
all values of �0 (see Table II for the rest of existence
conditions). This critical point could represent a feasible

MDE if x ¼ �0
�de�1� 1, and then 0< �0 � 1. This implies

a fine-tuning over the bulk viscosity parameter due to the
negligible amount of DE that should exist during a MDE,

TABLE IV. Eigenvalues and some basic physical parameters for the critical points listed in Table II, see also Eqs. (6) and (10).

Pi �1 �2 �3 weff �r q

1a 1 4� 3�de � 3� 1þ 3�0
1
3 1þ 3�0 1

1b 1 0 1þ 3�0
1
3 1þ 3�0 1

1c 1 0 1þ 3�0
1
3 1� 3xð�de � 1Þ þ 3�0 1

2a �1� 3�0 �3�0 �3ð�1þ �de þ �þ �0Þ ��0 0 1
2 ð1� 3�0Þ

2b �1 0 �3ð�1þ �de þ �Þ 0 0 1
2

2c �1 0 3�0 0 0 1
2

2d �1 0 0 0 0 1
2

3a 3ð�1þ �de þ �Þ �4þ 3�de þ 3� 3ð�1þ �de þ �þ �0Þ �1þ �de þ � 0 1
2 ð�2þ 3�de þ 3�Þ

3b 0 �1� 3�0 �3�0 ��0 0 1
2 ð1� 3�0Þ

2�0 > 0, as required by the LSLT, implies that for this critical
point y ¼ �dm < 0, and then we get a wrong RDE, see Fig. 1.
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which would render it almost indistinguishable from P2b in
the phase space. This critical point exists given that

(i) � ¼ 1� �de, �0 > 0, 0 � y < 1, �de � 1� �0
y�1 .

This region satisfies the LSLT (5), �de > 0, but
corresponds to a nontruly DE component, wde > 0.

(ii) � ¼ 1� �de, �0 < 0, 0 � y < 1, �de � 1� �0
y�1 .

This region violates LSLT (5) but allows a valid
MDE if the above condition, 0< �0 � 1, is
satisfied.

(iii) � ¼ 1� �de, 0< y � 1, �de � 1 and �0 ¼ 0.
Despite its nonhyperbolic nature, the critical point always
exhibits a saddle behavior if �0 > 0 since it has nonempty
stable and unstable manifolds.

Critical point P2d corresponds to a very particular se-
lection of the model parameters: � ¼ �0 ¼ 0 and �de ¼ 1.
These values represent a model with a null interaction
between DM and DE, together with a null bulk viscosity
contribution. The point P2d will not appear in the phase
space as long as we take � � 0 and �0 � 0.

Point P3a corresponds to a scaling solution between the
DM and DE components. From Table II we can note that
this point exists for any valid value of �0, and it represents
an accelerated solution if

�<
2

3
� �de: (20)

P3a exhibits an stable behavior if �0 > 0, �<1��de��0,
or �0 � 0, �< 1� �de. The first one condition is sup-
ported by the LSLT, but the second is not. In the particular

case � ¼ ��0 the strict DE domination is recovered
(�de ¼ x ¼ 1). The full set of stability conditions for
this critical point is shown in Table IV.
If �de ¼ 1, � ¼ ��0 and �0 > 0, the critical point P3b

also appears in the phase space. However, the very first
condition is at variance with our expectations of a truly
DE fluid with �de < 1. Hence, this critical point will be
hereafter left out from our considerations.

B. Cosmology evolution from critical points

According to our complete cosmological dynamics cri-
terion, one of the critical points of any physically viable
model should correspond to a RDE at early enough times,
and this point should be an unstable point; the unstable
nature of this critical point guarantees that it can be the
source of any orbits in the phase space. The only two
possible candidates so far in our model are points P1a

and P1c. Both cases require �1� �0 � 0 in order to be
a true RDE point, but such a condition means a null
contribution of bulk viscosity (�0 ¼ 0), or else contradic-
tion with the LSLT. Thus, we must conclude that no critical
point exists in the model that can represent a RDE.
On the other hand, the evolution of the Universe

requires the existence of a long enough matter domi-
nated epoch, in which DM and baryons can be the
dominant components. In our system, we need to look
carefully at critical points P2 to search for an appropriate
candidate to be an unstable critical point dominated by
the matter components.
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FIG. 1 (color online). Some orbits in the phase space for the choice ð�0; �de; �Þ ¼ ð0:098; 0:2; 0:12Þ. This parameter election
guarantees the saddle behavior of the pure DM dominated solution P2a (red point) and the late time attractor nature of P3a, black point.
Because of the nonzero value of �0 the early time unstable solution corresponds to a wrong RDE represented by the blue point.
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In order to be in line with observations it is better to
avoid those initial conditions that lead orbits to approach
point P2a, as it does not permit the presence of baryons
and its effective EOS is negative in the region allowed by
the LSTL, but it represents a point dominated solely by
DM. Points P2b and P2d must also be discarded, as their
existence always requires a null value of the viscosity
coefficient, and P2d even requires a null interaction
between DM and DE.

The only possibility seems to be point P2c, as long as
observations could allow the presence of an early DE
contribution to the energy density of the Universe. In
such a case, the value of the viscosity coefficient �0 would
have to be finely adjusted. Unfortunately, as we showed in
the previous discussion, this critical point requires a non-
realistic DE component with EOSwde > 0 (�de > 1) in one
case, and violation of the LSLT through a negative value of
the bulk viscosity (�0 < 0) in the other.

Finally, we must get, as a possibility to alleviate the
coincidence problem of DE, a scaling solution with a
nearly constant ratio between the energy densities of DM
and DE at late times, which should in turn correspond to a
stable critical point; the only one at hand in our system that
could fulfill those expectations is P3a. For the allowed
values of �0, this point represents a scaling solution be-
tween the DE and DM components in the existence re-
gions, and also admits a pure DE domination solution if
only � ¼ ��0 (� � 1). The required presence of the bulk
viscosity limits the possibility of choosing initial condi-
tions that lead orbits to connect MDE to DM-DE scaling
solution to the following possibilities:

(i) Orbits that connect P2a with P3a. Despite the stable
and accelerated nature of the scaling solution P3a, it
is not possible to recover the RDE and MDE as
previously discussed. In Fig. 1 are shown some
numerical integrations of the autonomous system
(7a)–(7c), for the interaction function (19) with
ð�0; �de; �Þ ¼ ð0:098; 0:2; 0:12Þ. The orbits reveal
that the P3a solution is the future attractor whereas
the wrong RDE (P1) is the past attractor.

(ii) Orbits that connect P2c with P3a. The existence
conditions of both critical points (see Table II)
also imply that the DM-DE scaling solution mimics
the behavior of pressureless matter (weff ¼ 0). In
the same region, this solution is not accelerated
(q ¼ 1

2 ) being impossible to explain the late-time

behavior of the Universe. This result rules out those
initial conditions leading to orbits connecting both
critical points. Figure 2 shows some example orbits
in the x� y plane.

Unlike the above cases, the presence of non-null bulk
viscosity entails no problem for a successful late-time
accelerated evolution of the Universe but it is impossible
to recover a well behaved picture of the whole history of
the Universe without being at variance with the LSLT. The

simultaneous presence of interaction between DM and DE
and bulk viscosity results in a very restrictive condition for
the model.

IV. COSMOLOGICAL CONSTRAINTS

We now proceed to constrain the values of ð�0; �de; �Þ,
compute their confidence intervals, and calculate their best
estimated values, as we compare with different cosmologi-
cal observations that measure the expansion history of the
Universe. For future reference, we write here an explicit
expression for the normalized Hubble parameter, which is
an exact result for the model (1):

E2ðzÞ ¼ �r0ð1þ zÞ4 þ�b0ð1þ zÞ3
þ�de0ð1þ zÞ3ð�deþ�Þ þ �̂dmðzÞ; (21)

where EðzÞ � HðzÞ=H0, and the cumbersome formula for

�̂dmðzÞ is given in Eq. (A10) of the Appendix, where all
detailed calculations can be found.
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FIG. 2 (color online). Some orbits in the phase space for the
choice ð�0; �de; �Þ ¼ ð0:098; 1:1;�0; 1Þ. This parameter election
guarantees the existence of the saddle critical point P2c and at
the same time changes the dynamics of the phase portrait: now
the late time attractor is the DM dominated solution P2a (red
point) and the scaling solution between DM and DE, P3a (black
point), display a saddle-type behavior. As Table II shows, under
this parameter choice P3a is contained, as a particular case, in
P2c. Because of the nonzero value of �0 the early time unstable
solution corresponds to a wrong RDE represented by the blue
point.
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A. Cosmological data and �2 functions

To perform all the numerical analyses, we assume for the
baryon and radiation components (photons and relativistic
neutrinos), the present values of �b0 ¼ 0:04 [23], and
�r0 ¼ 0:0000766, respectively, where the latter value is
computed from the expression [24]

�r0 ¼ ��0ð1þ 0:2271NeffÞ: (22)

Here, Neff ¼ 3:04 is the standard number of effective
neutrino species [23,25], and ��0 ¼ 2:469� 10�5h�2

corresponds to the present-day photon density parameter
for a temperature of Tcmb ¼ 2:725 K [23], with h the
dimensionless Hubble constant: h�H0=ð100 km=s=MpcÞ.

1. Type Ia supernovae

The luminosity distance dL in a spatially flat FRW
universe is defined as

dLðz; X;H0Þ ¼ cð1þ zÞ
H0

Z z

0

dz0

Eðz0; XÞ ; (23)

where c corresponds to the speed of light in units of
km=sec and X ¼ f�de; �; �0g is the parameter vector.

In order to marginalize analytically the nuisance pa-
rameter H0, we define a new dimensionless ‘‘luminosity
distance’’ as DLðz; XÞ � H0 	 dLðz; X;H0Þ=c, so that
DLðz; XÞ does not depend on H0 anymore. The theoretical
distance moduli can be written as

	tðz; X;H0Þ ¼ ~	tðz; XÞ � 5log 10½ ~H0�; (24)

where we have defined ~	tðz; XÞ � 5log 10½DLðz; XÞ� þ 25
and a dimensionless Hubble parameter ~H0 � H0 	Mpc=c.
The superscript t stands for ‘‘theoretical.’’ We construct the

2 function with these definitions as


2ðX;H0Þ ¼
Xn
i¼1

�
~	tðzi; XÞ �	obs

i � 5log 10
~H0

�i

�
2
; (25)

where 	obs
i is the observed distance moduli and �i its

variance. For our case, n ¼ 580, as we are using the type
Ia supernovae (SNe Ia) in the Union2.1 data set of the
Supernova Cosmology Project, which is composed of 580
SNe Ia [26].

We rewrite the expression (25) as


2ðX;H0Þ ¼ A� 2Bxþ Cx2; (26)

with x � 5log 10ð ~H0Þ, and

A �Xn
i¼1

�
~	t
i �	obs

i

�i

�
2
; B �Xn

i¼1

~	t
i �	obs

i

�2
i

;

C �Xn
i¼1

1

�2
i

:

(27)

The posterior probability distribution function (pdf) that
is constructed from the 
2 function (26) is

pdfðX; ~H0Þ ¼ const 	 e�
2=2; (28)

where ‘‘const’’ is a normalization constant. We consider a
flat prior distribution function for H0. So, the marginaliza-
tion over H0 this pdfðX; ~H0Þ corresponds to

pdfðXÞ ¼ const
Z 1
�1

pdfðX; ~H0Þd ~H0: (29)

Performing this integral analytically (see the Appendix A
of [7] for a detailed explanation), we obtain

pdfðXÞ ¼ const

�
ln 10

5

� ffiffiffiffiffiffiffi
2�

C

s
exp

�
� 1

2

�
A� ~B2

C

��
; (30)

so that pdfðXÞ does not depend on H0 anymore. We
express this pdfðXÞ in terms of a new 
2

SNe function as

pdfðXÞ ¼ b 	 e�
2
SNe=2; (31)

where b � const 	 ffiffiffiffiffiffiffi
2�
p

ln 10=ð5 ffiffiffiffi
C
p Þ, and then


2
SNeðXÞ ¼ AðXÞ � ½BðXÞ þ ln ð10Þ=5�2

C
: (32)

2. Hubble expansion rate HðzÞ
For the Hubble parameter HðzÞ at different redshifts, we

use the 21 available data listed in Table I of Farooq et al.
[27]. The 
2 function is defined as


2
HðX;H0Þ ¼

X21
i¼1

�
HtðX;H0; ziÞ �Hobs

i

�H

�
2
; (33)

whereHtðX;H0; ziÞ is the theoretical value predicted by the
model given by Eq. (21), and Hobs

i is the observed value
with a standard deviation �H.
In order to marginalize over the nuisance parameter H0,

we rewrite Eq. (33) as


2
HðX;H0Þ ¼ H2

0

X
i

E2ðX; ziÞ
�2

i

� 2H0

X
i

EðX; ziÞ 	Hobs
i

�2
i

þX
i

�
Hobs

i

�i

�
2
; (34)

where EðX; zÞ � HðX; zÞ=H0 is given by Eq. (21). We
assume a Gaussian prior distribution for the possible value
of H0, centered at ~H0 ¼ 73:8 kmMpc�1 s�1, with a stan-
dard deviation of �H ¼ 2:4 kmMpc�1 s�1, as measured
by Riess et al. [28].
The posterior probability distribution function that is

constructed from this 
2 function and Gaussian prior is

pdfHðX;H0Þ ¼ cte 	 e�
2
HðX;H0Þ=2 	 e�ðH0� ~H0Þ2=ð2�2

HÞ; (35)

where cte is a normalization constant. Marginalizing over
H0 with
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pdfHðXÞ ¼ cte
Z 1
�1

pdfðX;H0ÞdH0; (36)

we obtain

pdfHðXÞ ¼ cte 	 1

2�H
ffiffiffiffi
�
p

�
1þ erf

�
�ffiffiffiffiffiffi
2�
p

��

� exp

�
� 1

2

�
�� �2

�

��
; (37)

where ‘‘erf’’ is the error function,3 and

� � 1

�2
H

þX
i

E2ðX; ziÞ
�2

i

; (38a)

� � ~H0

�2
H

þX
i

EðX; ziÞ 	Hobs
i

�2
i

; (38b)

� � ~H2
0

�2
H

þX
i

�
Hobs

i

�i

�
2
: (38c)

Writing the posterior pdf in terms of the likelihood distri-
bution with flat priors for the parameters X, we have

pdfHðXÞ ¼ const 	 e�~
2
H=2: (39)

Then, solving for the new ~
2 function for H we obtain

~
2
HðXÞ ¼ 2 ln 2þ ln ð��2

HÞ � �2 ln
�
1þ erf

�
�ffiffiffiffiffiffi
2�
p

��

þ
�
�� �2

�

�
: (40)

Given that we are interested in the location of the point
Xbest in the parameter space that corresponds to the mini-
mum of the 
2 function, and that to construct the credible
regions for pairs of set of ð�de; �; �0Þwe are interested only
on differences �
2, then the constant ‘‘2 ln 2’’ may be
discarded from the expression (40).

3. Baryon acoustic oscillations

To constrain our model using the baryon acoustic oscil-
lation (BAO), we use a combination of six data listed in
Table V [29–31], which are implemented in two different
ways, as described below.

The WiggleZ Dark Energy Survey [31] reports three
data using the acoustic parameter AðzÞ defined as [32]

Aðz; XÞ � H0DVðz; XÞ
ffiffiffiffiffiffiffiffi
�m

p
cz

; (41)

where �m it the total nonrelativistic matter (baryon and
dark matter), and DVðzÞ is defined as (spatially flat
Universe)

DVðz; XÞ ¼ c

��Z z

0

dz0

Hðz0; XÞ
�
2 z

Hðz; XÞ
�
1=3

: (42)

Note that Aðz; XÞ does not depend onH0. With the acoustic
parameter we define a 
2 function as


2
AðXÞ ¼

X3
i

�
Aðzi; XÞ � AobsðziÞ

�A

�
2
; (43)

where AobsðziÞ and �A correspond to the observed values
for AðziÞ and their standard deviations respectively,
reported in Table III of Blake et al. [31].
On the other hand, SDSS (two data) [30] and 6dFGS

(one datum) [29] collaborations report the indirect observed
values of distance ratio dz at different redshifts, defined as

dzðXÞ � rsðzd; XÞ
DVðz; XÞ ; (44)

where rsðzÞ corresponds to the comoving sound horizon
given by

rsðz; XÞ ¼ cffiffiffi
3
p

Z 1=ð1þzÞ

0

da

a2Hða; XÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð3�b0=4��0Þa

q :

(45)

As mentioned above, we take the following values of
the density parameters: ��0 ¼ 2:469� 10�5h�2 for pho-
tons, and �b0 ¼ 0:02255h�2 for baryons [23]. zd is the
redshift at the baryon drag epoch computed from the fitting
formula [33]

zd ¼ 1291
ð�m0h

2Þ0:251
1þ 0:659ð�m0h

2Þ0:828 ½1þ b1ð�m0h
2Þb2�;

(46a)

b1 ¼ 0:313ð�m0h
2Þ�0:419½1þ 0:607ð�m0h

2Þ0:674�; (46b)

b2 ¼ 0:238ð�m0h
2Þ0:223: (46c)

Note again that dzðXÞ does not depend on H0

With the distance ratio we define a 
2 function as


2
dðXÞ ¼

X3
i

�
dziðXÞ � dobszi

�dz

�
2
; (47)

where dobszi and �dz correspond to the observed values for

dzi and their standard deviations respectively, shown in

Table III of Blake et al. [29–31].
With the 
2 functions in expressions (43) and (47), we

define the total BAO 
2 function as


2
BAOðXÞ � 
2

AðXÞ þ 
2
dðXÞ: (48)

4. Cosmic microwave background radiation

We use the parameter 
A proposed by Vonlanthen et al.
in [34] that is defined as


A ¼
rspðz�Þ
DAðz�Þ ; (49)

3erfðxÞ � ð2= ffiffiffiffi
�
p ÞRx

0 e
�t2dt.
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where rspðz�Þ and DAðz�Þ are the physical sound horizon

and the proper angular diameter distance between today
and the redshift of decoupling z�, respectively. 
A is di-
rectly related to the position of the first peak l1 in the power
spectrum of the CMB. It has been shown in [34] that this
parameter is suitable to test cosmological models of dark
energy different to the �CDM model, given that it is an
almost model-independent parameter for late time models.
They argue that any dark energy model must predict a
value of (given in radians)


A ¼ 0:01035
 0:00001745 (50)

at the redshift of decoupling z� ¼ 1094. For an additional
discussion on the use of the position of the first peak l1 of
the CMB for testing dark energy models, see also [35].

In a spatially flat universe DA is given by

DAðzÞ ¼ c

ð1þ zÞH0

Z z

0

dz0

Eðz0Þ : (51)

The physical sound horizon corresponds to rspðzÞ ¼
rsðzÞ=ð1þ zÞ, where rsðzÞ is given by Eq. (45).

Note that the ratio rsðzÞ=DAðzÞ cancels outH0, so that 
A
does not depend on this nuisance parameter.

We define a 
2 function as


2
CMBðXÞ �

�

AðXÞ � 
obsA

�


�
2
; (52)

where 
AðXÞ is given by Eq. (49), and 
obsA , �
 corresponds
to the values of the expression (50).

B. Observational constraints

Finally, with each of the 
2 functions defined above we
construct the total 
2 function given by


2 ¼ 
2
SNe þ 
2

BAO þ 
2
H þ 
2

CMB: (53)

We minimize this function with respect to the parameters
ð�de; �; �0Þ to compute their best estimated values and
confidence intervals.
There are four special cases we will discuss here, whose

parameters are described and estimated in Table VI, and in
the confidence intervals (CI) in Figs. 3, 5, 7, and 9.
Some general comments are in turn before the detailed

explanation of the different models. First, we have noticed,
for the quantities reported in Table VI, that there is a
qualitative change in the models if only the low-redshift
data sets are taken into account; in our case, these data sets
are those of the supernovae (SNe) and the Hubble parame-
ter [HðzÞ]. Such change is particularly acute in the case of
the bulk viscosity �0: it is consistently positive definite
whenever the interaction parameter � is set free, like in
model I. If � is fixed to be equal to �0, or to have a null
value, then the bulk viscosity is negative definite, like in
models III and IV.
However, when high-redshiftmeasurements are included

in the analysis, we have the opposite behavior; all models
consistently point to a negative value of the bulk viscosity
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FIG. 3 (color online). Credible regions (CR) for model I: ð�0; �Þ as free parameters, and �DE ¼ 0. The CR shown correspond to the
68.3%, 95.4%, and 99.7% confidence level. The left and right panels correspond to the constraints on ð�0; �Þ that come from the use of
the combined ‘‘SNeþ BAOþHðzÞ’’ (SBH) and ‘‘SNeþ BAOþHðzÞ þ CMB’’ (SBHC) data sets, respectively. For the left panel we
find at 99.7% (3�) confidence level that�0:036< �0 < 0:012 and�0:2026<�< 0:188. For the right panel�0:01< �0 <�0:0022
and �0:07<�< 0:05, when ð�0; �Þ are constrained simultaneously. The marginal best estimated values for each parameter
individually are �0 ¼ �0:0073þ0:067�0:006 and � ¼ 0:0067þ0:056�0:053 for SBH, and �0 ¼ �0:0066þ0:016�0:018 and � ¼ 0:00082
 0:001 for SBHC,

where the errors are given to 68.3% of confidence, see also Table VI. The bulk viscosity is constrained to small but negative values;
however, �0 < 0 is forbidden by the LSLT, and then model I is ruled out with at least 99.7% of probability (3�) when using SBHC, or
with about 60% when using SBH.
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whenever it is freely fitted, like in models I, III, and IV. This
means, actually, that all models with bulk viscosity as a free
parameter are at variancewith the LSLTwhen they are fitted
to the sample set of cosmological observations.

Our second general comment is that none of the models
are consistent with our so-called statement of complete
cosmological dynamics presented and discussed in
Sec. II B. The main reason being that we cannot recover
an appropriate RDE at early times. One must notice,
though, that our data sets cannot cover high enough red-
shifts in order to properly sample the early RDE of the

Universe, but it is nonetheless significant that the estimated
values of the free parameters already indicate a nonrecov-
ery of an RDE. Such a difficulty was already observed in
models with bulk viscosity [36,37], but it has not been
sufficiently remarked in models with a DM-DE interaction
[12,19,38].
One last comment regards that of the nature of DE in all

models: we have consistently found that phantom DE [39]
is slightly favored by all data sets whenever the DE EOS is
freely varied, and that in most of the models an energy
transfer from DM to DE is preferred.
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FIG. 4 (color online). Evolution of the dimensionless energy densities �r and �dm as a function of the redshift z for Model I.
The central thick lines comes from the evaluation of both observables at the best estimated values for ð�de; �; �0Þ (see Table VI). At
high-redshift the contribution of the DM is about 2% for the best estimated values and, at 1� the model can even describe a wrong
RDE due to the unphysical values for �r > 1 and �dm < 1. The transition from the RDE to MDE (dark matterþ baryons) occurs at
zeq ¼ 4607:80 for the best estimated values. The error bands are given at 68.3% (1�) of confidence level.
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FIG. 5 (color online). Credible regions (CR) for model II (DM-DE interacting model without bulk viscosity): ð�de; �Þ as free
parameters, and �0 ¼ 0. The CI correspond to 68.3%, 95.4%, and 99.7% confidence level. The left and right panels correspond to the
constraints on ð�de; �Þ that come from the use of the combined ‘‘SNeþ BAOþHðzÞ’’ (SBH) and ‘‘SNeþ BAOþHðzÞ þ CMB’’
(SBHC) data sets, respectively. For the left panel we find at 99.7% (3�) confidence level that �0:262< �de < 0:1154 and �0:216<
�< 0:033. For the right panel �0:261< �de < 0:045 and 0:0025<�< 0:074, when ð�de; �Þ are constrained simultaneously.
The marginal best estimated values for each parameter individually are �de ¼ �0:054þ0:55�0:52 and � ¼ �0:064þ0:037�0:033 for SBH, and

�de ¼ �0:091þ0:043�0:046 and � ¼ 0:044
 0:01 for SBHC, where the errors are given to 68.3% of confidence, see also Table VI. We find

that using the SBHC the interacting parameter � is positive with at least 99.7% of probability, favoring an interaction between the dark
components, where the energy transfer goes from the dark matter to the dark energy. For the barotropic index �de the data favor
negative, values with about 93% of probability, which corresponds to a phantom DE.
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1. Model I

Model I corresponds to �DE ¼ 0, whereas � and �0 are
free parameters; that is, this case corresponds to a DE-DM
interacting model, in which DM is a dust fluid with bulk
viscosity, and DE is a cosmological constant, see for in-
stance [2,40,41] and references therein for similar models.

According to the values presented in Table VI and in
Fig. 3, the bulk viscosity is positive for low-redshift data
sets, but it takes small negative values when the full data set
is considered. However, we must recall that �0 < 0 is

forbidden by the LSLT, see Eq. (5), and because of
this model I would then be ruled out with at least 68% of
probability (1�). We notice that there is a slight preference
for small but positive values of �, i.e, from Fig. 3 we

see that the 68% contour region lies in the positive region
for �. Finally, the CI for ð�0; �Þ parameters lie almost
completely in a region that is not consistent with a well
behaved cosmology defined by the dynamical system
analysis in Sec. II B as Fig. 4 shows, because none of
the critical points P1a or P1c, see Table II, is a suitable
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FIG. 6 (color online). Evolution of the dimensionless energy densities �r and �dm as a function of the redshift z for model II. The
central thick lines come from the evaluation of both observables at the best estimated values for ð�de; �; �0Þ (see Table VI). At high
redshift a true RDE is recovery with �r ! 1 and �dm ! 0. As was shown in the previous section, this model describes a complete
cosmological dynamics since is possible to choose initial conditions that lead orbits to connect a true RDE! MDE! accelerated late
time solution. The transition from the radiation to the matter dominated (dark matterþ baryons) epoch occurs at zeq ¼ 3378:69 for the

best estimated values. The error bands are given at 68.3% (1�) confidence level.
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FIG. 7 (color online). Credible regions (CR) for model III: ð�0; �deÞ as free parameters, and � ¼ �0. The left and right panels
correspond to the constraints on ð�0; �deÞ that come from the use of the combined ‘‘SNeþ BAOþHðzÞ’’ (SBH) and
‘‘SNeþ BAOþHðzÞ þ CMB’’ (SBHC) data sets, respectively. For the left panel we find at 99.7% (3�) confidence level that
�0:0154< �0 < 0:0033 and �0:186< �de < 0:133. For the right panel �0:0105< �0 <�0:0025 and �0:177< �de < 0:117, when
ð�0; �deÞ are constrained simultaneously. The marginal best estimated values for each parameter individually are �0 ¼ �0:006

0:0027 and �de ¼ �0:019þ0:047�0:045 for SBH, and �0 ¼ �0:0065
 0:0011 and �de ¼ �0:023þ0:042�0:043 for SBHC, where the errors are given
to 68.3% of confidence, see also Table VI. We find that the bulk viscosity CR lie in the negative region, �0 < 0, with at least 99.7% of
probability for SBHC, and therefore ruled out because this is at variance with the LSLT (�0 < 0). Even just using SBH it turns out that
�0 < 0 with about 90% of probability. For �de, there is a slight preference of the CR to lie in the negative region, i.e., �de < 0 that
corresponds to phantom DE.
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point for a RDE; this fact then adds for the ruling out
of this model.

2. Model II

Model II corresponds to �0 ¼ 0, whereas �DE and �
are free parameters; that is, it corresponds to a purely
DM-DE interacting model, see for instance [12,19,36]
and references therein. By definition, this model is in
agreement with the LSLT.

Results for the free parameters are presented in Fig. 5.
Both parameters ð�de; �Þ are close to zero, but phantomDE

is slightly favored, (�DE < 0) at about 68.3% (1�), as also
is �< 0, which corresponds to energy transfer from DM to
DE. In both regions, as shown in Table II, the model
describes a complete cosmological dynamics since it is
possible to choose initial conditions that lead orbits to
connect P1a ! P2b ! P3a, see also Fig. 6.

3. Model III

Model III corresponds to � ¼ �0, whereas �DE and �0
are free parameters; that is, this case corresponds to
an interacting bulk viscous DM-DE model, where the
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FIG. 8 (color online). Evolution of the dimensionless energy densities �r and �dm as a function of the redshift z for model III. The
central thick lines comes from the evaluation of both observables at the best estimated values for ð�de; �; �0Þ (see Table VI). Once again
the negatives values of the bulk viscosity leads to a non-negligible contribution of the DM of about 2% at high redshift. The transition
from the radiation to the matter dominated (dark matterþ baryons) era occurs at zeq ¼ 4671:87 for the best estimated values. The

error bands are given at 68.3% (1�) of confidence level.
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FIG. 9 (color online). Credible regions (CR) for model IV: ð�0; �deÞ as free parameters, and � ¼ 0. See Fig. 7 too. For the left panel
we find at 99.7% (3�) confidence level that �0:0168< �0 < 0:00375 and �0:1821< �de < 0:1365. For the right panel �0:0104<
�0 <�0:00242 and �0:1723< �de < 0:129, when ð�0; �deÞ are constrained simultaneously. The marginal best estimated values for
each parameter individually are �0 ¼ �0:0065
 0:003 and �de ¼ �0:0156þ0:047�0:045 for SBH, and �0 ¼ �0:0063
 0:0011 and �de ¼
�0:014þ0:043�0:044 for SBHC, where the errors are given to 68.3% of confidence, see also Table VI. We find interesting that the CRs are

almost identical to the case � ¼ 0 (see Fig. 7), suggesting that the value of the bulk viscosity and the nature of the DE in this model is
insensitive to the assumption of the interaction. The conclusions in this case are the same as for Fig. 7; this case is ruled out given that
�0 < 0, with at least 99.7% of probability for SBHC, and there is a slight preference of the CR to lie in the negative region, i.e., �de < 0
that corresponds to phantom DE.
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interacting parameter is directly proportional to the bulk
viscosity. A related model was studied by Kremer and
Sobreiro [2] where they assume � ¼ ��0.

We find it interesting that the CIs presented in Fig. 7 are
almost identical to those of model II (for � ¼ 0), see
Sec. IVB 2 and Fig. 5, suggesting that the value of
the bulk viscosity and the nature of the DE component in
model III is insensitive to the assumption of the DM-DE
interaction. Moreover, model III is not compatible with a

RDE, see Table II and Fig. 8. Regardless of the initial
conditions, P3a is the only possible late time attractor of
model III, but, as Table VI shows, observations favor
negative values for � (and hence for �0) and, for those
negative values P3a does not belong to the phase space
(9) of the model. Thus, the model is ruled out because it is
neither compatible with a complete cosmological dynamics
nor with the LSLT.

4. Model IV

Model IV corresponds to � ¼ 0, whereas �DE and �0 are
free parameters; that is, it corresponds to a noninteracting
DM-DE model, in which DM has bulk viscosity. See for
instance [5,42] and references therein.
From the CR of the joint SNeþ CMBþ BAOþHðzÞ

data sets shown in Fig. 9, we find that the bulk viscosity
is constrained again to small values and mainly in the
negative region, with almost 68% of probability (1�).
The negative value of the bulk viscosity allows a RDE

TABLE VI. Marginal best estimated values of the parameters ð�de; �; �0Þ for the different models discussed in the text; notice that
the DM barotropic index is that of a dust fluid for all cases, �DM ¼ 1. The asterisk superscript indicates the cases when the zero value
of one of the parameters was assumed a priori. The top (middle) part of the table only considers SNe [HðzÞ] observations, whereas the
bottom part of the table corresponds to the use of the combined SNeþ CMBþ BAOþHðzÞ data sets together, see Sec. IV. The fourth
and fifth columns correspond to the minimum value of the 
2 function, 
2

min, and the 

2 by degrees of freedom, 
2

d:o:f:, respectively. The

latter is defined as 
2
d:o:f: ¼ 
2

min =ðn� pÞ, where n is the number of data and p the number of free parameters. The next-to-last row

(Model V) corresponds to best estimates of the three parameters ð�de; �; �0Þ computed simultaneously. H0 was marginalized assuming
a flat prior distribution. The last row, with (�de ¼ 0, � ¼ 0, �0 ¼ 0) corresponds to the value that we obtain for the �CDM model,
using the same procedure and data sets, in order to compare our results. According to the value 
2

d:o:f:, we find that all our cases fit the

data sets as well as �CDM does. The last columns indicate the type of DE, the energy transfer direction, the consistency with the local
second law of thermodynamics [LSLT, Eq. (5)], and with a complete cosmological dynamics (CCD) as discussed in Sec. II B. See
Figs. 3 to 9 for their corresponding confidence intervals, and the text for more details.

SNe

Model �de � �0 
2
min 
2

d:o:f: DE Energy Transfer LSLT CCD

I 0� �0:0132þ0:22�0:37 0:0017þ0:097�0:075 562.223 0.972 � DE DM ! �
II �0:0011þ0:1�0:11 �0:0086þ0:1�0:11 0� 562.224 0.972 Phantom DE DM ! !
III �0:0040
 0:14 � ¼ �0 �0:0026þ0:035�0:032 562.224 0.972 Phantom DE DM � �
IV �0:0052
 0:18 0� �0:0037þ0:055�0:051 562.225 0.972 Phantom None � �

SNeþ BAOþHðzÞ
I 0� 0:0067þ0:056�0:053 �0:0073þ0:0067�0:0060 583.886 0.965 � DE! DM � �
II �0:0548þ0:55�0:52 �0:0639þ0:037�0:033 0� 584.235 0.965 Phantom DE DM ! !
III �0:019þ0:047�0:045 � ¼ �0 �0:0060
 0:0027 583.765 0.964 Phantom DE DM � �
IV �0:0156þ0:047�0:045 0� �0:00658
 0:0029 583.785 0.964 Phantom None � �
V �0:0235
 0:134 �0:0130
 0:0996 �0:0053
 0:010 583.757 0.965 Phantom DE DM � �
�CDM 0� 0� 0� 588.857 0.970 � None ! !

SNeþ BAOþHðzÞ þ CMB
I 0� 0:00082
 0:0011 �0:0066þ0:016�0:018 583.899 0.963 � DE! DM � �
II �0:0913þ0:043�0:046 0:0438
 0:010 0� 603.166 0.995 Phantom DE! DM ! !
III �0:023þ0:042�0:043 � ¼ �0 �0:0065
 0:0011 583.803 0.963 Phantom DE! DM � �
IV �0:014þ0:043�0:044 0� �0:0063
 0:0011 583.795 0.963 Phantom None � �
V �0:0180
 0:122 �0:003
 0:022 �0:0064
 0:0026 583.775 0.964 Phantom DE! DM � �
�CDM 0� 0� 0� 588.87 0.973 � None ! !

TABLE V. BAO data.

Sample z dz AðzÞ
6dFGS [29] 0.106 0:336
 0:015 	 	 	
SDSS [30] 0.2 0:1905
 0:0061 	 	 	
SDSS [30] 0.35 0:1097
 0:0036 	 	 	
WiggleZ [31] 0.44 	 	 	 0:474
 0:034

WiggleZ [31] 0.6 	 	 	 0:442
 0:020

WiggleZ [31] 0.73 	 	 	 0:424
 0:021
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but with a CDM contribution of about 2% for high
redshifts, see Fig. 10. At the same time, the future attractor
will be the wrongDM-DE scaling solution (P3a in Table II)
with x ¼ �de > 1 and y ¼ �dm < 0. The above reasons
ruled out this model because it is in tension with the LSLT
and our statement of a complete cosmological dynamics.

On the other hand, we find that values of �de < 0
are preferred by the observations with at least 68% of
probability, corresponding to phantom DE.

5. Model V and �CDM

Model V corresponds to the case in which all parameters
are freely varied simultaneously, and as such is our most
general case. As in previous cases, we find again that
phantom DE is slightly preferred, as is also the energy
transfer from DE to DM. However, the final output is not
compatible with the LSLT nor with a complete cosmologi-
cal dynamics. For the latter, a proper RDE cannot be
recovered at early times, and, at late times, the attractor
is a wrong DM-DE scaling solution with unphysical values
for �dm < 1 and �de > 1.

Just for comparison, we have also fitted the�CDMmodel
to the same data and using the procedure; notice that this
model is also our null-hypothesis case, as it is recovered if all
parameters are given null values. Interestingly enough, the
good of fitness of our models is as good as that of�CDM, a
fact that points out that the used data sets are not powerful
enough to differentiate the models; this is why we had
to consider other constraints from the theoretical point of
view, like that of the LSLT in Eq. (5), and the complete
cosmological dynamics reviewed in Sec. III B.

V. DISCUSSION AND CONCLUSIONS

In the present work we studied, in general terms, a
cosmological model that includes DM with bulk viscosity,
an interaction term between DM and DE, and a free

barotropic equation of state p ¼ ð�de � 1Þ�de for the
dark energy. The dissipation in the DM component was
characterized by a bulk viscosity � directly proportional to
the expansion rate of the Universe, i.e., � ¼ H�0=ð8�GÞ,
where �0 is a dimensionless constant. Another important
assumption was that, except the DM, all matter compo-
nents are represented by perfect fluids, which in itself
constrains the type of DE that are affected by our analysis.
First of all, we performed a detailed dynamical sys-

tem analysis of the model in order to investigate its
asymptotic evolution and behavior. In addition, we de-
manded that our model must follow what we called a
complete cosmological dynamics: namely, the existence
of a viable RDE and MDE prior to a late-time accel-
eration stage; these three different eras have to be
present in any model of physical interest. The imposi-
tion of this requirement is so strong that practically
rules out all cases studied in the present work that
present a bulk viscosity in the DM sector. This results
from the fact that the bulk viscosity needs to be negative
definite in order to have standard RDE and MDE, but
that is not possible if we are to believe in the LSLT.
However, a negative definite bulk viscosity is compat-
ible with the speed up of the Universe at low redshifts,
which actually was one of the appealing aspects of these
types of models.
For purposes of illustration, we have applied our general

results to the specific interaction function: Q ¼ 3��deH,
where the parameter � quantifies the strength and direction
of the DM-DE interaction. As said before, we found that
the bulk viscosity parameter was the troublesome one, and
that we could accommodate a complete cosmological
dynamics as long as �0 ¼ 0.
Also, we tested the model using cosmological

observations to estimate the free parameters and set con-
straints on them. The three parameters ð�de; �; �0Þ allowed
us to have a very rich diversity of possible models to study,
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FIG. 10 (color online). Evolution of the dimensionless energy densities�r and�dm as a function of the redshift z for model IV. The
central thick lines come from the evaluation of both observables at the best estimated values for ð�de; �; �0Þ (see Table VI). At high
redshift the contribution of the DM is about 2%. The transition from RDE to MDE (dark matterþ baryons) occurs at zeq ¼ 4572:67

for the best estimated values. The error bands are given at 68.3% (1�) confidence level.
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from purely interacting models (�0¼0), to purely viscous
models (� ¼ 0), and even the case of �CDM, which then
acted as our null hypothesis (�0 ¼ 0 ¼ �).

Whenever we tested the model with a non-null bulk
viscosity, we found that a negative value of it was pre-
ferred, with at least 1� of confidence level. This result is
a drawback of the model presented here, given that it is in
tension with the LSLT that reads �0 > 0. It should be said,
though, that such a result was obtained when high-redshift
data were included in the analysis. Actually, low-redshift
data seems to favor a positive definite value of the bulk
viscosity, but that would have lead us to wrong conclu-
sions about the viability of the model. It would be inter-
esting to verify if these conclusions could be extended to
other functional forms for the bulk viscosity. As for the
interaction parameter �, we found that in general the data
favor a negative value, indicating an energy transfer from
the DM to DE.

On the other hand, it is interesting to notice that using
the cosmological observations we consistently found nega-
tive values of the barotropic index �de, suggesting a phan-
tom nature for the DE fluid that is in agreement with recent
results [43], even though such a setup is troublesome from
the theoretical point of view (like in the violation of the
null energy condition �þ p � 0).

We computed also the 
2
d:o:f: of all the models, and found

that the goodness-of-fit to the data were equally good for
all of them. This fact seems to indicate that the inclusion of
new free parameters did not significantly improve the
viability of the models, nor did it help to distinguish
them from the null hypothesis represented by the concord-
ance �CDM model.
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APPENDIX: THE HUBBLE PARAMETER

Here, we give details about the calculation of the pa-

rameter density of the dark matter, �̂dmðzÞ, that appears in
the Hubble parameter, see Eq. (21), that is required in
Sec. IV to compute the observational constraints.

The exact solutions of the conservation equations (1b)
and (1c), are, respectively,

�rðaÞ ¼ �r0=a
4; �bðaÞ ¼ �b0=a

3; (A1)

where a is the scale factor, and the subscript zero labels
the present values of the energy densities. If we take
the interaction term Q ¼ 3H��de, the conservation
equations (1d) and (1e) can be rewritten as

_�dm þ 3H�e
dm�dm ¼ 0; _�de þ 3H�e

de�de ¼ 0; (A2)

where we have defined the effective barotropic indexes,

�e
dm ¼ �dm þ ð�de � �e

deÞ
�de

�dm

� 3H�

�dm

; (A3)

�e
de ¼ �de þ �: (A4)

As all parameters are constant, we can integrate the
equation of motion for the DE energy density, see
Eq. (A2), and obtain

�deðaÞ ¼ �de0a
�3ð�deþ�Þ: (A5)

Hence, the barotropic index of DM, see Eq. (A3), can be
written as

�e
dm ¼ �dm � 1

�dm

�
��de þ �0

3H2

8�G

�
: (A6)

With the help of the Friedmann constraint (1a), and the
exact solutions of the energy densities, Eq. (A6) can be
finally rewritten as

�e
dm ¼ �dm � 1

�dm

�
�0

�
�r0

a4
þ �b0

a3
þ �dm

�

þ �de0

a3ð�deþ�Þ ð�þ �0Þ
�
; (A7)

and then the equation of motion (A2) for the DM energy
density becomes

_�dm ¼ �3H
�
�dm�dm � �0

�
�r0

a4
þ �b0

a3
þ �dm

�

� �de0

a3ð�deþ�Þ ð�þ �0Þ
�
: (A8)

Next, we take the dimensionless density parameters

for all matter components, �i0 � �i0=�
0
crit and �̂dm �

�dm=�
0
crit, where �

0
crit � 3H2

0=ð8�GÞ is the present critical
density; thus, Eq. (A8) becomes

ð1þ zÞ
3

d�̂dm

dz
� �̂dmð�dm � �0Þ

þ�de0ð�þ �0Þð1þ zÞ3ð�deþ�Þ

þ �0ð1þ zÞ3½�r0ð1þ zÞ þ�b0� ¼ 0; (A9)

where z is the redshift, which is related to the scale
factor through a ¼ 1=ð1þ zÞ. The analytical solution of
Eq. (A9) is

INTERACTING VISCOUS DARK FLUIDS PHYSICAL REVIEW D 88, 123004 (2013)

123004-17



�̂dmðzÞ ¼ 1

ð1þ zÞ3�0ð1þ 3�0Þð�þ �de þ �0 � 1Þ f3�
2
0 ½ð�b0 þ�dm0 þ�r0 � 1Þð1þ zÞ3ð�þ�deþ�0Þ

� ð1þ zÞ3ð1þ�0Þðð1þ zÞ�r0 þ�b0Þ þ ð1þ zÞ3� þ �ð3�0 þ 1Þð�b0 þ�dm0 þ�r0 � 1Þð1þ zÞ3ð�þ�deþ�0Þ

þ �0½ð�b0 þ�dm0 þ�r0 � 1Þð1þ zÞ3ð�þ�deþ�0Þ þ ð1þ zÞ3ð1þ�0Þðð2� 3�deÞ�b0 � 3ð1þ zÞð�de � 1Þ�r0Þ
þ ð1þ zÞ3ð3ð�de � 1Þð�b0 þ�dm0Þ þ ð3�de � 4Þ�r0 þ 1Þ� þ �ð1þ zÞ3½ð1þ zÞ3�0ð�3ð1þ zÞ�0�r0

� ð1þ 3�0Þ�b0Þ þ 3�0 ��r0 þ 1� � ð1þ zÞ3ð�de � 1Þ½�b0ðð1þ zÞ3�0 � 1Þ ��dm0�g; (A10)

where we have set �dm ¼ 1, and made use of the present Friedmann constraint �de0 ¼ 1� ð�r0 ��b0 ��dm0Þ. We
assume �dm0 ¼ 0:23 in the calculations.
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