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The lowest dimensional gluon condensate G2 is analyzed at finite temperature and chemical potential
using a holographic model of QCD with conformal invariance broken by a background dilaton. Starting
from the free energy of the model, the thermodynamical quantities needed to determine the T and μ depend-
ence of the gluon condensate are evaluated. At high temperature the gluon condensate is independent
of chemical potential. Moreover, at μ ¼ 0, the temporal and spatial Wilson loops at low temperature
are computed; they are related to the (chromo)electric and magnetic components of G2, respectively.
The T dependence of the two components is separately determined.
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I. INTRODUCTION

The gluon condensate

G2 ¼
D
0
��� αs
π
Ga

μνGa;μν
���0E; (1)

with Ga
μν the gluon field strength tensor, was introduced in

QCD in the framework of the short-distance operator prod-
uct expansion applied to the two-point correlation function
of heavy and light quark current operators [1]. It represents
the vacuum matrix element of the lowest dimensional
gauge-invariant operator constructed by gluon fields, and
parametrizes the long-wavelength fluctuations of the color
fields in the nonperturbative QCD vacuum. It typically
appears in QCD sum rule analyses, and its value has been
determined in a phenomenological way, mainly on the basis
of information on the spectrum of heavy quarkonium.
Estimates have also been obtained using the dilute instan-
ton-gas approximation [2]; the favored numerical value
G2 ≃ 0.012 GeV4 is affected by a large uncertainty [1,3,4].
The gluon condensate is related to the QCD trace

anomaly which, for massless quarks, reads

Θμ
μ ¼ βðλÞ

λ
Ga

μνGa;μν; (2)

Θμ
μ being the trace of the QCD energy momentum tensor,

λ ¼ Nc
g2s
4π the ’t Hooft coupling (Nc is the number of col-

ors), and βðλÞ the β function of QCD. Hence, the vacuum
value of the trace of the QCD energy momentum tensor is
connected to (1).
Determinations of the gluon condensate can be obtained

in lattice QCD [5]. In this case, the condensate is derived
from small Wilson loops, after subtracting a perturbative
tail in the lattice coupling constant expansion, whose first
coefficients are either analytically computed or fitted to the
numerical results. The Wilson loop method can be easily

extended to finite temperature. In particular, simulations
in full QCD show that the temperature dependence of
the gluon condensate across the deconfinement transition
is different for the (chromo)magnetic and electric compo-
nents: the magnetic condensate is quite independent of T,
while the electric condensate decreases as temperature
increases [6]. Numerical information about the chemical
potential dependence is not available, at present.
Hence, thegluoncondensate reflects relevant featuresof the

strongly coupled color fields in the QCD vacuum. Although
it cannot be identified as anorder parameter in anyQCDphase
transition, it is an important quantity to examinewhen temper-
ature and baryon density are changed. The holographic
approach isasuitablemethodforsuchamonitoring, inparticu-
lar inmodels inwhich the behavior of the quark condensatevs
temperatureandbaryondensitycanalsobestudied[7]. Inthese
models, the QCD transition between a chirally symmetric
phase and a phase with broken chiral symmetry can be ana-
lyzed in the same framework as the deconfinement transition.
In lattice simulations, at vanishing chemical potential, the
two transitions occur close to each other. One can investigate
whether at finite density the two transitions still coincide. The
holographicdeterminationof thegluoncondensate is useful to
gain information about these aspects of QCD.
This is the aim of the present study. We analyze the con-

densate (1) in a holographic model of QCD described in
Sec. II. In Sec. III we use the free energy to determine the
gluon condensate dependence on temperature and baryon
density,while inSec. IVweuse thesmall temporal andspatial
Wilson loops to study the low-T behavior of the (chromo)
electric andmagnetic contributions to the gluon condensate.
The conclusions are collected in the last section.

II. HOLOGRAPHIC MODEL

The problem of studying QCD at finite temperature and
baryon density can be faced by methods inspired by the
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gauge/gravity correspondence [8] and developed in top-
down or bottom-up procedures. Such approaches aim at
investigating the nonperturbative regime of QCD through
its possible semiclassical, weakly coupled, higher dimen-
sional dual theory, following the spirit of the correspondence
between the strong-coupling regime ofN ¼ 4 super Yang-
Mills (SYM) gauge theory in a 4dMinkowski space and the
weak-coupling regime of type IIB string theory in a 5d anti–
de Sitter (AdS) space, times a compact 5dmanifold. In these
approaches, the same rules relating operators of the boun-
dary gauge theory to their dual fields are followed [9,10].
Modifications with respect to the AdS/CFT correspondence
are introduced, in order to adapt the conjecture to QCD, in
particular as far as breaking of scale invariance is concerned.
Far from identifying a unique QCD dual, they lead to the
formulation of several phenomenological models in which
a few key features of strong interaction phenomenology are
encoded.
Investigations of the phase diagram of QCD, when tem-

perature and density of the hadron system are changed,
have recently appeared in this framework [7,11,12,13],
with focus on in-medium behavior of hadron properties
[14,15], as well as on thermodynamics [16,17]. Here, we
are interested in studying the gluon condensate at increas-
ing temperature and baryon density. We adopt the holo-
graphic soft-wall model, formulated to study hadron
properties, which uses the occurrence of Regge trajectories
in the low-lying hadronic spectra as a guiding information
[18]. The model is characterized by a dilatonlike term in the
higher dimensional dual theory, introduced to break con-
formal invariance, and it has been used to study several
aspects of QCD [19,20]. A good description of known phe-
nomenological features has been achieved in spite of the
simplicity of the model. We follow two ways to determine
the gluon condensate, through the free energy and by com-
puting small Wilson loops.

A. Geometry

Temperature and chemical potential effects can be
included in the holographic description by introducing in
the 5d AdS space a charged black hole. Such a geometry
is known as AdS/Reissner-Nordström (RN) and is charac-
terized, in the Euclidean space, by the metric

ds2 ¼ R2e2AðzÞ

z2

�
fðzÞdτ2 þ dx̄2 þ dz2

fðzÞ
�
; (3)

with coordinates ðτ; x1; x2; x3; zÞ, positive holographic
coordinate z, AðzÞ ¼ 0, and

fðzÞ ¼ 1 −
�
1

z4h
þ q2z2h

�
z4 þ q2z6: (4)

R is the radius of the AdS space, q the charge of the
black hole, zh the position of the black-hole horizon,
defined by the condition fðzhÞ ¼ 0; from now on we will
set R ¼ 1.
In the literature two different modifications have been

introduced in the phenomenological setup now known as
the soft-wall model [18], in order to introduce a mass scale
in the theory thus making the 4d boundary theory more
similar to QCD. One choice, proposed in [18], consists
of including in the action a factor e−ϕðzÞ ¼ eaEc

2z2, while
AðzÞ ¼ 0 in (3). In this framework, thermodynamic proper-
ties have been first studied in [21], by calculating the free
energy from the gravity action. The other choice has been
considered in [22], and consists of modifying the metric
by putting AðzÞ ¼ aEc2z2 in (3), while ϕðzÞ ¼ 0; some
thermodynamic properties have been investigated in
[23]. c is a dimensionful parameter that breaks conformal
symmetry in vacuum (c ∼ ΛQCD). In this work we focus on
the first case, and generalize the study of the thermody-
namic properties to the case of nonzero temperature and
chemical potential.
aE is a coefficient that will be fixed hereinafter. The con-

dition aE < 0 is needed to avoid a massless pole in the two-
point correlation function of quark vector currents [24]; we
shall find the same condition using considerations on the
pressure. As in other bottom-up holographic models of
QCD, the constant c can be fixed from the spectrum of
the ρ mesons, which, in both versions of the soft-wall
model, is given by m2

n ¼ −4aEc2ðnþ 1Þ.
The temperature T is defined by the relation

T ¼ 1

4π

���� dfdz
����
z¼zh

¼ 1

πzh

�
1 − q2z6h

2

�
¼ 1

πzh

�
1 −Q2

2

�
;

(5)

where Q ¼ qz3h. The temporal component of a U(1)
gauge field in the bulk, A0ðzÞ, is dual to the quark num-
ber operator ψ†ψ appearing in the QCD generating
functional at finite density. Following the AdS/CFT dic-
tionary, the boundary value A0ð0Þ can be related to the
source of this operator, i.e. the quark chemical potential:
A0ð0Þ ¼ iμ (the imaginary unit arises considering the
Euclidean spacetime). The equation of motion for
A0ðzÞ can be obtained from the Maxwell part of the dual
5d action

S ∝
Z

d5x
ffiffiffi
g

p
e−ϕFMNFMN; (6)

with FMN ¼ ∂MAN − ∂NAM. The general solution for the
only nonvanishing component A0ðzÞ involves two coeffi-
cients: A0ðzÞ¼iðB1− B2

2aEc2
e−aEc2z2Þ. Imposing A0ð0Þ ¼ iμ,

together with the condition that, for aE → 0, the solution
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coincides with the RN one, ARN
0 ðzÞ ¼ iðμ −

ffiffiffiffiffiffiffi
3g25

q
qz2Þ1,

we get

A0ðzÞ ¼ i

 
μ −

ffiffiffiffiffiffiffi
3g25

q
q

aEc2
ð1 − e−aEc2z2Þ

!
: (7)

A0ðzÞ gets the same expression also in the second version
of the soft-wall model. The vanishing of A0ðzÞ at the
horizon, A0ðzhÞ ¼ 0, sets a relation between the chemical
potential and the charge of the black hole:

μ ¼
ffiffiffiffiffiffiffi
3g25

q
q

aEc2
ð1 − e−aEc2z2hÞ ¼

ffiffiffiffiffiffiffi
3g25

q
Q

aEc2z3h
ð1 − e−aEc2z2hÞ: (8)

In the following we compute the gluon condensate and a
few thermodynamical quantities, comparing the results to
other determinations.2 Indeed, in the confined phase, mod-
ifications of various observables with respect to T, μ ¼ 0
are expected [26]. Our model exhibits a nontrivial structure
in the low-temperature/finite-density region, which is dis-
cussed in the following section. This structure is a conse-
quence of the ansatz for the black-hole function fðzÞ in (4),
and is different from the case of a dynamically determined
fðzÞ [27]. Finally, let us remark that the confined phase
could be holographically described by a different metric,
thermal AdS, without black holes, and a Hawking-Page
transition between thermal AdS and the black-hole metric
could occur, associated to the deconfinement transition in
QCD [21]. In the following we do not consider such a
possibility.

B. Low temperature

The low-temperature regime described by Eqs. (5) and
(8) deserves a detailed discussion. From Eq. (5) one sees
that T ¼ 0 corresponds either to Q ¼ ffiffiffi

2
p

or to zh → ∞.
If Q ¼ ffiffiffi

2
p

, only some values of μ can be obtained varying
zh, since μðzhÞ has a positive minimum for any aE < 0, as
shown in Fig. 1. Therefore, lower values of the chemical
potential can be reached only from high values of zh
and very small values of Q (Q should be small enough
to contrast the exponential divergence ez

2
h in μ). If we

fix T, take zh from (5) and substitute in (8), we can re-
present μ as a function of the chargeQ at fixed temperature:

μðQÞ ¼
ffiffiffiffiffiffiffi
3g25

q
Qπ3T3

aEð1 −Q2=2Þ3 ð1 − e−aEð1−Q2=2Þ2=ðπTÞ2Þ: (9)

In Fig. 3 μTðQÞ is plotted for two values of temperature,
T ¼ 0.4 and T ¼ 0.22 (in units of c, with g25 ¼ 1 and put-
ting aE ∼ −2.5 as it will be set in the next section). For the
higher temperature, T ¼ 0.4, there is a one-to-one corre-
spondence between Q and μ, while at T ¼ 0.22 it is not
possible to continuously obtain lower values of μ lowering
Q, due to the presence of a local minimum; at some point,
decreasing μ there is a jump from one value ofQ to another
one. In the plane (μ, T) the values for which there is this
jump are depicted in Fig. 2 (for the same values of c, g25, and
aE). A different value of c would rescale both T and μ,
while a different value of g25 would only affect the scale
of μ [13]. The jump is due to the form of fðzÞ in
Eq. (4), and disappears once the Einstein equations for a
theory with modified RN metric with dilaton are solved.
In our model, a first-order phase transition occurs at high

 0
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µ

zh

FIG. 1 (color online). μðzhÞ from Eq. (8), setting Q ¼ ffiffiffi
2

p
,

g25 ¼ 1, c ¼ 1, and aE ≃−2.5.
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FIG. 2 (color online). Chemical potential μ versus Q for two
values of temperature, T ¼ 0.4 (plain line) and 0.22 (dashed
line), with parameters c, g25, and aE as in Fig. 1. For the lowest
temperature the relation μT vs Q is not one to one.

1In the AdS/RN solution the coefficient
ffiffiffiffiffiffiffi
3g25

q
q is fixed solv-

ing the Einstein equation f0 − 3f0=z ¼ 1
g2
5

z2A02
0 together with the

equation of motion A00
0 − A0

0=z ¼ 0, and imposing that f has the
expression (4). Notice that in [16] the coefficient is

ffiffiffi
3

p
=2 since

g25 ¼ 1=4.
2A computation of thermodynamical quantities has been car-

ried out in a holographic framework with a different metric [25].
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density and low temperature, characterized by a disconti-
nuity in all thermodynamical quantities.

III. GLUON CONDENSATE FROM
THE FREE ENERGY

One of the methods we use to compute the gluon con-
densate is based on the relation (2) and involves the com-
putation of the trace of the energy-momentum tensor
through thermodynamical functions. We make use of the
AdS/CFT correspondence relation

Z ∼ e−S (10)

between the 4d gauge partition function Z and the 5d grav-
ity action S to compute the free-energy density

F ¼ − T
V

log Z: (11)

In the RN model the free-energy density gets two contri-
butions, from the Einstein-Hilbert and the Maxwell terms
of the action:

F ¼ − 1

16πGN

Z
zh

0

dz
ffiffiffi
g

p �
R − 2Λ − 1

4g25
F2

�

¼ −
1

16πGN

Z
zh

0

dz
1

z5

�
−8 − 2Q2

z6

z6h
− 1

2g25
z4A0

0ðzÞ2
�
;

(12)

GN is the Newton constant in 5d. In the previous sections
we have introduced two possible modifications of the RN
model. The free energy of the model with AðzÞ ¼ 0 and
ϕ ¼ −aEc2z2, assuming a nondynamical dilaton, reads

F ¼− 1

16πGN

Z
zh

0

dz
eaEc

2z2

z5

�
−8−2Q2

z6

z6h
− 1

4g25
F2

�

¼−
1

16πGN

Z
zh

0

dz
eaEc

2z2

z5

�
−8−2Q2

z6

z6h
− 1

2g25
z4A0

0ðzÞ2
�

¼ 1

8πGN
ðF 1þF 2Þ: (13)

Equation (13) needs to be regularized. To this aim, we write
F 1 as

F 1ðzhÞ ¼ 4

Z
zh

0

dz
eaEc

2z2

z5

¼ 4

Z
zh

0

dz

�
eaEc

2z2

z5
− 1

z5
− aEc2

z3
− a2Ec

4

2z

�

þ 4

Z
zh

ϵ
dz

�
1

z5
þ aEc2

z3
þ a2Ec

4

2z

�
ϵ→0

; (14)

obtaining

FREG
1 ðzhÞ¼−eaEc

2z2h

z4h

−1

2
a2Ec

4ð−3þ2γE−2Γ½−1;−aEc2z2h�þ log½a2E�Þ:
(15)

This regularization scheme, consisting in the subtraction of
the divergent terms 1=ϵ4, 2aEc2=ϵ2, and −a2Ec4 log½c2ϵ2�,
is chosen in order to obtain a vanishing pressure at zero
temperature. Equation (15) shows that aE < 0 is required.
On the other hand, using Eq. (7), F 2 reads

F 2ðzh;QÞ¼Q2

z6h

Z
zh

0

dzzeaEc
2z2 þ 1

4g25

Z
zh

0

dz
eaEc

2z2

z
A0
0ðzÞ2

¼ Q2

2aEc2z6h
ðeaEc2z2h −1Þ− 3Q2

2aEc2z6h
ð1−e−aEc2z2hÞ:

(16)

The parameters zh and Q are related to T and μ through
Eqs. (5) and (8). For values of T for which the relation
μTðQÞ in Eq. (9) is not one to one, we choose the solution
shown in Fig. 3: if μ is greater than the relative minimum
(μ > μm), the chargeQ is taken in the rangeQ2 < Q <

ffiffiffi
2

p
,

while if μ < μm we take 0 < Q < Q1. This choice corre-
sponds to a lower free energy. In the numerical analysis
we set c ¼ 1 and g25 ¼ 1.

A. Thermodynamical quantities

The pressure

p ¼ T
∂ ln Z
∂V ; (17)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5  6

T

µ

FIG. 3 (color online). Points in the plane ðT; μÞ corresponding
to a jump, as in Fig. 2, and where the thermodynamical quantities
present a discontinuity. The values of c, g25, and aE are the same as
in Fig. 1.
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for large homogeneous systems, is related to the free energy
density

p ¼ −F : (18)

The entropy density can be computed using

s ¼ ∂½T log Z�
∂T ¼ ∂p

∂T : (19)

In the limit ðμ; TÞ → 0, the pressure obtained from (15),
(16) behaves as

pðT; μÞ → 1

8πGN

1

2
a2Ec

4ð2γE − 3þ 2 logð−aEÞÞ (20)

and vanishes if aE ¼ −e3=2−γE ∼ −2.5. This condition
allows us to set the value of aE.

3 On the other hand, the T →
∞ limit of the pressure sets the coefficient in front of the
free energy. Indeed, comparing

p →
1

8πGN
ðπ4T4 þ � � �Þ (21)

to the result for a free massless gas of bosons in thermal
equilibrium [28,23], we find 1=8πGN ¼ 8=ð45π2Þ in SU(3)
pure gauge theory.
To infer how the pressure changes at different values of

the chemical potential μ, it is convenient to look at the ratio
p=T4. Notice that all the dimensionful quantities can be
given in units of c. Using the value of aE found before
and m0 ¼ mρ ¼ 0.776 GeV, one gets c≃ 0.25 GeV.
The ratio p=T4 is shown in Fig. 6. For small values of the

chemical potential, p=T4 has a monotonic T dependence,
and saturates at T=c ≥ 3, a result common to other
approaches. At higher values of μ the asymptotic value
at T → ∞ (independent of μ) is reached from above.
The figure shows that, as the chemical potential increases,
p=T4 reaches a peak whose position coincides with the
points in Fig. 2 for μ > 4, and vanishes for T → 0. This
behavior is different from the one found, e.g., in
Fig. 4.10 of [29], where the low-temperature, high-density
region has been scrutinized using perturbation theory. The
variation of the pressure with respect to its value at μ ¼ 0
can be observed in Fig. 5, where the quantity Δp=T4 ¼
ðpðT; μÞ − pðT; 0ÞÞ=T4 is plotted versus T. Similar results
have been obtained in [30,31,32,33] [see, in particular,
Fig. 6(b), Fig. 2, Fig. 5 and Fig. 1 (left panel) of these refer-
ences, respectively] and through perturbation theory, as
shown in Fig. 2 (left panel) of Ref. [34], in Fig. 5 of
Ref. [35], and in Fig. 7 of Ref. [36]. The ratio p=μ4 as
a function of the chemical potential, Fig. 4, shows the same

effect observed in Fig. 6: as the temperature increases, the
curve approaches the asymptotic value from above.
The quark density ρ ¼ ∂p=∂μ is plotted versus T in

Fig. 7 for several values of μ=T. The ratio ρ=T3 increases
near the critical temperature, with a slope increasing with
μ=T. At μ ¼ 0 this behavior reproduces the one found in
lattice QCD (see Figs. 5–6 of Ref. [32]).
The last thermodynamical quantity needed to get the

gluon condensate is the entropy density, which can be
computed by Eq. (19). Looking at Fig. 8 it is possible
to appreciate a property of the holographic model intro-
duced here, the vanishing of the entropy as T → 0 (for
μ≲ 6.8). This property is not shared by the RN model
[37] (unless a Hawking-Page transition occurs for high
μ and low temperature to another phase described by a
different metric).
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FIG. 4 (color online). Ratio pðT; μÞ=T4 versus T, for chemical
potential μ ¼ 0.001 (plain red line), 0.1 (dashed green line), 1.5
(dot-dashed blue line), 2.5 (dotted purple line), and 4.5 (dot-dot-
dashed cyan line). T and μ are in units of c; g25 ¼ 1.
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FIG. 5 (color online). Δp=T4 versus T. In the inset, the region
of temperature which follows the peaks is enlarged. The plain red
line corresponds to μ ¼ 0.1, the dashed green line to μ ¼ 0.8, the
dot-dashed blue line to μ ¼ 1.5, the dotted purple line to μ ¼ 2.5.
T and μ are in units of c; g25 ¼ 1.

3In presence of a Hawking-Page phase transition this condition
on aE is not required.
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B. T and μ dependence of the gluon condensate

The variation of the gluon condensate versus tempera-
ture and density can be obtained from the energy density,
using the relation ϵ ¼ Ts − pþ μρ, together with the
formula

ΔG2ðT; μÞ ¼ G2ðT; μÞ −G2ð0; 0Þ ¼ −ϵðT; μÞ þ 3pðT; μÞ
(22)

derived, e.g., in [38] at finite temperature; contributions from
additionaldegreesof freedomarediscussed in [39],while the
condensate innuclearmatter is studied,e.g., in [40].Wemake
use of the relation

ΔG2ðT; μÞ ¼ 4pðT; μÞ − TsðT; μÞ − μρðT; μÞ: (23)
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FIG. 7 (color online). ρ=T3 versus T for several values of the
ratio μ=T: μ=T ¼ 1.2 (plain red line), 1 (dashed green line), 0.8
(dot-dashed blue line), 0.6 (dotted purple line), 0.4 (dot-dot-
dashed cyan line), and 0.2 (dot-dot yellow line). T and μ are
in units of c; g25 ¼ 1.
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FIG. 8 (color online). Entropy density, divided by T3, com-
puted from Eq. (19), versus temperature T, for some values of
the chemical potential.

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.5  1  1.5  2  2.5

-(
8π

G
N

)
∆G

2(
T

,0
)/

T
4

T

FIG. 9 (color online). −ΔG2ðT; μÞ=T4 as a function of T at
μ ¼ 0.
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FIG. 6 (color online). p=μ4 versus the chemical potential μ for
several values of temperature: T ¼ 0.02 (plain red line), 0.1
(dashed green line), 0.4 (dot-dashed blue line), 0.5 (dotted purple
line), and 0.6 (dot-dot-dashed cyan line). T and μ are in units of
c; g25 ¼ 1.
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FIG. 10 (color online). −ΔG2ðT; μÞ versus T for several values
of the chemical potential: μ ¼ 0.001 (solid red line), μ ¼ 0.5
(dashed green line), μ ¼ 2 (dot-dashed blue line), μ ¼ 3 (dotted
purple line), μ ¼ 4 (dot-dot-dashed cyan line). T and μ are in
units of c; g25 ¼ 1.
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In Fig. 10 we plot the T dependence of −ΔG2ðT; μÞ=T4 at
μ ¼ 0, which reproduces the shape obtained by lattice
QCD (see, e.g., Fig. 2(b) of Ref. [41]). The difference is
the smaller slope in reaching the maximum value. The
agreement between holographic and lattice QCD results is
noticeable, and makes us confident on the reliability of the
results in other regions, namely at finite μ. The quantity
−ΔG2ðT; μÞ=T4 at finite density is depicted in Fig. 9.
Peaks are found in correspondence of the points in Fig. 2
(forμ > 4); the height of eachpeak increaseswith the chemi-
calpotential.Forhighvaluesofμ,ΔG2 becomesamonotonic
function of temperature, while at high temperatures it
becomes independent of μ: asymptotically, ΔG2 behaves
as in the limit of large number of colors, in which no density
dependence isexpected.Thefirst-orderphase transitionman-
ifests by a divergence at a critical low temperature.

IV. GLUON CONDENSATE FROM SMALL
WILSON LOOPS: (CHROMO)ELECTRIC

AND MAGNETIC CONTRIBUTIONS

The gluon condensate can also be computed in a differ-
ent way, expanding the vacuum expectation value of a small
Euclidean Wilson loop WðCÞ in powers of the area s of the
loop. The method is similar to the one adopted in lattice
QCD to compute G2 [5]. The expansion can be written as

log ðhWiÞ ¼ −X
n

cnαns − π2

36
ZG2s2 þOðs3Þ (24)

and involves a perturbative series in αs; the gluon con-
densate G2 appears in the coefficient of the Oðs2Þ term.
Z is a renormalization constant that we set to Z ¼ 1,
following [42].
We compute log ðhWiÞ at μ ¼ 0 and small values of T

in Eq. (24) in the holographic approach, extending the
calculations at T ¼ 0 made in [42,43]. We consider a small
circular Wilson loop C of radius a, whose expectation value
can be computed through the Nambu-Goto action, i.e.
determining the minimal area of the worldsheet spanned
by a string in the 5d bulk with endpoints attached to C,
according to the gauge/gravity duality prescriptions:

hWðCÞi ∼ e−SNG : (25)

The Nambu-Goto action is

SNG ¼ 1

2πα0

Z
d2ξ

ffiffiffi
γ

p
; (26)

with ðξ1; ξ2Þ the worldsheet coordinates and γ the induced
metric. We choose ξ1 ¼ r and ξ2 ¼ ϕ, where (r, ϕ) is the
representation in polar coordinates of ðx; τÞ in the case of
a temporal Wilson loop, and ðx; yÞ for a spatial one.
Notice that at finite temperature the expectation values
of a temporal and a spatial Wilson loop do not coincide,

and can be related to different quantities, the (chromo)
electric and magnetic component of the gluon conden-
sate, respectively [44].
To compute these quantities, we follow [42] and use the

line element

ds2 ¼ ec
2
Sz

2

z2

�
fðzÞdτ2 þ dx̄2 þ dz2

fðzÞ
�
; (27)

where ec
2
Sz

2

=z2 is the warp factor. This factor generates an
area law for the quark-antiquark static potential at T ¼ 0
[45]. The numerical value of the scale cS has been fixed
to cS ¼ 0.67 GeV from the ρ meson spectrum, as in [42].
We redefine t ¼ r=a and ψ ¼ z2=a2, and introduce the

dimensionless parameter λ ¼ a2c2S
4. The circular loop is

centered at (0, 0) with radius a, and the coordinates are lim-
ited by 0 ≤ x; y; τ ≤ a. For the temporal loop, it must be
τ < 1=T for regularity of the metric [46]; this can be
achieved if a < 1=T. Including in (26) the induced metric
and integrating in the angle ϕ, the Nambu-Goto action for a
spatial Wilson loop reads

SyNG ¼
Z

a

0

drLyðψ ;ψ 0; rÞ

¼
Z

1

0

dtt
eλψ

ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1 − t2

4t2
ψ 02

ψ

1

1 − λ2π4 T4

c4S
ψ2

vuut ; (28)

while for the temporal Wilson loop it is given by

SτNG¼
Z

a

0

drLτðψ ;ψ 0;rÞ

¼ 1

π

Z
1

0

dtt
eλψ

ψ
ð
ffiffiffiffi
A

p
Eð−B=AÞþ ffiffiffiffiffiffiffiffiffiffiffi

AþB
p

EðB=AþBÞÞ:

(29)

EðxÞ is the complete elliptic integral of the second kind,
and

A ¼ 1 − ψ2T2=c2Sπ
4 þ 1 − t2

4t2
ψ 02

ψ

1

1 − ψ2λ2T2=c2Sπ
4
;

B ¼ 1 − t2

4t2
ψ 02

ψ

−ψ2λ2T2=c2Sπ
4

1 − ψ2λ2T2=c2Sπ
4
: (30)

The action and the solution of the equation of motion can
be expanded for small λ:

SNG ¼ S0 þ λS1 þ λ2S2 þOðλ3Þ
ψ ¼ ψ0 þ λψ1 þ λ2ψ2 þOðλ3Þ; (31)

4A different choice of the parameter λ, e.g. λ ¼ a2T2, gives the
same result for the gluon condensate.
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with

S0 ¼ −1; (32)

S1 ¼
5

3
; (33)

Sτ=y2 ¼ 7

90

�
85∓ 2π4

T4

c4S
− 120 log 2

�
: (34)

S0 and S1 have the same expression for the spatial and tem-
poral Wilson loop, while the temporal Nambu-Goto action
ofOðλ2Þ, Sτ2, differs from the spatial Sy2 in the sign of the T

4

term. It is worth noticing that the linear term S1 in Eq. (33)
does not vanish in the soft-wall model. As observed from
the highQ2 expansion of two-point correlation functions of
quark or gluon currents, e.g. in Ref. [19], in the soft-wall
model a dimension-two condensate emerges. In QCD no
local gauge-invariant operator of dimension two can be de-
fined; however, the possible existence and meaning of this
quantity is still the subject of discussions [47]. The gluon
condensate can be extracted from the λ2S2 term, and its
electric (e) and magnetic (m) parts are

Ge=m
2 ðTÞ ¼ 14c4S

5π4

�
85∓ 2π4

T4

c4S
− 120 log 2

�
: (35)

The result is depicted in Fig. 11. The corrections to the
magnetic and electric components of the gluon condensate
are equal in size but opposite in sign, and negative for the
electric component; therefore the full gluon condensate gets
no corrections. This is reminiscent of the result obtained in
a perturbative calculation of the smallest Wilson loop, in
which the electric and magnetic terms remain equal at
Oðg2Þ [48].

The result in Eqs. (32)–(35) turns out to be valid at low
temperatures, since the coefficient of the second-order term
grows as T4. Indeed, this is confirmed by a comparison
with Fig. 3 of Ref. [49], where the dependence on temper-
ature of the electric and magnetic components of the gluon
condensate has been computed, finding that the two quan-
tities increase as T4, with the same coefficient and opposite
sign. The approximations involved in the calculation inhibit
the extension of the result to intermediate temperatures.

V. CONCLUSIONS

We have studied the gluon condensate when both temper-
ature and chemical potential are switched on, starting from the
free energy of the theory living in a 5d space with an AdS/
Reissner-Nordström metric with a dilatonlike term in the
action.Wehave found that theT dependenceof thegluoncon-
densate coincides with the one obtained in lattice QCD at
μ ¼ 0. At large temperature and density, the condensate does
not depend on μ, as expected on the basis of large Nc argu-
ments. At low temperature a peak is found, whose height
increases with the chemical potential. Similar results are
obtained as well by considering a different modification of
theRNmodel, inwhichthemetric isdistorted;differencesarise
mainly in the numerical value of the parameters aE and c, and
sointhescaleofthedimensionlessquantitiesT=candμ=c.The
model gives rise to a peculiar structure of the phase diagram,
withafirst-orderphasetransitionathighvaluesof thechemical
potential and low T. This is reflected in a discontinuity of the
thermodynamical quantities for those values of T and μ, also
visible in the gluon condensate.
For finite temperature and vanishing density, we have also

computedG2 fromsmallWilson loops.Thismethodallowsus
to separate the (chromo)electric andmagnetic components of
the condensate, related to temporal and spatial loops, respec-
tively. This method shows that the two components have the
sametemperaturedependence,butwithadifferentsign, so that
thegluoncondensate remainsunchanged.This isan indication
that the method based on small Wilson loops can be properly
usedonly at low temperatures: the coefficient of the expansion
is proportional to T4, and smaller and smaller values of the
radius of the loop must be chosen to make the series conver-
gent, and the extension to high temperature is unreliable. This
is also confirmed by a comparison with the outcomes of the
first method we have used for computing the gluon conden-
sate. In fact, in Fig. 9 one can notice that the gluon condensate
remains constant as well, up to temperatures around 0.2c,
hence the analysis with the Wilson loop should be reliable
up to T=cS ∼ 0.2c=cS ∼ 0.08. Using a different function
fðxÞ in the black-hole metric, namely the solution of the
Einstein equation once the warp factor is fixed, the
(chromo)electric andmagnetic components of the condensate
have the same, but opposite in sign, behavior vs temperature,
with a different profilewith respect to the one found here, and
asymptotic T4 dependence.
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FIG. 11 (color online). (Chromo) electric (continuous red line)
and magnetic (dashed green line) component of the gluon con-
densate Ge=m

2 ðTÞ for small T and in units of cS, computed from
small circular Wilson loops.
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