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Modifications of general relativity usually include extra dynamical degrees of freedom, which to

date remain undetected. Here we explore the possibility of modifying Einstein’s theory by adding

solely nondynamical fields. With the minimal requirement that the theory satisfies the weak equiva-

lence principle and admits a covariant Lagrangian formulation, we show that the field equations

generically have to include higher-order derivatives of the matter fields. This has profound consequences

for the viability of these theories. We develop a parametrization based on a derivative expansion and show

that—to next-to-leading order—all theories are described by just two parameters. Our approach can be

used to put stringent, theory-independent constraints on such theories, as we demonstrate using the

Newtonian limit as an example.
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In four dimensions, the Lovelock theorem [1,2] states
that the only divergence-free rank-2 tensor, which is
constructed solely from the metric gab and its derivatives
up to second differential order, is the Einstein tensor,
Gab � Rab � 1

2gabR, plus a cosmological constant term

(see also some previous, more restrictive proofs by Weyl
[3] and Cartan [4]). This suggests a natural choice for the
left-hand side of Einstein’s equations (we work in units
where c ¼ 8�G ¼ 1):

Gab þ�gab ¼ Tab: (1)

The right-hand side, Tab, is the matter stress-energy tensor,
and the contracted Bianchi identity then implies that Tab is
divergence free, raT

ab ¼ 0. This property is necessary for
geodesic motion, which guarantees that the weak equiva-
lence principle (universality of free fall) is satisfied.

With the mild requirement that the field equations for the
gravitational field and the matter fields be derived by an
action, the arguments above single out the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Rþ SM½gab; c �; (2)

where c collectively denotes the matter fields, which
couple minimally to gab, and so SM is understood to reduce
to the standard model action in the local frame.

Provided that one is not willing to give up the weak
equivalence principle, Lovelock’s theorem does not leave
much room for modifying action (2). The usual way to go
around the theorem is to add extra dynamical fields. By
doing so, however, one is inevitably introducing extra
propagating degrees of freedom. Such degrees of freedom
remain undetected to date. Hence, a major problem for
alternative theories of gravity has been to tame the behav-
ior of extra degrees of freedom, so as to evade current
experimental constraints related to their existence [5]. This

comes in addition to the fact that it is not at all straightfor-
ward to construct theories with extra fields nonminimally
coupled to gravity that avoid instabilities associated to the
new degrees of freedom [6].
What we wish to consider here is the much less

explored option of adding nondynamical extra fields.
This is enough to circumvent Lovelock’s theorem, and
at the same time, it does not add extra degrees of freedom.
The extra fields will then have to be auxiliary, i.e., the
field equations should allow them to be determined
algebraically. A limited number of such theories, such
as Palatini fðRÞ gravities [7–9] and Eddington-inspired
Born—Infeld (EiBI) theory [10], have indeed been
studied. Perhaps the most well-known example is
Brans–Dicke theory with !0 ¼ �3=2 (which is actually
dynamically equivalent to Palatini fðRÞ gravity [8,9]).
One might be tempted to consider a modification

of general relativity (GR), which is not restricted by
Lovelock’s theorem, as it refers to the right-hand side of
the equations: more specifically, one may add any rank-2
tensor that is solely constructed by the metric and the
matter fields and is identically divergence free, so as to
not compromise the weak equivalence principle. However,
it is unclear if such a tensor actually exists. Additionally it
is reasonable to think that, if this theory is to come from an
action, the corresponding modification to action (2) would
amount to an addition of extra terms including the matter
fields, hence introducing unacceptable modification to the
equations of motion of the matter sector.
Below we argue that, in theories that include auxiliary

fields, eliminating them leads precisely (and generically)
to a modification of Einstein’s equation such as the one
just described, without modifying the field equations of
the matter fields. Using this fact, we then proceed to
develop a very efficient parametrization of gravity
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theories with auxiliary fields. The power of this parame-
trization lies on the fact that it remains oblivious to the
nature of the auxiliary fields and the way they enter in
the action. As such, it allows one to study the phenome-
nology of such theories and impose observational con-
straints in a completely generic fashion. We finally use
this parametrization to point out a specific important
shortcoming of gravity theories with auxiliary fields
(which has been pointed out for specific examples in
Refs. [11–15]): their equations contain higher-order de-
rivatives of the matter fields, and this leads to nearly
singular metrics in regimes where space-time is expected
to be perfectly smooth.

Our argument is based on the following hypotheses:
i) the theory admits a covariant Lagrangian; ii) in this
formulation any extra field is auxiliary (see also below);
and iii) the matter fields couple only to the metric in the
usual way, so that the matter Lagrangian LM reduces
to that of the Standard Model in the local frame.
For concreteness we will focus on the simplest case
of just one auxiliary field. However, this assumption
is not crucial, and the generalization to N fields is
straightforward. The theory is then described by the
Lagrangian

L ¼ Lg½g;�� þ LM½g; c �; (3)

Lg describes the gravitational part where the metric g

is possibly coupled to the extra field �, for which
the tensorial rank or other characteristics are left
unspecified.

Variation with respect to g and � yields

Eab½g;�� ¼ Tab; (4)

� ½g;�� ¼ 0; (5)

where Eab is a generic rank-2 tensor. Variation with
respect to c will yield the field equations for the matter
fields. Our requirement that � be an auxiliary field
implies that, by using Eqs. (4) and (5) (and possibly
their derivatives) in some particular combination, it is
possible to obtain an algebraic equation for �, which
can be schematically written as

F ½�;g;T� ¼ 0; (6)

where � only appears at zeroth differential order. Note
that we do not necessarily require to solve Eq. (6) in
closed form. Indeed, it is sufficient to solve for �
implicitly, provided the implicit relation can be used to
obtain a closed set of field equations for g, where any
dependence on � has been eliminated. It is clear that the
matter fields will appear in Eq. (6) only in the specific
combination that forms the stress-energy tensor.

Let us assume that F does not depend on the matter
fields at all. Then � can be algebraically determined in
terms of the metric only throughF ½�;g� ¼ 0. Consistency

requires that Eq. (5) be trivially satisfied, and Eq. (4)
reduces to Eab½g� ¼ Tab. But then, if Eab contains up to
second derivatives of the metric, Lovelock’s theorem
requires Eab½g� � Gab þ�gab, and the theory has to be
GR. The case where Eab contains more than second deriva-
tives of the metric does not concern us here, as the scope of
adding auxiliary fields instead of dynamical ones was to
avoid extra degrees of freedom.
On the other hand, if F depends on the matter fields,

eliminating � from Eq. (4) will yield Eab½g;T� ¼ Tab,
which can be written without loss of generality as

Gab þ�gab ¼ Tab þ Sab½g;T�: (7)

The precise form of Sab will obviously depend on the
specific form of the auxiliary field and how it enters
the Lagrangian. However, Sab has to have the follow-
ing properties: i) it vanishes when T�� ¼ 0, as it was

previously shown that when F is independent of the
matter fields Eab ¼ Gab þ�gab; and ii) it is divergence
free, as a consequence of the contracted Bianchi identity
and the fact that T�� is divergence free when the matter

fields satisfy their field equations. Note that this latter
property should hold identically, modulo the fact that
raT

ab ¼ 0, as it should not impose any further restric-
tion to the dynamics. This is consistent with the fact that
Sab came after eliminating an auxiliary field and that
matter is minimally coupled to g in the Lagrangian (3).
Lastly, it is worth mentioning that � need not be iden-
tified with the cosmological constant that might appear
in Lg.

We have shown that, in theories with an auxiliary field,
eliminating the latter generically corresponds to modifying
Einstein’s equations by adding a divergence-free tensor
that vanishes in vacuum. This tensor depends on the metric,
the stress-energy tensor, and their derivatives. One could
now set its origin aside and just attempt to construct it from
its constituents. We proceed by doing so, order by order in
the derivatives of the fields.
The stress-energy tensor generically contains second

derivatives1 (fermions being an exception), and this defines
the lowest order. The only term one could add at the lowest
order is gabT, where T � Ta

a, so the equations can take
the form

Rab ¼ Tab � �gabT þ gab�þ � � � ; (8)

� being an arbitrary coefficient. There are no terms with
three derivatives one can construct. The terms with four
derivatives are of three types: T2, r2T, and contractions
between T and the Riemann tensor. The only term that
actually involves the Riemann tensor itself is RðajbcjdÞTbc,

which can be eliminated without loss of generality in favor
of other terms since rcrdT

ac ¼ Ra
bcdT

bc þ RbdT
ab.

1We will discuss this hypothesis more extensively below.
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Assuming that the perturbative expansion does not break
down (which should be true at least in regimes where one
expects to recover GR), one could use the lowest-order
Eq. (8) in order to express Rab in terms of Tab. Hence, up to
fourth order in derivatives, we obtain

Sab ¼ �1gabT þ �2gabT
2 þ �3TTab þ �4gabTcdT

cd

þ �5T
c
aTcb þ �1rarbT þ �2gabhT

þ �3hTab þ 2�4rcrðaTbÞc þ � � � ; (9)

where �i and �j are coefficients with appropriate dimen-

sions. In the expression above, we are not considering
possible parity violating terms which would involve the
Levi-Civita tensor.

We still need to impose that Sab be divergence free, at
least to the required order, and this condition will impose
some bond between the various coefficients. At first it
might seem that the only solution is the trivial one, �i ¼
�j ¼ 0. However, this is not the case, as using the relations

ðhrb �rbhÞT ¼ RabraT; (10)

ðrarcra �rchÞTcb ¼ RabcdrdTca; (11)

raRabcd ¼ 2r½cRd�b; (12)

and the lowest-order Eq. (8) leads to cancellations between
terms. Indeed, imposing raS

ab ¼ 0, we obtain

�1 ¼ ��1�; 4�2 ¼ ð1þ 2�1Þð�1 � �4Þ;
�3 ¼ �4ð1þ 2�1Þ � �1; 2�4 ¼ �4;

�5 ¼ �2�4; �2 ¼ ��1; �3 ¼ ��4:

(13)

The field equations finally read

Gab ¼ Tab ��gab � �1�gabT

þ 1

4
ð1� 2�1�Þð�1 � �4ÞgabT2

þ ½�4ð1� 2�1�Þ � �1�TTab

þ 1

2
�4gabTcdT

cd � 2�4T
c
aTcb þ �1rarbT

� �1gabhT � �4hTab þ 2�4rcrðaTbÞc þ � � � ;
(14)

where all coefficients are expressed in terms of �1 and �4.
It is worth noting that, although the equations above have
been obtained as a derivative expansion, they could be
equivalently obtained as a double expansion in the
small-T and small-rT limits. More precisely, introducing
a further book-keeping parameter � associated to each
derivative of the stress-energy tensor, it can be easily
verified that Eq. (14) is the most generic field equation
which satisfies the aforementioned hypotheses to OðT2Þ
and Oð�2TÞ. This equivalence hinges on the symmetries

and on the tensorial rank of T. Assigning a derivative order
to T itself simply allows one to have a single book-keeping
parameter and simplifies the discussion.2

Known theories with auxiliary fields do indeed fall
within the parametrization developed above. EiBI gravity
in the small coupling limit corresponds to �1 ¼ 0, �4 ¼
��=2 using the definitions of Ref. [15]. Generic Palatini
fðRÞ theories correspond to �4 ¼ 0 with � and �1 being
dependent on the model parameters. Interestingly, these
two particular cases are in fact representative of two
‘‘orthogonal’’ classes of corrections.
Our analysis demonstrates that theories with auxiliary

fields, as well as any modification that does not allow for
extra degrees of freedom, inevitably lead to equations with
more than second derivatives of the matter fields. In the
absence of extra dynamical fields, such terms have already
been shown to be a major shortcoming in some specific
theory: they lead to curvature singularities when there are
sharp changes in the energy density of matter [11–15]. This
problem will generically persist in the class of corrections
we are discussing.
An analysis of the Newtonian limit is quite illuminating.

For simplicity we set � ¼ 0. If the cosmological constant
is to have the observed value, then it can safely be consid-
ered as a higher post-Newtonian order contribution. In the
limit of small velocities and small matter fields, one has
gab ¼ 	ab þ 
hab and Tab ¼ 
��0

a�
0
b, where 
 � 1 is a

book-keeping parameter. We define �ab ¼ hab � 1
2	abh,

and indices are raised and lowered by the Minkowski
metric 	ab. By performing the infinitesimal transformation
xa ! xa þ 

a where 
a satisfies


h
b ¼ 
@a�
a
b � �@bT; (15)

we can impose a gauge such that 
@a�
a
b ¼ �@bT. Here �

is a numerical coefficient that we shall fix later on. To
first order in 
, and after some manipulations, the field
equations read r2h0i ¼ 0 and

�r2h00
2

¼ �

2
þ 1

2
��r2�; (16)

�r2hij
2

¼ �ij

2
½�� �þr2�� � ½�1 � ��@i@j�; (17)

where �� ¼ �1 � �4 and i, j ¼ 1, 2, 3. It is now evident
that setting � ¼ �1 is the gauge choice that makes the
spatial part of the metric diagonal [5]. The solutions of
the equations above then are h0i ¼ 0 and

2Note also that, when one is working with an effective
description of matter, such as fluids, quantities such as the energy
density and pressure will not be of zeroth order even though they
do not explicitly appear to contain derivatives. That can be
understood intuitively by the fact that a scalar field admits an
effective description as a perfect fluid.
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h00 ¼
Z

d3x0
�

4�j ~x� ~x0j � ���; (18)

hij ¼ �ij

Z
d3x0

�

4�j ~x� ~x0j þ �þ��ij: (19)

The last terms in Eqs. (18) and (19) depend on the local
value of the density. Thus, already at first order, it is evident
that such an expansion does not fit into the standard pa-
rametrized post-Newtonian framework [5]. The latter has to
be extended to accommodate such corrections. It is also
important to stress that the standard post-Newtonian expan-
sion does not assume derivatives of the matter fields to be
small. Therefore, a post-Newtonian expansion of Eq. (14)
would be valid at most to order OðT2Þ and Oð�2TÞ.

If one considers the metric outside a spherical
source, such as the Sun, these local terms vanish and
the metric would be identical to the Newtonian metric in
GR. This reflects the fact that in vacuo Eq. (12) reduces to
Einstein’s equation. However, when one considers what
happens inside matter, and more specifically near the sur-
face of an object, then the deviation from GR is drastic.

In particular, consider a situation where the density has a
discontinuity, as can happen on the surface of a solid
(or even for fluids that are described adequately by poly-
tropic equations of state near the surface [12]). Then the
metric would be discontinuous there and the corresponding
space-time singular. In fact, the gauge transformation (15)
would not even be admissible, as the right-hand side would
diverge, and it would be impossible to eliminate the off-
diagonal term of the metric. It is worth noting that this is not
a coordinate problem, neither a problem associated with
the Newtonian approximation. One can use Eq. (14) to
straightforwardly calculate invariants such as R or RabR

ab

and check that they diverge when T is discontinuous,
unlike GR.

One can argue that discontinuities in the density are not
really physical and that the coarse-grained description of
matter would break down, rendering our treatment inade-
quate. This is in principle true, but in practice it does not
alleviate the problem. We know from everyday experience
that very sharp transitions in density do exist in nature, and
one needs to go to very small scales to resolve them. This is
enough to impose very tight constraints on�1 and�4. Let us
demonstrate this with a simple example, a calculation of the
acceleration ~a ¼ rh00 experienced within a thin layer in the
interior and close to the surface of an object with Newtonian
mass M and radius Rs. The total acceleration reads

~a ¼ ~aN � ��r�; (20)

where ~aN is the standard Newtonian acceleration. We
assume spherical symmetry, and for simplicity we take the
density of the object to be nearly constant, �ðrÞ � �0,
everywhere apart from a thin layer of width L � Rs near
the surface, and the object is otherwise in vacuum.

If the thin layer were absent and the density had a jump,
e.g., �ðrÞ ¼ �0�ðRs � rÞ where � is the Heaviside func-
tion, then the correction r� would introduce a Dirac delta
contribution to the acceleration. This is already indicative of
the pathology associated with having higher-order deriva-
tives of matter in the gravitational field equations. Suppose
now that microphysics in the transition region would allow
for a smoother transitions that fails to be captured in the
description above. Then one could consider the aforemen-
tioned layer to have the following density profile:

�ðrÞ ¼ �0½ðRs � rÞ=L�n; Rs � L < r < Rs: (21)

This can be thought of as an effective description for the
smoother transition, where L is the characteristic length
scale at which microphysics would become important and
n parametrizes the slope of the profile. Using this profile, in
the region Rs � L < r < Rs we find

a

aN
¼ 1þ 3n

4�RsL
��½ðRs � rÞ=L�n�1; (22)

where we have used aN ¼ M=R2
s , which is valid in the L �

Rs limit. To not affect the standard Newtonian force to
measurable levels in tabletop experiments, the last term on
the right-hand side of the equation above must be much
smaller than unity. Evaluating the acceleration at r� Rs �
L, we obtain the constraint

ð�1 � �4Þ � 4�RsL=ð3nÞ: (23)

Note that, once G is appropriately reinstated, each copy of
Tab carrieswith it aG, as they only appear in this combination
before eliminating the auxiliary field. Modulo fine-tuning,
one could think of �1 and �4 as numerical coefficients of
order unity times a characteristic length scale �� squared.

Then, choosing appropriate values forRs and L, one can turn
the constraint above on a constraint on ��. For instance, if

we choose—quite conservatively—Rs to be of the order of
meters and L to be of the order of microns, then

�� � n�1=2 mm: (24)

Compared to typical astrophysical and cosmological
length scales, this is an extremely tight constraint. For
comparison, the Hubble radius squared is roughly ��1 �
1052 m2. One could hope to evade this constraint by
fine-tuning the parameters. However, similar arguments
can be made for the stresses �rhij, which would provide

a constraint on �þ ¼ �1 þ �4 in Eq. (19). Fine-tuning
would not suffice to evade both constraints.
It goes beyond the scope of our analysis to provide

precise and exhaustive constraints on �1 and �4 (this
will be done elsewhere). Our goal is to demonstrate that
the theories we are discussing are unlikely to have any
effect at large scales, if they are to be compatible with local
experiments. Our analysis does not actually rule out the
possibility that eliminating an auxiliary field can affect the
value of the (effective) cosmological constant, which could
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perhaps be of some value in addressing the cosmological
constant problem. However, the corresponding theory
would have to accommodate at least two length scales
apart from the Planck scale: �� and the effective cosmo-

logical constant scale. Keeping these scales separated
without fine-tuning would not be an easy task.

Our approach has certain limitations. Sab was
constructed under the assumption that an expansion in
derivatives (or, equivalently, a small-T and a small-rT
expansions) is applicable, which does not have to hold in
all regimes. Our take on this is that such an expansion is
expected to be valid in regimes where experiments verify
the predictions of GR already. One could also wonder if
going to the next order in derivatives could help relax the
constraints. This is not the case, as adding more derivatives
of T would simply make the metric even more sensitive to
abrupt changes in the energy density.

A subtle point is that coefficients of higher-order terms
could ‘‘contaminate’’ the relations of Eq. (13). This is
due to the use of the lowest-order Eq. (8) in order to express
Rab in terms of Tab and specifically because of the
presence of a cosmological constant. This is already seen
in Eq. (13), where higher-order coefficients multiplied by
� are added to lower-order coefficients. The presence
of � in such terms is required for reasons of dimension-
ality, and if G were to be reinstated, all such terms would
appear to be suppressed by �G. This guarantees that their
contribution will be negligible.

In summary, we have shown that gravity theories
with auxiliary fields effectively lead to a modification of
Einstein’s equations by an addition of a divergence-free
second rank tensor which is constructed solely with the
usual stress-energy tensor of matter, the metric, and their
derivatives. It would be interesting to interpret these cor-
rections as an effective stress-energy tensor [16]. In these

theories, the presence of higher-order derivatives of the
matter fields is inevitable. We have developed a very
general parametrization of auxiliary field theories and
showed that, to next-to-leading order in derivatives of the
matter fields, all auxiliary field theories can be described
with only two parameters (apart from the cosmological
constant). Finally, we have shown that these parameters
can be severely constrained, as the presence of higher-
order derivatives of the matter fields in the field equations
renders the metric overly sensitive to abrupt changes of the
matter energy density. This makes it particularly challeng-
ing to construct theories with auxiliary fields that could
have any effect at large scales.
Other shortcomings, such as potential conflicts with the

standard model [17] or issues with averaging [17,18], have
been suggested for Palatini fðRÞ gravity, which is a specific
auxiliary-field theory. A more detailed analysis of the
phenomenology of gravity theories with auxiliary fields,
including a thorough discussion of these issues for generic
theories, an extension of the parametrized post-Newtonian
framework [5], and cosmological applications [19,20], will
be presented in a forthcoming publication.
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