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Unparticle contributions to the recently measured decay mode Bs ! �þ�� are analyzed. We consider

only the scalar unparticles because vector unparticles are expected to provide negligible contributions.

Assuming that the relevant coupling constants are real, we present allowed regions of coupling constants

and the scaling dimension of the scalar unparticle. While the measured value of the branching ratio is very

close to the standard model predictions, one cannot exclude the possible contributions from unparticles.
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Recently the LHCb Collaboration reported the first evi-
dence for the decay Bs ! �þ�� and an upper limit on
Bd ! �þ�� as [1],

BrðBs ! �þ��Þ ¼ ð3:2þ1:5
�1:2Þ � 10�9; (1)

BrðBd ! �þ��Þ< 9:4� 10�10: (2)

The result is quite consistent with the standard model (SM)
predictions [2]

BrðBs ! �þ��ÞSM ¼ ð3:23� 0:27Þ � 10�9; (3)

BrðBd ! �þ��ÞSM ¼ ð1:07� 0:10Þ � 10�10: (4)

The decay of Bs ! �þ�� is very sensitive to new physics
because in the SM the process occurs only through the loop
contributions. However, it would be too early to declare
that there are no new physics at all. Implications of the new
observation in view of new physics can be found in [3–5].
In this paper, we examine the unparticle effects on Bs !
�þ�� decay.

An unparticle is a hypothetical concept associated with
the scale invariance at high-energy scales [6]. According to
the unparticle scenario there is a scale-invariant hidden
sector, and it couples to the SM particles very weakly at
high-energy scale �U. When seen at low energy, the
hidden sector behaves in different ways from ordinary
particles, which is why it is called the unparticle scenario.
In other words, unparticles behave like a fractional number
of particles.

Consider an ultraviolet (UV) theory in the hidden sector
at some high energy �MU with the infrared (IR)-stable
fixed point. It is quite convenient to describe the interac-
tion between the UV theory and the SM sector in an
effective theory formalism. Below the scale of MU, a UV
operator OUV interacts with an SM operator OSM through

OSMOUV=M
dSMþdUV�4
U , where dUVðSMÞ is the scaling dimen-

sion of OUVðSMÞ. Through the renormalization flow, one

can go down to a new scale �U. It appears through the

dimensional transmutation, where the scale invariance
emerges. Below �U the theory is matched onto the above
interaction with the new unparticle operator OU as

CU
�

dUV�dU
U

M
dSMþdUV�4
U

OSMOU; (5)

where dU is the scaling dimension of OU, and CU is the
matching coefficient. The value of dU is not constrained to
be integers because of the scale invariance. This unusual
behavior of unparticles is reflected on the phase space of
OU. The spectral function of the unparticle is given by the
two-point function of OU as

�UðP2Þ ¼
Z

d4xeiP�xh0jOUðxÞOy
Uð0Þj0i

¼ AdU�ðP0Þ�ðP2ÞðP2ÞdU�2; (6)

where

AdU ¼ 16�2
ffiffiffiffi
�

p
ð2�Þ2dU

�ðdU þ 1
2Þ

�ðdU � 1Þ�ð2dUÞ (7)

is the normalization factor. The corresponding phase space
is

d�UðPÞ ¼ �UðP2Þ d4P

ð2�Þ4

¼ AdU�ðP0Þ�ðP2ÞðP2ÞdU�2 d4P

ð2�Þ4 ; (8)

and the propagator is given by

Z
d4xeiP�xh0jTOUðxÞOy

Uð0Þj0i¼ iAdU

2sindU�

e�i�dU

ðP2þ i�Þ2�dU
;

(9)

where �dU ¼ ðdU � 2Þ�.
B physics is a good test bed for the unparticle effects

[7,8], including Bs � �Bs mixing [9–12] (see also [13,14]
for meson mixing). One reason is that unparticles can
contribute to the flavor-changing neutral current at tree
level. For decays of Bs ! ‘þ‘�, the scalar unparticle
can contribute generally through*jongphil7@gmail.com
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L ¼ X
i

½Ci
qOi

qOU þDi
qðOi

qÞ�@�OU þ Ci
‘O‘OU

þDi
‘ðOi

‘Þ�@�OU�; (10)

where Ci
q;‘ and Di

q;‘ are coefficients. The quark operators

are Oi
q ¼ �qq, �q�5q, and ðOi

qÞ� ¼ �q��q, �q���5q, while

the leptonic operators are Oi
‘ ¼ �‘‘, �‘�5‘ and ðOi

‘Þ� ¼
�‘��‘, �‘���5‘.

For simplicity we only consider the left-handed currents
coupled to scalar unparticles by the following Lagrangian,

LU¼ cq

�
dU
U

�q0��ð1��5Þq@�OU

þ c‘

�dU
U

�‘0��ð1��5Þ‘@�OU; (11)

where cq;‘ are dimensionless couplings. We assume that

cq;‘ are real numbers. Recent studies on the � lepton and

lepton electric/magnetic dipole moments provide bounds
on the various leptonic couplings [15,16]. For example, for
�U ¼ 1 TeV and dU ¼ 1:9, the relevant couplings can be
large as * Oð1Þ. In this analysis we concentrate on the
range 0 � ci � 1. As will be clear later, the unparticle
contributes in the form of ðcq � c‘Þðm2

Bs
=�2

UÞdU , thus larger
values of cq;‘ could be compensated by larger dU.

We do not consider vector unparticle contributions be-
cause they are expected to be highly suppressed. One can
infer from Eq. (11) that the scalar unparticle contribution is
proportional to �ð1=�2

UÞdU , or more exactly (as will be

shown later),�ðm2
Bs
=�2

UÞdU . On the other hand, the vector
unparticle O�

U couples to the SM current as

cV

�
dV�1
U

�q0��ð1� �5ÞqO�
U; (12)

where dV is the scaling dimension of O�
U, and its contri-

bution is �ðm2
Bs
=�2

UÞdV�1. But the unitarity constraints

require that dU � 1 and dV � 3 [17], resulting in much
more suppression of the vector contribution [12].

The total decay rate of Bs ! �þ�� is now given by

�¼ 1

16�MBs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

�

m2
Bs

s
jh��jðH SM

eff þHU
effÞjBsij2; (13)

where H SM
eff is the SM effective Hamiltonian, while the

unparticle effective Hamiltonian HU
eff is

HU
eff ¼

AdUe
�i�U

sindU�

�
mBs

�U

�
2dU

�
m�mb

m4
Bs

�
ðcq � c‘Þ

� ½ �bð1� �5Þs�½ �‘�5‘�: (14)

Now the branching ratio can be written as

BrðBs ! ��Þ ¼ BrSM � jPj2: (15)

Here BrSM is the SM prediction and

P ¼ 1þ m2
Bs

2m�

mb

mb þms

CP

CSM
10

: (16)

The coefficients CSM
10 and CP are given by

CSM
10 ¼ � 1

sin 2�W
	YY0ðxtÞ; (17)

CP¼
ffiffiffi
2

p
�

GF
ðVtbV
	
tsÞ

AdUe
i�U

sindU�

�
mBs

�U

�
2dU

�
2m�

m4
Bs

�
ðcq �c‘Þ	;

(18)

where xt ¼ m2
t =m

2
W , YðxÞ ¼ 	YY0ðxÞ, and

Y0ðxÞ¼x

8

�
x�4

x�1
þ 3x

ðx�1Þ2 lnx
�
; 	Y ¼1:0113: (19)

Some remarks are in order. Our effective Lagrangian LU
in Eq. (11) contains minimal couplings, so the effective

Hamiltonian HU
eff in Eq. (14) is just proportional to the

leptonic pseudoscalar operator with left-handed quark sec-
tor. If we added right-handed quark current in LU, we
would have a leptonic pseudoscalar operator with
right-handed quarks. The corresponding coefficient is usu-
ally C0

P in the literature, which is a counterpart of CP in
Eq. (18). As shown in [18], CP and C0

P appear with differ-
ent combinations in Bs ! ‘þ‘� and B ! K‘þ‘� decays.
In Bs!�þ��, the new physics contributes with CP � C0

P,
while in B ! K‘þ‘� with CP þ C0

P; thus, the two decay
modes are complementary. Numerically, one can estimate
from Eqs. (1), (15), and (16) that (neglecting the nonzero
��s effects discussed later)

jðCP � C0
PÞmb � 0:16j ¼ 0:15; (20)

while jðCP þ C0
PÞmb � 0:33j � 1:3 from B ! K‘þ‘�

[18]. Thus the new measurement of Bs ! �þ�� is very
impressive for pinning down the Wilson coefficients.
On the other hand in B ! K	‘þ‘�, new physics enters

in CP � C0
P combination and the pseudoscalar operators

are numerically irrelevant [19]. Estimation of Eq. (20) is
much smaller than the values considered in [19], �0:38 &

ðCP � C0
PÞmb & 0:63, so we expect that numerically Cð0Þ

P

would be much more irrelevant to B ! K	‘þ‘�. In the
inclusive decay B ! Xs�

þ��, the coefficients contribute
as jCPj2 þ jC0

Pj2, which can be complementary to Bs !
�þ�� decay. The constraint is rather weak, however,
since m2

bðjCPj2 þ jC0
Pj2Þ< 45 from B ! Xs�

þ�� [20].

In Table I, we summarize the input values used in this
analysis. With the values of Table I, one gets BrSM ¼
3:54� 10�9, which is consistent with the other literature.
To compare the theoretical prediction with the experimen-
tal result, one should consider the nonzero decay width
effect of Bs meson [21–23]. According to [22],
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BrðBs ! �þ��Þtheo
¼

�
1� y2s

1þ ysA��

�
BrðBs ! �þ��Þexp ; (21)

where

ys 
 �Bs

��s

2
¼ 0:088� 0:014: (22)

Here,

A�� 
 RH � RL

RH þ RL

; (23)

where RHðLÞ exp ½��ðsÞ
HðLÞt� is the decay rate of the heavy

(light) mass eigenstate. In our case of Eq. (14) (pseudo-
scalar leptonic operator), one can easily find that

A �� ¼ cos ð2�P ��NP
s Þ; (24)

where �P is the phase of P in Eq. (16), and �NP
s is the

phase of new physics (in this case unparticles) in Bs � �Bs

mixing. From the analysis of [12], � ¼ j�j � exp ði�NP
s Þ

and

� ¼ 1þ 1

MSM
12

AdUe
�i�U

8 sin dU�

�f2Bs
m2

b

m3
Bs

��
mBs

�U

�
2dU 5c2q

3
; (25)

where MSM
12 is the standard model contribution.

And the time-dependent CP asymmetric observable
S�� is [22,24]

S �� ¼ sin ð2�P ��NP
s Þ; (26)

which is proportional to the helicity-summed time-
dependent rate asymmetry, S�� � �ðBsðtÞ ! �þ��Þ �
�ð �BsðtÞ ! �þ��Þ.
Figure 1 shows the allowed values of cq and c‘ versus

dU constrained by the measured branching ratio, Eq. (1).
The behavior of Fig. 1 can be inferred from Eqs. (15) and
(18). Note that CP is proportional to ðmBs

=�UÞ2dU ’
ð2:88� 10�5ÞdU , which suppresses the unparticle contri-
bution to the total branching ratio significantly for 1<
dU<2. Thus for larger values of dU, the value of cq � c‘
can be large to fit the experimental result. For some com-
binations of cq and c‘, A�� can be negative in Eq. (24),

allowing rather smaller values of dU. As shown in Fig. 1,
for dU * 1:4, almost all the region of 0 � cq � 1 or 0 �
c‘ � 1 is allowed. Figure 2 shows the allowed region of
ðcq; c‘Þ for different values of dU � 1:5. Note that the red

points corresponding to 1:4 � dU � 1:5 cover almost all
the space of 0 � cq;‘ � 1:0. That is the reason why we do

not consider the region dU > 2 in this analysis. It was
pointed out in [25] that the best candidate for the scalar
operator is the fermion bilinear O ¼ �c c , and current
lattice simulation indicates that the scaling dimension of
this operator is larger than 2. If that was the case, the scalar
unparticle contribution gets very suppressed and the vector
unparticle contributions might be comparable to the scalar
ones. In this analysis we are considering the general scalar
operator with scaling dimension dU � 1.
In Fig. 3 we show the time-dependent CP asymmetry

parameter S�� as a function of dU. The figure shows that

unconstrained S�� (red points) is mostly negative. But if

FIG. 1 (color online). Allowed region in dU � c‘ (a) and dU � cq (b) plane.

TABLE I. Input parameters used in this paper. Here 
�1 ¼

ðmZÞ�1, mt ¼ mtðmtÞ in the MS scheme, and �ts is the phase
of Vts.

GF ¼ 1:16638� 10�5 GeV�2 sin 2�W ¼ 0:23116

�1 ¼ 127:937 Vtb ¼ 0:999
jVtsj ¼ 0:0407 �ts ¼ �3:123
m� ¼ 105:658 MeV mt ¼ 163:2 GeV
mBs

¼ 5:3667 GeV �Bs
¼ 1:497 ps

fBs
¼ 234 MeV �U ¼ 1000 GeV
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we impose the constraints from Bs ! c� where�0:20 �
Sc� 
 sin ð2j�sj ��NP

s Þ � 0:20 (�s is the phase of Vts)

[26], then�0:25 & S�� & 0:2 (green points). Note that the

Sc� constraint is very strong. If S�� turned out to be

jS��j * 0:25, it could not be explained by unparticles.

Figure 3 can be used to distinguish scalar unparticles from
ordinary scalar particles. It was shown in [26] that jS��j &
0:5 for CP contributions from new scalar particles. In [26]

the nonzero phase of S�� comes from the complex

couplings, but in this work the source of the phase is �dU

with real couplings. If dU ! 1 and the unparticle couplings
are complex, then contributions of the scalar unparticle
become those of ordinary scalar particles, since in this limit
CP ! �cqc‘=�

2
U, which is equivalent to the CP of [26].

It should be noticed that only a replacement of
ðmBs

=�UÞ2dUð1=�2
UÞ with 1=M2

0, where M0 is a mass of

some new scalar particle, is not enough to reduce the
unparticle to an ordinary scalar particle, because there is
a nontrivial phase associated with dU.
For nonintegral dU, it serves as a phase of new physics

but it also suppresses new physics effects through
ðmBs

=�UÞ2dU . That’s the reason why the allowed region

of S�� from unparticles is smaller than that from ordinary

particles. This is a very unique feature of unparticles. For
ordinary particles, to suppress the new physics contribu-
tions, the new couplings should be small or the mass of new
particle must be large. But in the unparticle scenario, non-
integral scaling dimension dU can do the work, and dU
itself enters as a new phase as shown in Eq. (9).
Current analysis is done for �U ¼ 1 TeV. For larger

values of �U, the unparticle contribution gets smaller by
ðmBs

=�UÞ2dU and the allowed parameter space becomes

larger.
In conclusion, we have investigated the unparticle effects

on Bs ! �þ�� decay. The experimental result is quite
consistent with the SM, but it does not mean that there is
no room for new physics. In this analysis only the scalar
unparticles are considered because vector unparticles are
expected to give negligible contributions. Assuming that
scalar unparticles couple to the left-handed current, we
provided the allowed regions of the couplings cq;‘ and the

scaling dimension dU for a fixed �U ¼ 1 TeV. Since the
unparticle contributions are proportional to ðmBs

=�UÞ2dU ,
the allowed parameter space of cq;‘ gets larger for large dU.

The upper bound on BrðBd ! �þ��Þ of Eq. (2) would not
give strong constraints on the model parameters, since the
SM prediction of Eq. (4) is almost an order of magnitude
smaller. But if the branching ratio BrðBd ! �þ��Þ is
measured in the near future, a combined analysis withBs !
�þ�� would give some hints on the flavor structure of
unparticle interactions. And the scalar unparticle predicts
mostly negative S��, which could be used to distinguish

unparticles from ordinary particles.

The author thanks Kang Young Lee for his recollections
of the subject and helpful discussions. This work is sup-
ported by the WCU program through the KOSEF, funded
by the MEST (R31-2008-000-10057-0).

FIG. 2 (color online). Allowed values of cq and c‘ for 1:0�
dU<1:1 (cyan, light gray), 1:1 � dU < 1:2 (pink, dim gray),
1:2 � dU < 1:3 (blue, black), 1:3 � dU < 1:4 (green, silver),
and 1:4 � dU < 1:5 (red, gray). For dU * 1:5, almost all the
values of 0 � cq;‘ � 1:0 are allowed.

FIG. 3 (color online). Time-dependent CP asymmetry parame-
ter S�� versus dU. Green (silver) points are from the constraints

of Bs ! c�, while red (gray) ones are unconstrained.
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