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In this article we propose an overview on the current theoretical and experimental limits on a Higgs

singlet extension of the Standard Model (SM). We assume that the boson which has recently been

observed by the LHC experiments is the lightest Higgs boson of such a model, while for the second Higgs

boson we consider a mass range of 600 GeV � mH � 1 TeV, where our model directly corresponds to a

benchmark scenario of the heavy Higgs working group. In this light, we study the impact of perturbative

unitarity limits, renormalization group equations analysis, and experimental constraints (electroweak

precision tests, measurements of the observed light Higgs coupling strength at the Large Hadron Collider).

We show that, in the case of no additional hidden sector contributions, the largest constraints for higher

Higgs masses stem from the assumption of perturbativity as well as vacuum stability for scales of the order

of the SM metastability scale, and that the allowed mixing range is severely restricted. We discuss

implications for current LHC searches in the singlet extension, especially the expected suppression factors

for SM-like decays of the heavy Higgs. We present these results in terms of a global scaling factor � as

well as the total width � of the new scalar.

DOI: 10.1103/PhysRevD.88.115012 PACS numbers: 12.60.Fr, 14.80.Ec

I. INTRODUCTION

The recent discovery of a new particle [1,2] which is in
accordance with the scalar boson from the Higgs mecha-
nism [3–7] by the LHC experiments is one of the big
breakthroughs in contemporary particle physics. If the
discovered particle is indeed the Higgs boson predicted
from a Standard Model (SM)-like Higgs-doublet sector,
all its properties are completely determined by theory.
Therefore, the current quest of the theoretical and experi-
mental community is to establish whether the properties of
such a particle are in accordance with standard predictions,
or whether it is only a component of a more involved Higgs
sector. For this, all couplings as well as the spin structure of
the new particle need to be severely tested.

In this work, we consider the simplest extension of the
SM Higgs sector, i.e., we add an additional singlet which is
neutral under all quantum numbers of the SM gauge groups
[8,9] and acquires a vacuum expectation value (VEV)
[10–22]. We assume that the heavy Higgs mass lies in
the range 600 GeV � mH � 1 TeV. While a second scalar
state with a mass below 600 GeV equally constitutes a
viable scenario, we here focus on heavier additional reso-
nances, in direct correspondence to one of the benchmark
models of the heavy Higgs cross-section working group
[23–25]. This minimal setup can be interpreted as a limit-
ing case for more generic beyond the SM (BSM) scenarios,
as models with an additional gauge sectors (cf. e.g., [26])
or additional matter content ([27,28]). In our analysis, we
combine the effects of several constraints: LHC bounds on
the light Higgs signal strength, bounds from perturbative
unitarity, electroweak (EW) parameters in terms of S, T,
and U, and limits from perturbative running of the

couplings. As a major result, we find that, for mH *
700 GeV, especially the running of the couplings severely
restricts the allowed parameter space of the model, leading
to scaling factors in the percent range. In order to facilitate
the comparison of our findings with results from the LHC
experiments from searches in the heavy Higgs range, we
express the bounds we obtain on the fundamental parame-
ters of the theory in terms of a global suppression factor �
for SM-like channels as well as the total width �H of the
heavy Higgs, and exhibit regions which are allowed in
the �, � plane. These can then directly be related to LHC
production cross sections at an 8 and 14 TeV LHC.
This paper is organized as follows: In Sec. II, we briefly

review the model setup. Section III is devoted to the
investigation of the allowed parameter space taking all
constraints into account. In Sec. IV, we comment on the
impact of these limits on LHC observables. We summarize
in Sec. V.

II. THE MODEL

A. Potential and couplings

In this paragraph we will shortly review our model: we
enlarge the SM Higgs sector with a further real Higgs
singlet �, which is a pure singlet under each gauge group
of the SM [8,9,29].
The most general gauge-invariant and renormalizable

scalar Lagrangian is then

Ls ¼ ðD�HÞyD�H þD��D��� VðH;�Þ; (1)

with the scalar potential given by
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where x is the VEV associated to the new Higgs field.
We here implicitly impose a Z2 symmetry which forbids
additional terms in the potential.

To determine the condition for VðH;�Þ to be bounded
from below, it is sufficient to study its behavior for large
field values, controlled by the matrix in the first line of
Eq. (2). Requiring such a matrix to be positive definite
gives the conditions

4�1�2 � �2
3 > 0; (3)

�1; �2 > 0; (4)

where the condition given by Eq. (4) corresponds to the
requirement that the potential is bounded from below for
large field values, while Eq. (3) guarantees that the extre-
mum is indeed a local minimum.1 Since the physical mass
eigenvalues are gauge invariant, we define the Higgs fields
following the unitary-gauge prescription:

H �
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2
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 !
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2
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The explicit expressions for the scalar mass eigenvalues
are

m2
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where h and H are the scalar fields of definite masses mh

and mH, respectively, with m2
h < m2

H.

These eigenvalues are related to the following
eigenvectors:

h
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 !
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2 fulfils2

sin 2� ¼ �3xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1v
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From Eq. (8), it is clear that the light (heavy) Higgs
couplings to SM particles are now suppressed by cos�
( sin�).
From Eqs. (6), (7), and (9), it is straightforward to have

�1 ¼ m2
h
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hÞ

2v2
sin 2�

¼ m2
h

2v2
cos 2�þ m2

H
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2x2
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H
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�3 ¼ ðm2
H �m2

hÞ
2vx

sin ð2�Þ: (11)

In summary, the heavy Higgs is a ‘‘twin’’ version of the
light Higgs with rescaled couplings to the matter contents
of the SM. In fact, the only novel channel with respect to
the light Higgs case is H ! hh. The decay width � and
coupling strength �0 of the H ! hh decay are [8,29]

�ðH ! hhÞ ¼ j�0j2
8�mH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

h

m2
H

s
;

�0 ¼ ��3

2
ðxcos 3�þ vsin 3�Þ

þ ð�3 � 3�1Þvcos 2� sin�

þ ð�3 � 3�2Þx cos�sin 2�: (12)

We here briefly discuss the behavior of j�0j when x
and sin� are varied: from Eq. (12) it is clear that3

j�0j2ðj sin�jÞ> j�0j2ð� sin�Þ. The difference is more
pronounced as x is increased. In addition, for a fixed
value of sin�> 0ðsin�< 0Þ, j�0j decreases (increases)
constantly for increasing x. These features will become
important in the discussion of the experimental and theo-
retical constraints in the next sections.
The model investigated here implies a global suppres-

sion factor for all SM-like couplings for the light/heavy
resonance, respectively, determined by the additional pa-
rameters of the Higgs sector. We briefly want to comment
on this feature. For example, if the apparent enhancement
in the h ! �� decay channel of the light Higgs had
persisted, it might have rendered further studies of the
model futile, at least on the level of a leading order
analysis. However, recent results for the measurement of

1We give the exact derivation of the resulting eigenstates and
the derivation in Appendix A and here only cite the relevant
results.

2In all generality, the whole interval 0 � �< 2� is halved
because an orthogonal transformation is invariant under � !
�þ �.

3If x � v, we can approximate �0 � �3x cos�ðsin 2��
1
2 cos

2�Þ � 3�1vcos
2� sin�þOðvxÞ. We then have �0ðsin�Þ ¼

��0ð� sin�Þ. If the terms �Oðx�1Þ cannot be neglected, they
introduce a positive/negative contribution to j�0j depending on
the sign of sin�.
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this branching ratio are in good agreement (within&1:5�)
with SM predictions [30,31]. Therefore, as long as a
relative overall light Higgs coupling strength � & 1 is
not experimentally excluded, our model constitutes a
viable extension of the SM Higgs sector.

B. Number of free parameters

Our simple singlet extension model has in principle 5
free parameters on the Lagrangian level

�1; �2; �3; v; x:

The coupling parameters �i are related to the masses and
the effective mixing according to Eqs. (6), (7), and (9),
and we obtain the independent parameters

mh;mH; �; v; x: (13)

Moreover, we will reexpress x by tan	 according to

tan	 ¼ v

x

to accommodate for standard notation in models with
extended Higgs sectors. If we assume the vacuum expec-
tation value of the Higgs-doublet value to be Standard-
Model-like such that v� 246 GeV, and equally set the
Higgs mass of the light Higgs to mh ¼ 125 GeV, we are
left with three independent parameters mH, �, (x= tan	).
All results in the following sections will be given in
dependence on these variables. In this work, we restrict
the range of the singlet VEV to x 2 ½100 GeV; 10 TeV�,
leading to tan	 2 ½0:025; 2:46�.

III. THEORETICAL AND EXPERIMENTAL
BOUNDS ON THE HIGGS
SINGLET EXTENSION

In this section, we will discuss the current theoretical
and experimental limits on the singlet extension model.
We here consider

(i) limits from perturbative unitarity,
(ii) limits from EW precision data in form of the S, T,

U parameters,
(iii) perturbativity constraints on the couplings, as well

as conditions on a potential which is bounded from
below,

(iv) limits from measurements of the light Higgs signal
strength,

(v) limits from perturbativity of the couplings as well
as vacuum stability up to a certain scale�run, where
we chose �run � 1010 GeV, 1019 GeV as bench-
mark points.

In this article, we will investigate the parameter space
ðsin�; tan	Þ, while keepingmH fixed; however, in order to
demonstrate the effects of the partial-wave treatment of
perturbative unitarity, we will equally comment on the
highest possible mass of the heavy Higgs mH;max in this

parameter space, including exclusion bounds from electro-
weak precision data using mH;max . We discuss all limits

separately in the following subsections.

A. Limits from perturbative unitarity

Tree-level perturbative unitarity [32,33] puts a con-
straint the Higgs masses of our theory via a relation on
the partial-wave amplitudes aJðsÞ of all possible 2 ! 2
scattering processes:

jReðaJðsÞÞj � 1

2
: (14)

In the high energy limit,
ffiffiffi
s

p ! 1, only the a0 partial-
wave amplitude does not vanish, instead it approaches a
value depending only on mh, mH, �, and x. Therefore, by
applying the condition in Eq. (14), we can obtain several
different (correlated) constraints on the Higgs masses and
mixing angle, i.e., we can find the mh-mH-� subspace in
which the perturbative unitarity of the theory is valid up
to any energy scale. We therefore studied the unitarity
constraints in our model by calculating tree-level ampli-
tudes for all two-to-two processes4 X1X2 ! Y1Y2, with
ðX1; X2Þ; ðY1; Y2Þ 2 ðWþW�; ZZ; hh; hH;HHÞ in terms
of the mixing angle between the two physical Higgs fields
and their masses. Then, we calculated the normalized five-
dimensional bosonic scattering matrix and we imposed the
condition of Eq. (14) to each of its eigenvalues (the largest
in modulus gives the best constraint). Note that, in accor-
dance with [29], the constraint based on generic unitarity
considerations (cf. e.g., [15]) for the heavy Higgs of
mH & 700 GeV is much loosened.5

Figure 1 shows the regions in parameter space which are
still allowed after limits from perturbative unitarity only.
We found that for small mixing angles within our scan
range, the most dominant contribution stems from scatter-
ing processes involving only heavy Higgses. For sin�� 0,
the scattering matrix becomes approximately block diago-
nal with a SM block and the decoupled HH ! HH ele-
ment, and the latter gives the unitarity limits on the singlet
VEV, i.e.,6

tan 2	 � 16�v2

3m2
H

þOð�Þ for a0ðHH ! HHÞ � 0:5;

if tan	 is decreased accordingly, this boundary can there-
fore be fulfilled with any heavy Higgs mass. For small, but
nonzero mixing angles j sin�j � 0:02 and tan	 & 0:1,
upper limits for the allowed maximal heavy Higgs mass

4Calculations were actually carried out with the vector bosons
being replaced by the corresponding Goldstone bosons following
the equivalence theorem [34].

5This result is also confirmed in [35], where a similar scenario
is investigated.

6This boundary is in fact stronger than perturbativity of the

coupling alone, which leads to tan 2	 � 8�v2

m2
H

for sin� ¼ 0.
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can reach up to 35 TeV. We found that generically, heavy
Higgs scattering processes dominate for tan	 * 1:5; if
tan	 is decreased, and for nonzero mixing, gauge boson
scattering becomes equally important. However, in most
cases the whole 5� 5 scattering matrix involving all
partial-wave contributions needs to be considered, and an
approximation considering a single dominant process can-
not give a valid prediction of the upper limit on the allowed
heavy Higgs mass.

B. Limits from electroweak precision data

Constraints from EW precision data are incorporated
using the S, T, U parameters [36,37], which parametrize
deviations from the SM predictions and thereby render
constraints on new physics from higher order corrections
stemming from BSM contributions.

We here follow [38], which cites the values for the EW
parameters as

S ¼ 0:00	 0:10;

T ¼ 0:02	 0:11;

U ¼ 0:03	 0:09;

and equally used mh ¼ 125 GeV as an input value for the
calculation of the SM reference values where Sref ¼ Tref ¼
Uref � 0. As a cross-check, we have compared results from
our codewith the values for S, T,U for all benchmark points
specified in [29], and found agreement with small variations
on the 10% level [we used7 ðmtop; mhÞ ¼ ð173:5; 150Þ GeV].

To accommodate for this slight disagreement, we decreased
the allowed regions for S, T, U to

S ¼ 0:00	 0:095;

T ¼ 0:02	 0:105;

U ¼ 0:03	 0:085;

in our scans, and use as input variables [39]

ŝZ ¼ 0:2313; �sðMZÞ ¼ 0:120; mt ¼ 173 GeV:

We then use [40]

Xtot ¼ cos 2�XðmhÞ þ sin 2�XðmHÞ;
with X 2 ½S; T;U�. Note that this approach neglects
suppression of the couplings in all but the leading order,
and equally does not take the Hhh couplings into account
which can appear in higher order corrections including
heavy Higgses running in the loops.8 However, as we
will argue below, EW precision data basically poses no
constraint on the parameter space after all other restrictions
have been taken into account. Of course, a more detailed
analysis would be desirable here, and is in the line of future
work. In our approximation, the constraints basically rule
out values of j sin�j 
 0:5–0:7 depending on tan	, where
the strongest constraints here come from the T parameter.
U does not pose any additional constraints.
This closes our discussion of scans using maximally

allowed heavy Higgs masses from perturbative unitarity.
We found that within our scan range the maximally
allowed Higgs masses are Oð35 TeVÞ for small mixing

αsin

β
ta

n

Maximally allowed heavy Higgs masses from perturbative unitarity

1 TeV≤H,max m≤600 GeV 
2 TeV≤H,max m≤1 TeV 
3 TeV≤H,max m≤2 TeV 
4 TeV≤H,max m≤3 TeV 
5 TeV≤H,max m≤4 TeV 

H,max m≤5 TeV 

αsin

β
ta

n

Maximally allowed heavy Higgs masses from perturbative unitarity

 700 GeV≤H,max m≤600 GeV 

 800 GeV≤H,max m≤700 GeV 

 900 GeV≤H,max m≤800 GeV 

1 TeV≤H,max m≤900 GeV 
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FIG. 1 (color online). Allowed mixing ranges for different maximal heavy Higgs masses mH;max in dependence of the mixing angle
� as well as ratio of the VEVs tan	. Left: Heavy Higgs masses above (1,2,3,4) TeV are excluded in the (red, green, blue, magenta,
yellow) area (from sin� ¼ �1 to sin� ¼ 1). The region excluded for small sin� and tan	 * 2 leads to mH;max < 600 GeV.
The most important constraints on the upper limit in the small mixing region stem from scattering processes involving heavy
Higgs pairs (not shown here). Right: Zoom into the region where mH;max � 1 TeV.

7In [29], the actual value of the top mass which was used is not
given. Variations for mt 2 ½170:5; 173:5� did not significantly
change our results.

8See also [12] for a generic calculation with multiple scalar
extensions of the SM.
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angles and that, using these maximal Higgs masses, EW
precision data give additional constraints in the large
mixing regions. For mH;max � 1 TeV (2 TeV), j sin�j &
0:6 ð0:5Þ. For mH;max 
 2 TeV, EW precision data give no

additional constraints to our model.
In the following, we will fix the Higgs mass to mH 2

½600 GeV; 1 TeV�, and equally include the measurement
of the light Higgs signal strength j�j as well as vacuum
stability and perturbativity of the couplings up to a meta-
stable scale/the Planck scale. We will see that indeed these
latter requirements are much more stringent than EW
precision data and the light Higgs measurements and ren-
der severe constraints on the parameter space of our model.

C. Constraints from the signal strength
of the light Higgs

If we want to accommodate for the light Higgs measure-
ments [1,2], we need to take into account the limits on the
maximally allowed value of j sin�j from the overall signal
strength j�j. In general, we have9

� � �BSMðmhÞ
�SMðmhÞ ¼ cos 4��SMðmhÞ

cos 2��SMðmhÞ þ sin 2��hidðmhÞ
;

where �SM=hidðmhÞ denote the decay widths of the light

Higgs in the SM/ a possible hidden sector. We here con-
strain ourselves10 to cases where �hid ¼ 0; then, the above
equation leads to � ¼ cos 2�.

The values measured by the LHC experiments [1,2]
then render11

j sin�j 2 ½0; 0:23� from � 2 ½0:95; 1�:
These limits on the measurement of the 125=126 GeV
Higgs bosons coupling strength are in fact much more
stringent than EW precision observables.

Figure 2 shows the limits formH ¼ 600 GeV andmH ¼
1 TeV respectively. The only constraint arises here from

perturbative unitarity, which sets an upper limit on tan	
in both cases. This is generically due to a large �2 value in
these regions of parameter space. In accordance with the
behavior of �2 �m2

H for fixed ðsin�; tan	Þ values, we
equally observe that the coupling gets larger for larger
mH values, leading to a decrease in the upper limit of
tan	. Most of the parameter space ruled out by perturba-
tive unitarity would, however, be equally excluded by the
requirement of perturbativity of �2 at the EW scale, as
discussed below.

D. Limits from perturbativity and vacuum stability

We equally consider vacuum stability as well as pertur-
bativity of the Higgs potential couplings up to a certain
scale �run. Vacuum stability follows from Eq. (4), while
perturbativity of the couplings leads to the requirement that

�1;2ð�runÞ � 4�; j�3ð�runÞj � 4�:

At the electroweak scale, we found that these conditions
pose no additional constraints on the allowed parameter
space of the model, when limits from the light Higgs signal
strength and perturbative unitarity are taken into account.
If we neglect perturbative unitarity limits, the upper
allowed values of tan	 following from perturbativity of
the couplings alone are 2.05 (1.24) for mH ¼ 600 GeV
(1 TeV) (for sin� ¼ 0), respectively, which slightly
enhances the allowed tan	 ranges. Before considering
the running of the couplings, we can therefore say that
(i) perturbative unitarity alone indeed allows for heavy

Higgses in the 30 TeV range,
(ii) the strongest constraints considered so far, when

the experimental results for the light Higgs signal
strength are taken into account, stem from perturba-
tive unitarity.

We now discuss limits from perturbativity up to �run,

where we use the running parameter t ¼ ln ð�2
run

v2 Þ such that

t ¼ 0 for �run ¼ v. We here impose the constraint given
by Eq. (3) at all energies. Note that in a strict sense this is
not required for vacuum stability; for positive �3 values,
fulfilling Eq. (4) is sufficient, cf. e.g., the discussions in
[43,44]. However, as we require perturbative unitarity up to
arbitrary high scales, we also demand that the process of
electroweak symmetry breaking remains the same and that
therefore the minimum of the potential is indeed positioned
at the VEVs of the two fields; this approach has, e.g., been
followed in [26]. We will briefly comment on the effects of
releasing such a condition on the collider observables in
Sec. IV.
In the following discussion, we mostly focus on

mH ¼ 600 GeV, �run ¼ 2:7� 1010 GeV (t ¼ 37), but
will equally give results for mH ¼ 1 TeV and �run ¼
1019 GeV. In the end of the discussion, we will comment
on the generic changes for a higher Higgs mass or the
requirement of perturbativity and vacuum stability at
higher scales. For the sake of the argument, we will

9In fact, loop-induced couplings like the h ! �� branching
ratio in principle call for a more refined treatment, cf. e.g.,
discussion in [21]. However, the corresponding corrections are
generally on the sub per mill level, and can therefore safely be
ignored in our simple limit setting. For fitting procedures, on the
other hand, such a more complex coupling structure needs to be
taken into account.
10Taking decays in the hidden sector into account additionally
reduces the allowed mixing range. To understand this, consider
the case that �SM ¼ �hid; in this case, the constraint is strength-
ened to cos 4� 
 0:95, leading to sin� � 0:17. The case in
which �hid ¼ 0 is therefore the best case scenario.
11The official ATLAS fit for a 126 GeV Higgs are given by [1]
� ¼ 1:4	 0:3, and from CMS for a 125 GeV Higgs as [2] � ¼
0:87	 0:23. Being conservative, we consider � 
 0:95, where
we take the fact into account that the model considered here
cannot accommodate for �> 1. We also assumed that the errors
of the ATLAS and CMS measurements are completely uncorre-
lated. Newer values [41,42] do not significantly change this
result. See also [21] for a best fit result for this model.
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temporarily neglect the measurement of the light Higgs
signal strength and consider mixing angles j sin�j � 0:49
in the discussion of renormalization group equation (RGE)
running effects at the low scale, in order to exemplify the
generic effects on the parameter space. The signal strength
measurement will, however, be included again in the
discussion of collider observables in Sec. IV.

The renormalization group equations for this model are
given by [26,29]

d

dt
�1 ¼ 1

16�2

�
1

2
�2
3þ12�2

1þ6�1y
2
t �3y4t

�3

2
�1ð3g2þg21Þþ

3

16
½2g4þðg2þg21Þ2�

�
;

d

dt
�2 ¼ 1

16�2
½�2

3þ10�2
2�;

d

dt
�3 ¼ 1

16�2
�3

�
6�1þ4�2þ2�3þ3y2t �3

4
ð3g2þg21Þ

�
;

where yt is the (equally running) top Yukawa coupling and
g, g1 are the running couplings of the SM gauge groups.
For the decoupling case as well as for a cross-check for the
running of the gauge couplings, for which we chose the
analytic solution at one loop, we reproduced the results in
[45], where the SM breakdown scale following the one-
loop treatment here was at t ¼ 36 corresponding to a scale
�run � 1:6� 1010 GeV. By choosing a benchmark value
of �run ¼ 2:7� 1010 GeV (t ¼ 37), we are able to inves-
tigate which regions of parameter space are still allowed at
a scale which slightly exceeds the SM breakdown scale; in
this sense, our model can solve (or at least postpone) the
metastability problem of the SM. Even with such stringent
constraints, substantially large regions of parameter space
are still allowed. In addition, the requirement of vacuum

minimization at such scales complies with the requirement
of perturbative unitarity for

ffiffiffi
s

p ! 1.
We found that the strongest constraints from a phenome-

nological viewpoint, i.e., upper limits on the allowed mix-
ing angle, actually stem from the perturbativity of Higgs
self-couplings �1, �2; for�run ¼ 2:7� 1010 GeV (t ¼ 37)
and low mH, we found the requirement that j sin�j & 0:3.
This poses a much stronger constraint than electroweak
precision tests. In the following, we discuss limits from
perturbativity as well as vacuum stability in more detail:
(i) Perturbativity of �1 and upper limit on j sin�j

The strongest constraint on large mixing angles
stems from the running of �1. For tan	 & 0:1 and
large mixing angles

�2; j�3j � �1 � yt

at the electroweak scale, so the 	 function of �1 is
positive. In this case, �1 quickly grows and ap-
proaches the upper limit of 4� (e.g., for sin��
0:49, tan	� 0:025, this is reached for the relatively
low scale of �run � 350 TeV). This remains the
dominant effect until tan	 * 0:36, where �2 starts
to rise more quickly. From the running of �1, we
obtain j sin�j & 0:3ð0:2Þ for running up to �run ¼
2:7� 1010 GeV (the Planck scale) for a 600 GeV
Higgs; for 1 TeV, these values change to 0.2 (0.12).

(ii) Perturbativity of �2 and upper limit on tan	
For tan	 * 0:36, the most dominant constraint
comes from the running of �2 in almost all regions
of parameter space.12 Generically, a good estimate
of the limits can be obtained by considering the
zero-mixing case and tan	 * 1: we then have
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FIG. 2 (color online). Left: Allowed regions in parameter space where mH ¼ 600 GeV. The only restriction comes from PU, which
gives an upper limit on tan	. Right: Allowed parameter space for a 600 GeVas well as 1 TeV heavy Higgs. As before, the only limit in
parameter space comes from perturbative unitarity, which fixes the upper allowed bound of tan	 to 1.7 and 1.0, respectively.

12In the region where j sin�j * 0:26, �3 running sets in as well,
cf. discussion below.
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�2 � �1; �3:

In this case, it is easy to estimate the maximal
value of tan	 allowed such that �2 ¼ 4�. The
corresponding 	 function can be reduced to

d�2

dt
� 5

8�2
�2
2;

which has the solution

�2ðtÞ ¼ �2ðt ¼ 0Þ
1� 5

8�2 t�2ðt ¼ 0Þ :

Requiring �2ðtÞ � �max then leads to

t � �max � �ðt ¼ 0Þ
5

8�2 �2ðt ¼ 0Þ�max

:

As �2ðt ¼ 0Þ � 1
x2
, this translates to a lower limit

on x

x2min ðtÞ ¼
m2

H

2

�
1

�max

þ 5

8�2
t

�

(here we set sin�¼0) and therefore tan	max ¼ v
xmin

.

Inserting explicit values for mH¼ð600GeV;1TeVÞ
for t¼37 (76) renders ðtan	Þmax¼ð0:37ð0:26Þ;
0:22ð0:15ÞÞ. These values agree with our numerical
findings.

(iii) Perturbativity of �3 and restriction in the large
tan	=large sin� region
In a small region for tan	� 0:4 and large positive
mixings,

�3 * �1; �2;

which corresponds to the transition between �1 and
�2 dominance. In this region, all couplings evolve
similarly fast up to high scales. As an example, we

show the running of all Higgs sector as well as the
top Yukawa coupling for a point in this part of
parameter space in Fig. 3.

(iv) First vacuum stability condition (�1 
 0) and
minimal mixing angle j sin�j
For small (or 0) mixings, this is the well-known
metastability problem of the SM Higgs13 with a
low mass of 125 GeV. In our scan, the coupling
becomes negative at a scale t ¼ 36, which corre-
sponds to roughly �run � 1:6� 1010 GeV. For
small mixing angles j sin�j & 0:001, the problem
persists. There is no significant change from this
limit for raising the Higgs mass to 1 TeV.14

(v) Third vacuum stability condition (4�1�2 
 �2
3) and

minimal mixing angle j sin�j
For 0:001 � j sin�j � 0:4 and tan	 & 0:4, the
third vacuum stability condition

4�1�2 � �2
3 
 0

poses the largest constraints. For a 600 GeV Higgs
mass, mixing angles between 0.001 and 0.04 are
excluded, where for larger tan	 the upper limits
are slightly less stringent. For a Higgs mass of
1 TeV, this region is decreased to 0.02. Increasing
sin�, the transition into the allowed region comes
from an enhanced value of �1 at the low scale; in
this case, the limiting value is again the perturba-
tivity of �1. Note that in parts of the parameter space
�2, �3 only change marginally; in this case, there is
a very fine interplay between the rise of the absolute
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FIG. 3 (color online). Example for RGE running. Left: �3 becomes nonperturbative at �run �Oð107 GeVÞ, with sin� ¼ 0:37,
tan	 ¼ 0:43. Right: Example for region where 4�1�2 � �2

3 only varies marginally over large scale ranges, with sin� ¼ 0:12,
tan	 ¼ 0:04.

13See [46] for a generic introduction, and [45] for recent work.
14We want to mention that larger heavy Higgs masses allow for
�1 
 0 for running up to arbitrary scales, cf. e.g., [43,47].
However, the mass of the second Higgs boson is typically
much above the LHC reach in the according setup. We thank
O. Lebedev for useful discussions regarding this point.
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values of �2, �3 and the rapid decrease of �1, so
including additional orders in the running might
change these bounds, leading to a larger allowed
region. An example for such a ‘‘slow-running’’
point is given in Fig. 3. If we want to prevent this
fine-tuning over large scales, we could, e.g., allow
for slightly negative values of 4�1�2 � �2

3, opening

up the condition such that 4�1�2 � �2
3 
 �0:001

leads to ðsin�Þmin � 0:015 (0.01) for a 600 GeV
(1 TeV) Higgs mass. In principle, this area of pa-
rameter space would need a more detailed investi-
gation. However, this region is phenomenologically
difficult to test, and the most important limits are
indeed the ones from perturbativity on the maximal
allowed mixing, so we will not investigate this in
more detail in this work.

1. Summary of RGE effects

In this subsection, we will first summarize the results
for a 600 GeV Higgs at a running scale corresponding to
�run ¼ 2:7� 1010 GeV (t ¼ 37) and then discuss varia-
tions of the heavy Higgs mass and consequences when
going to a higher scale. In Fig. 4, we show the allowed
parameter space for 600 GeV Higgs mass both at the low
(�run ¼ 2:7� 1010 GeV, t ¼ 37) and the Planck scale. As
discussed above, the largest constraints on large mixing
angles are given by the running of �1 and �2 for low/high
tan	 regions, respectively, while generally tan	 * 0:37
(0.26) is excluded by �2 running at the low (high) scale.
Additionally, small j sin�j values are generically excluded
from requiring vacuum stability. The minimal/maximal
values for j sin�j are �0:035=0:3ð0:1=0:2Þ at �run ¼
2:7� 1010 GeV (the Planck scale). Although the above
discussion focuses on a Higgs mass of 600 GeV, the
characteristics of the respective limits remain the same

if the mass or the scale of the running are increased.
We observe the following effects:
(i) Raising the heavy Higgs mass while keeping the

scale fixed leads to a reduction of the maximal
allowed mixing angle, which stems from the pertur-
bativity of �1, as well as a decrease of the allowed
maximal value of tan	 from the perturbativity of �2.
However, on the other hand smaller mixings are still
allowed. This is due to a larger �2 value at the EW
scale, which prevents a fast decrease of 4�1�2: this
equally holds for larger �3. Even for negative 	�1

function values at low scales, the growth of �2, �3

can prevent �1 from becoming negative.15 In gen-
eral, the allowed region shrinks and equally moves to
smaller mixing angles and tan	 values. The effects
are displayed in Fig. 5, where we compare the
allowed parameter space at the Planck scale for a
600 GeV as well as 1 TeV heavy Higgs mass.

(ii) Raising the scale while keeping the Higgs mass fixed
has similar effects: the maximal allowed mixing
angle area is further restricted; generally, the
allowed region is shrinking and moving to smaller
minimally allowed tan	 values, cf. Figs. 4 and 5.

In Figs. 6 and 7, we present the results of our scans
including all limits in terms of contour plots for the
allowed areas at �run ¼ 2:7� 1010 GeV as well as the
Planck scale for mH ¼ 600, 700, 800, 900, 1000 GeV,
with numerical values summarized in Tables I and II. As
discussed above, the validity of the third vacuum stability
condition, i.e.,

4�1�2 � �2
3 
 0
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FIG. 4 (color online). Limits for mH ¼ 600 GeV at �run ¼ 2:7� 1010 GeV (t ¼ 37) (left) as well as Planck scale (right). We here
consider j sin�j � 0:49; the experimental limit is given by j sin�j & 0:23.

15For example, such a point is given by sin� ¼ 0:1, tan	 ¼
0:05, which is excluded (allowed) for mH ¼ 600 GeV (1 TeV)
by requiring stability up to the Planck scale.
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using next-to-leading-order precision only might be
questioned, so we equally present results where this is
neglected. In general, this opens up the parameter space
for even smaller mixing angles. We then take the con-
straints from vacuum stability following �1 running as a
conservative lower limit.

IV. TRANSLATION TO COLLIDER OBSERVABLES

The parameter space presented in the last subsection
translates into two different observables at colliders:

(i) the generic suppression of the production of the
heavy Higgs; this is given by sin 2�,

(ii) suppression of the SM decay modes of the heavy
Higgs. Here, we have to take into account that the
additional mode

H ! hh

leading to a further reduction of the SM-like branch-
ing ratios.

The total width of the heavy Higgs is then modified to

�tot ¼ sin 2��SM;tot þ �H!hh:

Following the observables tested by the experiments, we
therefore consider

�;�tot;

with the global SM-scaling factor defined as

� � �BSM � BRBSM

�SM � BRSM

¼ sin 4��tot;SM

�tot

:

In analogy with the above definition, we also introduce
a scaling factor �0 which parametrizes the H ! hh
decay:

�0 � �BSM � BRBSM

�SM

¼ sin 2��H!hh

�tot

;

where �þ �0 ¼ sin 2�.
For a better understanding of the effect of the constraints

on the ð�; �Þ parameter space, we first investigate the
H ! hh branching ratio. Figure 8 shows the constraints
in this decay width from RGE running to the scale defined
by �run ¼ 2:7� 1010 GeV. We see that different regions
are excluded, depending on the sign of sin�, where the
biggest effects stem from perturbativity of �2. As discussed
in Sec. II, the H ! hh squared coupling is approximately
even under a sign change of sin� for small tan	 values;
if tan	 increases, it is larger for positive sin� values. In
addition, for positive (negative) sin� values, the absolute
value of the coupling decreases (increases) for decreasing
tan	. Taking this into account, the exclusion bounds from
perturbativity of the couplings, plotted in green in Fig. 8,
are clear to interpret: for positive values of sin�, larger
tan	 values lead to larger decay widths, and therefore
large values of �H!hh are here excluded from �2 perturba-
tivity, while smaller ones are affected by �1 limits, in
accordance with the limits in Fig. 3. For negative sin�
values, the roles of �1 and �2 are interchanged, while
smaller values of �H!hh are achieved due to smaller abso-
lute values of the coupling.
Figures 9 and 10 then show how the cuts translate on the

allowed parameter space in the ð�; �Þ plane. The most
important result is that the limitation of the angle comes
with a maximally allowed total width �tot & 14 GeV
(reducing to & 6 GeV if we require perturbativity up to
the Planck scale) for a Higgs mass of 600 GeV; this should

TABLE II. Allowed parameter ranges for varying Higgs
masses at the Planck scale;j sin�jmin ;max taken at tan	 ¼ 0:08
and at sin�< 0. As before, the minimal value of tan	 is
determined by the scan range.

mH j sin�jmin ;Planck j sin�jmax ;Planck ðtan	Þmax ;Planck

600 0.104 0.20 0.26

700 0.086 0.17 0.22

800 0.074 0.15 0.20

900 0.064 0.13 0.17

1000 0.055 0.12 0.15

TABLE I. Allowed parameter ranges for varying Higgs masses
at the low (�run ¼ 2:7� 1010 GeV) scale; j sin�jmin ;max taken

at tan	 ¼ 0:15. x � 1 TeV fixes the lowest tan	 value to 0.025.
For mH & 700 GeV, the maximal allowed mixing angle results
from the measurement of the light Higgs signal strength.

mH j sin�jmin ;37 j sin�jmax ;37 ðtan	Þmax ;37

600 0.035 0.23 0.37

700 0.030 0.23 0.31

800 0.024 0.21 0.28

900 0.019 0.19 0.25

1000 0.016 0.17 0.22

αsin
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

 [
G

eV
]

 h
h

→
HΓ

Partial width bounds

π 4 ≥1λ
π 4 ≥2λ
π 4 ≥|3λ|

allowed

0

5

10

15

20

25

30

FIG. 8 (color online). Exclusion of partial widths from pertur-
bativity at the low scale for j sin�j � 0:49.
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be compared with the SM-like Higgs boson width of
�100 GeV. For a 1 TeV Higgs, the maximal values are
25 GeV for perturbativity at the low scale and 12 GeV
for perturbativity at the Planck scale, respectively. Vacuum
stability cuts out lower regions of the mixing angles=
�H!hh; here, it is important to note that the minimally
allowed widths are in the sub-GeV range. The limits
from this on the ð�; �Þ plane are more pronounced
for higher scales and lead to minimal values of �min ¼
0:79 GeV (1.4 GeV), �min ¼ 0:004 (0.001) for validity
up to the Planck scale for a 600 GeV (1 TeV) heavy
Higgs.

Finally, we remark that, if the limits from RGE are not
considered, all other constraints aremuch less stringent; only

the upper limit on tan	 from perturbative unitarity cuts out a
small region in the large positive sin�=large � and large
negative sin�=low � region, similarly to the constraints that
we obtain from perturbativity requirements of �2.
We find that the maximally allowed values for � are

roughly (0.04; 0.04; 0.04; 0.03; 0.025) for mH ¼ ð600;
700; 800; 900; 1000Þ GeV. Concerning collider searches,
the best prospect is therefore the search of a relatively light
Higgs boson atmH ¼ 600 GeV, which would lead to 0.013
(0.093) pb at a 7 (14) TeV LHC in the gluon fusion and
2� 10�3 (0.016) pb for the vector boson fusion channel.16
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FIG. 10 (color online). Exclusion bounds in ð�; �Þ plane from perturbativity, different heavy Higgs masses, for RGE running up to
�run ¼ 2:7� 1010 GeV (left) as well as the Planck scale (right).
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FIG. 9 (color online). Constraints on the ð�; �Þ plane from perturbative running of the couplings (mH ¼ 600 GeV) to
�run ¼ 2:7� 1010 GeV. Left: Constraints for j sin�j � 0:49. Right: Constraints when the light Higgs signal strength is taken into
account.

16Production cross sections have been taken from [48].
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However, also note that the widths for all masses are
&25 GeV, which might allow for new search strategies
at such masses for narrow scalar resonances.17 The maxi-
mal value of �0, on the other hand, is 0.013 for a 600 GeV
Higgs mass, which would lead to a total cross section of
4� 10�3 pb (0.03 pb) from gluon gluon fusion production
at a 7 TeV (14 TeV) LHC for the additional channel
H ! hh. Other allowed values of ð�0;�Þ for different
Higgs masses at the low (�run ¼ 2:7� 1010 GeV) scale

can be obtained from Fig. 11. If, as briefly mentioned in
Sec. III D, we relax the requirements of both perturbative
unitarity as well as electroweak symmetry breaking at
high scales, this basically opens up the parameter space
for smaller positive mixing angles, effectively leading to
lower minimal values of �, �. The effects are negligible for
the low scale; for the Planck scale, the minimal allowed
width is decreased to �0:5 GeV for nearly all masses
considered here. However, as the small mixing range will
be hard to detect at colliders, there is no visible impact
from this on the above discussion of collider observables.
Finally, we discuss the allowed regions in the ð�0; �Þ

plane, when all bounds are taken into account. The ratio of
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FIG. 11 (color online). Exclusion bounds in the ð�; �0Þ plane from RGEs, �run ¼ 2:7� 1010 GeV. Left: Effect of perturbativity of
different couplings. As before, the strongest constraints stem from the requirement of perturbativity of �2. Right: Results when varying
mH. The maximal value of �0 is in the % range for mH ¼ 600 GeV. With increasing mH , �
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FIG. 12 (color online). Exclusion bounds in ð�0; �Þ plane from RGEs, �run ¼ 2:7� 1010 GeV. Left: Effect of perturbativity of
different couplings, for mH ¼ 600 GeV and j sin�j � 0:49. For j sin�j � 0:23 (and therefore �þ �0 � 0:05), the strongest
constraints again stem from the requirement of perturbativity of �2. Right: Results when varying mH , where now all bounds were
taken into account. Constraints on one or more of the SM-like branching ratios can directly be translated into bounds on the H ! hh
branching ratio, and vice versa.

17Present studies usually assume quite broad Higgses in this
mass range, following the SM Higgs searches. This assumption
is not consistent with our scenario.
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these two quantities is related to branching ratios for both
SM-like as well as the BSM hh final states:P

BRH!SM

BRH!hh

¼ �

�0 ;

where
P

BRH!SM now denotes the sum over all branching
ratios leading to a SM-like final state. A specific branching
ratio for a distinct SM-like final state XY for a given heavy
Higgs mass mH can then be determined via

BRH!XYðmHÞ ¼
�X

BRH!SM

	
� BRSM

H!XYðmHÞ;

where BRSM
H!XY ðmHÞ denotes the branching ratio of a

SM-like Higgs with mass mH into the final state XY. As
�, �0 are indeed the parameters which can directly be
observed (or constrained) at the LHC, considering the
relation between these parameters provides additional
useful information. In Fig. 12, we show the results of
imposing all bounds in the �0, � plane. Note that by defini-
tion, �þ �0 ¼ sin 2�, which accounts for the hard cutoff
visible formH � 700 GeV. We see that, independent of the
Higgs mass, the allowed regions all lie within a relatively
narrow strip. Therefore, limits on one of these parameters
can constrain the other: for example, limits on �0 from
searches in theH ! hh channel will allow us to put bounds
on �. Independent measurements of these two quantities can
in contrast serve as a viability check of our model.

A. Variation of input parameters

Finally, we comment on how a variation of SM-input
parameters affects our results. The running of the SM
Higgs coupling is known to be sensitive, especially18 to
the strong coupling �s as well as the top Yukawa coupling
yt, so we investigate the robustness of our results under
variations of these parameters at the low scale. We here
consider

�sðmZÞ ¼ 0:1184	 0:0007;

ytðmtÞ ¼ 0:93587	 0:002 GeV;

mt ¼ 173:1	 0:7 GeV;

where, following [45], we combine the above error in the
top sector to19

ytðmtÞ ¼ 0:93587	 0:006 GeV:

For the results presented so far, we have used the central
values above. We comment directly on the effects of values
for �, �, as these are the observables of main experimental
interest.

(i) Lowering (raising) �s, while keeping yt fixed: in this
case, the allowed minimal mixing angle allowed
from vacuum stability is marginally increased
(decreased). A changed value of �s mainly influen-
ces the running of yt, which in turn leads to a faster
(slower) descent of �1, mainly affecting limits from
the third vacuum stability condition. Changes are
however in the % regime. The upper limits of
sin�, which constitute the main restrictions in the
ð�; �Þ plane, are not affected.

(ii) Keeping �s fixed, while raising (lowering) yt: for a
higher (lower) yt, a larger (smaller) region of small
mixing angles is excluded, again due to the faster
(slower) descent of �1. Maximally allowed values as
well as large tan	 limits are not changed. However,
using ytðmtÞ ¼ 0:92987 as the input value shifts the
breakdown of the SM-case ( sin� ¼ 0) running of
the coupling by approximately an order of magni-
tude to�run � 4:4� 1011 GeV. Limits from pertur-
bativity of the couplings still persist.

V. CONCLUSIONS

In this work, we have investigated the theoretical and
experimental limits of the parameter space of a pure
singlet extension of the SM Higgs sector without contri-
butions from a hidden sector, where the heavy Higgs lies
in a mass range of 600 GeV to 1 TeV. We found that, after
the light Higgs coupling strength measurements from the
LHC experiments have been taken into account, addi-
tional strong limits stem from perturbativity of the cou-
plings as well as vacuum stability, following from the 	
functions of the theory. Even for a relatively low break-
down scale Oð1010 GeVÞ, the running of the heavy and
light Higgs self-couplings severely restricts the allowed
parameter space. We have translated this into observables
which are currently tested by the LHC experiments, i.e., a
global rescaling factor � for SM-like decay modes of the
model, as well as the total width � of the new scalar. In the
heavy Higgs mass range considered in this work, the light
Higgs boson signal strength restricts � to 0.04 for mH &
700 GeV (at the low scale), while for higher masses
additional constraints arise from the running of the cou-
plings. Hence, the searches for such a boson at the
7=8 TeV with a relatively low luminosity are surely chal-
lenging. However, on the upside we found that the total
width of the new scalars is usually quite suppressed with
respect to SM Higgses of such masses, with widths lying
in the 1–25 GeV range (they are always & 0:02mH). In
addition, we have introduced a second scaling parameter
�0 which parametrizes the additional decay H ! hh.
We found that maximal values of this parameter are in
the % range.
In our work, we have neglected additional contributions

in the 	 functions which might modify the runnings and
eventually enhance the parameter space in the tan	 * 0:2

18See, e.g., [45].
19Note that we only want to estimate the effects of deviations
from the central values; a more accurate error determination
should be embedded in a higher order investigation of the Higgs
singlet extension.
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region stemming from the running of �2. These contribu-
tions, which could originate from the hidden sector, would
have to be large and negative, canceling the rapid rising of
the couplings which leads to the exclusion of experimen-
tally interesting regions with scaling factors � being lim-
ited by the mixing angle alone. Scenarios with larger �0
values which parametrize �H!hh are equally suppressed by
the running of �2. We plan to investigate such options
and the corresponding phenomenological implications in
future work.
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APPENDIX A: DISCUSSION OF HIGGS
POTENTIAL AND VACUUM
STABILITY CONDITIONS

In this section, we briefly guide the reader through
the steps from Eq. (2) to Eq. (3), using the definition of
the scalar fields given in Eq. (5). Since the minimization
procedure is not affected by the choice of the gauge, it is
not restrictive to define the two VEVs in the following
way:

hHi �
0
vffiffi
2

p

 !
; h�i � xffiffiffi

2
p ; (A1)

with v and x real and non-negative.
Then, the search for extrema of V is made by means of

the following differential set of equations:

8><
>:

@V
@v ðv; xÞ ¼ v 




�m2 þ �1v

2 þ �3

2 x
2
�
¼ 0

@V
@x ðv; xÞ ¼ x 




��2 þ �2x

2 þ �3

2 v
2
�
¼ 0:

(A2)

The physically interesting solutions are the ones
obtained for v, x > 0:

v2 ¼ �2m
2 � �3

2 �
2

�1�2 � �
3
2

4

; (A3)

x2 ¼ �1�
2 � �3

2 m
2

�1�2 � �
3
2

4

: (A4)

Since the denominator in Eqs. (A3) and (A4) is always
positive (assuming that the potential is well-defined), it
follows that the numerators are forced to be positive in
order to guarantee a positive-definite nonvanishing solu-
tion for v and x.
In order to identify the extrema, we need to evaluate the

Hessian matrix:

H ðv; xÞ �
@2V
@v2

@2V
@v@x

@2V
@v@x

@2V
@x2

0
@

1
A ¼ 2�1v

2 �3vx

�3vx 2�2x
2

 !
: (A5)

From this equation, it is straightforward to verify that the
solutions are minima if and only if Eq. (3) is satisfied.
To compute the scalar masses, one must expand the

potential in Eq. (2) around the minima found in Eqs. (A3)
and (A4). Then, Eqs. (6) and (7) follow immediately.

APPENDIX B: PERTURBATIVE UNITARITY

In this section we want to briefly explain the techniques
that we used in order to obtain bounds from perturbative
unitarity, first described in detail by [32]. Evaluating the
tree-level scattering amplitude of longitudinally polarized
vector bosons, one finds that the latter grows with the
energy of the process, eventually violating unitarity, unless
one includes some other (model dependent) interactions.
According to the equivalence theorem, the amplitude of
any process with external longitudinal vector bosons VL

(V ¼ W	, Z) can be substituted, each one of them, with
the related Goldstone bosons v ¼ w	, z [34] for energies
much larger than the vector boson mass.
Given a tree-level scattering amplitude between two

spin-0 particles, Mðs; 
Þ, where 
 is the scattering (polar)
angle, we know that the partial-wave amplitude with
angular momentum J is given by

aJ ¼ 1

32�

Z 1

�1
dðcos
ÞPJðcos
ÞMðs; 
Þ; (B1)

where PJ are Legendre polynomials. It has been proven
(see [33]) that, in order to preserve unitarity, each partial
wave must be bounded by the condition

jReðaJðsÞÞj � 1

2
: (B2)

As discussed previously, in the high energy limit,ffiffiffi
s

p ! 1, only the a0 partial-wave amplitude does not
vanish; therefore, we here present all a0’s in the high
energy and small gauge coupling limit (i.e.,

ffiffiffi
s

p ! 1 and
e ! 0, respectively):
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a0ðzz ! zzÞ ¼ 3ðm2
h þm2

H þ ðm2
h �m2

HÞ cos ð2�ÞÞ
64�v2

; (B3)

a0ðzz ! wþw�Þ ¼ m2
h þm2

H þ ðm2
h �m2

HÞ cos ð2�Þ
32

ffiffiffi
2

p
�v2

;

(B4)

a0ðzz ! hhÞ
¼ cos�

128�v2x
ðð3m2

h þm2
HÞx cos�

þ ðm2
h �m2

HÞðx cos ð3�Þ � 4vsin 3�ÞÞ; (B5)

a0ðzz ! hHÞ ¼ cos� sin�ððm2
h þm2

HÞxþ ðm2
h �m2

HÞðx cos ð2�Þ þ v sin ð2�ÞÞÞ
32

ffiffiffi
2

p
�v2x

; (B6)

a0ðzz ! HHÞ ¼ sin�

64�v2x
ð2ð�m2

h þm2
HÞvcos 3�þ xðm2

h þm2
H þ ðm2

h �m2
HÞ cos ð2�ÞÞ sin�Þ; (B7)

a0ðwþw� ! wþw�Þ ¼ m2
h þm2

H þ ðm2
h �m2

HÞ cos ð2�Þ
16�v2

; (B8)

a0ðwþw� ! hhÞ ¼ cos�

64
ffiffiffi
2

p
�v2x

ðð3m2
h þm2

HÞx cos�þ ðm2
h �m2

HÞðx cos ð3�Þ � 4vsin 3�ÞÞ; (B9)

a0ðwþw� ! hHÞ ¼ cos� sin�ððm2
h þm2

HÞxþ ðm2
h �m2

HÞðx cos ð2�Þ þ v sin ð2�ÞÞÞ
32�v2x

; (B10)

a0ðwþw� ! HHÞ ¼ sin�

32
ffiffiffi
2

p
�v2x

ð2ð�m2
h þm2

HÞvcos 3�þ xðm2
h þm2

H þ ðm2
h �m2

HÞ cos ð2�ÞÞ sin�Þ; (B11)

a0ðhh! hhÞ
¼ 1

1024�v2x2
ð6ð5m2

h þm2
HÞðv2 þ x2Þ

� 3ð15m2
h þm2

HÞðv� xÞðvþ xÞcos ð2�Þ
þ 6ð3m2

h �m2
HÞðv2 þ x2Þcos ð4�Þ � 3ðm2

h �m2
HÞ

� ððv� xÞðvþ xÞcos ð6�Þ þ 8vxsin 3ð2�ÞÞÞ;
(B12)

a0ðhh ! hHÞ
¼ 3 cos� sin�

64
ffiffiffi
2

p
�v2x2

ðx cos�þ v sin�Þ

� ðð3m2
h þm2

HÞx cos�þ ðm2
h �m2

HÞx cos ð3�Þ
� ð3m2

h þm2
HÞv sin�þ ðm2

h �m2
HÞv sin ð3�ÞÞ;

(B13)

a0ðhh ! HHÞ

¼ sin ð2�Þ
512�v2x2

ð6ð�m2
h þm2

HÞvx cos ð4�Þ
þ 6ðm2

h þm2
HÞðv2 þ x2Þ sin ð2�Þ

� ðm2
h �m2

HÞð2vxþ 3ðv� xÞðvþ xÞ sin ð4�ÞÞÞ;
(B14)

a0ðhH ! hHÞ

¼ sin ð2�Þ
256�v2x2

ð6ð�m2
h þm2

HÞvx cos ð4�Þ
þ 6ðm2

h þm2
HÞðv2 þ x2Þ sin ð2�Þ

� ðm2
h �m2

HÞð2vxþ 3ðv� xÞðvþ xÞ sin ð4�ÞÞÞ;
(B15)

a0ðhH ! HHÞ
¼ � 3 cos� sin�

64
ffiffiffi
2

p
�v2x2

ðv cos�� x sin�Þ

� ððm2
h þ 3m2

HÞv cos�þ ð�m2
h þm2

HÞv cos ð3�Þ
þ 2xðm2

h þm2
H þ ðm2

h �m2
HÞ cos ð2�ÞÞ sin�Þ;

(B16)

a0ðHH ! HHÞ
¼ 1

1024�v2x2
ð6ðm2

h þ 5m2
HÞðv2 þ x2Þ

þ 3ðm2
h þ 15m2

HÞðv� xÞðvþ xÞ cos ð2�Þ
� 6ðm2

h � 3m2
HÞðv2 þ x2Þ cos ð4�Þ

� 3ðm2
h �m2

HÞððv� xÞðvþ xÞ cos ð6�Þ
þ 8vxsin 3ð2�ÞÞÞ: (B17)
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APPENDIX C: ANALYTIC SOLUTION FOR SM
GAUGE COUPLING RGES

In the SM, all one-loop RGEs for gauge couplings are of
the form

dx

dt
¼ ax2:

The exact analytic solution for this equation is given by

xðtÞ ¼ xðt ¼ t0Þ
1� axðt ¼ t0Þðt� t0Þ ; (C1)

where for t ¼ log ð �2

�2
ref

Þ we have

t� t0 ¼ 2 log

�
�

�0

	
:

For positive values of a, the coupling reaches the Landau
pole when the denominator in Eq. (C1) goes to 0; for
negative values, x ! 0 for t ! 1.

Nowwe turn to the Yukawa coupling terms. This generic
equation has the form

dx

dt
¼ axþ bx3

with the solution

xðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aC0ðt0Þ

p
eaðt�t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� be2aðt�t0Þ C0ðt0Þ
q ;

withC0ðt0Þ ¼ x2
0

aþbx2
0

where xðt ¼ t0Þ � x0 defines the initial

value. In case of the top Yukawa coupling, we have

16�2a ¼ �4g2s � 9

8
g2 � 17

24
g02; 16�2b ¼ 9

4
:

However, taking the time dependence of the SM gauge
couplings into account, the above solution needs to be
modified such that aðt� t0Þ is replaced by

R
t
t0
aðt0Þdt0.

Although this is still feasible at one loop, we chose to solve
the RGE of the top Yukawa coupling numerically.20
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