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Wepropose a newmechanism for generating aCPphasevia aHiggs vacuumexpectationvalue originating

fromgeometry of an extra dimension.A twisted boundary condition is the key to produce an extra-dimension

coordinate-dependent vacuum expectationvalue, which contains aCP phase degree of freedom and can be a

new source of a CP phase in higher-dimensional gauge theories. As an illustrative example, we apply our

mechanism to a five-dimensional gauge theory with point interactions and show that our mechanism can

dynamically produce a nontrivialCP-violating phasewith electroweak symmetry breaking, even though the

five-dimensional model does not include any CP-violating phases of Yukawa couplings in the five-

dimensional Lagrangian because of a single generation of five-dimensional fermions. We apply our

mechanism to a model with point interactions, which has no source ofCP-violating phases in the couplings

of the higher-dimensional action, and show that a nontrivial CP phase dynamically appears.
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I. INTRODUCTION

Pursuing the origin of the generations of the fermions
is one of the important themes in particle physics.
The three generations (or more) are necessary to produce
the Kobayashi–Maskawa CP phase, which causes
CP-violating effects and was proposed in Ref. [1]. If the
number of generations were less than 3, any complex
phases in the Cabbibo–Kobayashi–Maskawa (CKM)
matrix would be absorbed into phases of quark fields,
and then the Kobayashi-Maskawa CP-violating mecha-
nism would not work.

Extra-dimensional field theory is one of the appealing
candidates beyond the standard model. Many studies have
been done up to today based on many ideas for pursuing the
origin of fermion flavor [2–18]. Especially, we can find
several attractive models to solve the generation problem,
in which the three generations of the four-dimensional chiral
fermions are dynamically realized froma single generation of
higher-dimensional fermions. However, such models have
a common problem: The number of higher-dimensional
Yukawa couplings is not enough to produce a CP-violating
phase because of a single generation of fermions in higher-
dimensions, sowe could not obtain aCP-violating phase à la
Kobayashi–Maskawa. Therefore, in models to solve the gen-
eration problem, we need some new sources ofCP-violating
phases other than higher-dimensional Yukawa couplings.
Otherwise, those models without a CP-violating phase
should be discarded as phenomenological ones.1

In this paper, we propose a new mechanism to produce
a CP phase in the context of five-dimensional gauge
theories. Allowing a twisted boundary condition (BC)
for the Higgs doublet leads to a Higgs vacuum expecta-
tion value (VEV) with an extra-dimension coordinate-
dependent phase, which contains a CP phase degree
of freedom. The properties of such kinds of scalar
VEVs have been studied in Refs. [22–31].2 We note
that the electroweak symmetry is dynamically broken at
that time.
As a demonstration of our mechanism, we apply the

mechanism to a five-dimensional gauge theory with point
interactions in which three generations in four dimensions
are produced from a single generation in five dimensions.
We show that a nontrivialCP phase dynamically appears in
the CKM matrix in four dimensions, even though any
coupling constants in the five-dimensional Lagrangian
have no CP phases. Our purpose of this paper is to show
that our mechanism does work as a new source of the CP
violation.
This paper is organized as follows. In Sec. II, we

discuss and verify a possibility of the Higgs doublet
with a twisted BC to explain the origin of the CP phase
in the CKM matrix. In Sec. III, we construct a model with
point interactions and a scalar singlets for which the VEV
depends on the extra coordinate exponentially. In Sec. IV,
we check that the CP phase originating from our mecha-
nism can explain the CKM properties in the above model.
Here, we also discuss the properties of the realized quark
masses and other mixings briefly. In Sec. V, we summa-
rize our results and discuss some aspects of our model.*fujimoto@crystal.kobe-u.ac.jp

†nishiwaki@hri.res.in
‡dragon@kobe-u.ac.jp
1In the gauge-Higgs unification model, a similar problem

arises because of a lack of degree of freedom in the Yukawa
sector of an original five-dimensional action. The ways to over-
come this point have been studied [19–21].

2Point interactions on S1, which are additional boundary
points (on S1), have been studied in Refs [32–36]. We can
consider another possibility that some terms are localized in
boundary points at tree level [37–40].
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In the Appendix, details of choosing parameters are
explored.

II. POSITION-DEPENDENT VEV
(ALSO AS CP PHASE) WITH TWISTED

BOUNDARY CONDITION

In this section, we propose a new mechanism for
generating CP phase with twisted boundary condition
of a five-dimensional scalar H on S1. Hereafter, we use
a coordinate y to indicate the position in the extra space.
A key aspect is that broken phase can be realized with
the scalar, and at the same time, the VEV profile itself
turns out to be y-position dependent and complex,
which means that the scalar VEV possibly triggers the
CP violation. Interestingly, the y-position dependence
disappears in the gauge boson masses, even though the
VEV of H depends on y. This is because the y depen-
dence of the VEV of H is cancelled out in the squared
form HyH. This property is very important, and it works
as an usual four-dimensional Higgs mechanism without
violating electroweak precision measurements at the
tree level. When we consider the situation that H is
the SUð2ÞW Higgs doublet, we can dynamically generate
both the suitable electroweak symmetry breaking
(EWSB) and the CP-violating phase simultaneously.
We note that its SUðNÞ extension is possible and
straightforward.

The action we consider is

SH¼
Z
d4x

Z L

0
dy

�
Hyð@M@MþM2ÞH��

2
ðHyHÞ2

�
; (2.1)

where M and � are the bulk mass and quartic coupling,
respectively. Since S1 is a multiply connected space,
we can impose the twisted boundary condition on H as
[22–26]

Hðyþ LÞ ¼ ei�HðyÞ: (2.2)

Here, we take the range of � as��< � � �. L shows the
circumference of S1, and we choose the metric convention
as �MN ¼ �MN ¼ diagð�1; 1; 1; 1; 1Þ. The Latin indices
run from 0 to 3, 5 (or y), and Greek ones run from 0 to 3,
respectively.

We note that the VEVof hHðyÞi should be determined by
minimizing the functional

E ½H� ¼
Z L

0
dy

�
j@yHj2 �M2jHj2 þ �

2
jHj4

�
(2.3)

because the VEV can possess the y dependence to minimize
the energy. Here, we assume that the four-dimensional (4D)
Lorentz invariance is unbroken.

After introducing H ðyÞ by

HðyÞ ¼ ei
�
LyH ðyÞ; H ðyþ LÞ ¼ H ðyÞ; (2.4)

the functional E can be rewritten as

E ½H� ¼ E1½H � þ E2½H �; (2.5)

E1½H �¼
Z L

0
dy

�
j@yH j2þ i

�

L
ðð@yH ÞyH �H y@yH Þ

�
;

(2.6)

E2½H � ¼
Z L

0
dy

�
�

2

�
jH j2 � 1

�

�
M2 �

�
�

L

�
2
��

2

� 1

2�

�
M2 �

�
�

L

�
2
�
2
�
; (2.7)

where E1 corresponds to the contribution from the
y-kinetic term of H .
Since H ðyÞ satisfies the periodic boundary condition,

H ðyÞ can be decomposed as

H ðyÞ ¼ X1
n¼�1

~anffiffiffiffi
L

p ei2�n
y
L; (2.8)

where ~an is a two-component SUð2ÞW constant
vector. Substituting Eq. (2.8) into E1, we obtain the
expression

E 1 ¼
X1

n¼�1

��
2�nþ �

L

�
2 �

�
�

L

�
2
�
j ~anj2 � 0; (2.9)

and we can conclude that the minimum of E1 is given by
E1 ¼ 0 when the values of � and ~an satisfy one of the
conditions

ðiÞ ��<�<� and ~an¼0ðn�0Þ:H ¼ ~a0ffiffiffiffi
L

p ; (2.10)

ðiiÞ� ¼ � and ~an ¼ 0ðn � 0;�1Þ: H ¼ ~a0ffiffiffiffi
L

p or

H ¼ ~a�1ffiffiffiffi
L

p e�i2�y
L; (2.11)

where ~a0 in Eq. (2.10) and ~a0 or ~a�1 in Eq. (2.11) are still
undetermined. The functional E2 takes the minimum value
if the following condition is fulfilled:

jH j2 ¼
8><
>:

1
�

�
M2 �

�
�
L

	
2
	

for M2 �
�
�
L

	
2
> 0

0 for M2 �
�
�
L

	
2 � 0

: (2.12)

Combining the above two results and using the SUð2ÞW
global symmetry, we can show that the VEV hHðyÞi is
given, without loss of generality, as
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(I) M2 � ð�LÞ2 > 0

hHðyÞi¼

8>>><
>>>:

vffiffi
2

p ei
�
Ly

0

1

 !
for ��<�<�;

vffiffi
2

p ei
�
Ly

0

1

 !
or vffiffi

2
p e�i�Ly

0

1

 !
for�¼�;

(2.13)

(II) M2 � ð�LÞ2 � 0

hHðyÞi ¼ 0
0

� �
; (2.14)

where v is given by�
vffiffiffi
2

p
�
2
:¼ jhHðyÞij2 ¼ 1

�

�
M2 �

�
�

L

�
2
�
: (2.15)

From now on, we will assume the case of
(I) M2 � ð�LÞ2 > 0.

Now we discuss some properties of the derived VEV in
Eq. (2.13). Differently from the SM, the VEV possesses
y-position dependence, and its broken phase is realized
only in the case of M2 � ð�LÞ2 > 0. But like the SM, the

squared VEV (2.15) is still constant even though hHðyÞi
depends on y. This means that after v

ffiffiffiffi
L

p
is set as 246 GeV,

where the mass dimension of v is 3=2, the same situation as
the SM occurs in the EWSB sector. On the other hand, the y
dependence of the Higgs VEV in Eq. (2.13) is an important
consequence for the Yukawa sector. Since the VEV of
the Higgs doublet appears linearly in each Yukawa term,
the overlap integrals which lead to effective 4D Yukawa
couplings will produce a nontrivial CP phase in the CKM
matrix.

In terms of the VEV and physical Higgs modes hðnÞðxÞ,
H can be expanded as

Hðx;yÞ! X1
n¼�1

0
1ffiffi
2

p
�
vei

�
Ly�n;0þhðnÞðxÞ 1ffiffiffi

L
p eið2�nþ�

L Þy
	 !

;

(2.16)

which obeys the boundary condition (2.2). The physical
masses �hðnÞ of the zero mode (n ¼ 0) and the Kaluza–
Klein (KK) modes (n � 0) are easily calculated from
Eq. (2.1) as

�2
hðnÞ ¼

8><
>:
2
�
M2 �

�
�
L

	
2
	
¼ �v2 for n ¼ 0

2M2 þ ð�þ2�nÞ2
2L2 þ ð��2�nÞ2

2L2 � 3
�
�
L

	
2 ¼ �v2 þ ð2�nÞ2

L2 for n � 1;
(2.17)

with the hermiticity condition for a real field on S1: hðnÞy ¼
hð�nÞ.

We mention that the relation between �hðnÞ and � for
n ¼ 0 in Eq. (2.17) is totally the same as that of the
standard model. We also comment on the Higgs-quarks
couplings in our model. As shown in Eq. (2.16), the profiles
of the VEVand the Higgs physical zero mode are the same

as ei
�
Ly up to the coefficients. This means that the strengths

of the couplings are equivalent to those of the SM even
though the mode function gets to be y-position dependent.
As a result, the decay branching ratios of the Higgs boson
are the same as those of the standard model.3

III. MODELWITH POINT INTERACTIONS ON S1

In the previous section, we introduced the twisted BC for
the SUð2ÞW doublet H and generated the EWSB by the y-
position-dependent complex VEV in Eq. (2.13) in the case
of M2 � ð�=LÞ2 > 0. We expect that this VEV also works
as the source of the CP phase of the CKM matrix, but here
an important issue, which we should think about carefully,
exists.

If all the profiles of the quarks are flat, an effective phase
appears after integration over y just as an overall factor,
which can be removed by Uð1Þ rephasing and never works
as a physical CP phase. To circumvent this difficulty,
profiles of the quarks are required to be localized. On the
other hand, field localization (in extra dimensions) is
known as an effective way of explaining the quark mass
hierarchy and pattern of flavor mixing. In this section, we
consider a model with point interactions as an illustrative
example. Point interaction can be considered as a zero-
thickness brane, and we can arrange it anywhere in the bulk
space of S1.
At the location of a point interaction, we can consider

five-dimensional (5D) gauge-invariant boundary condi-
tions, for which the variety is rich compared with the
case of Z2 orbifolding. After we introduce three point
interactions for a 5D fermion, its zero-mode profile gets
to be chiral, split, and localized. This situation is just what
we want.4 We emphasize that flavor mixing is naturally
realized as overlapping of localized quark profiles. In the
model, an additional gauge singlet scalar is required for
generating the large mass hierarchy of the quarks. Its (al-
most) exponential shape in the VEV is also generated by a

3Being different from the universal extra dimension case
[41–45], the ‘‘low’’ KK mass less than a TeV scale is not allowed
after considering the level mixing in the top sector [46]. Then,
the significant deviations do not occur in the loop-induced single
Higgs production via gluon fusion and Higgs decay processes to
a pair of photons and gluons in our model.

4Another interesting idea for generating three-generation
structure and field localization is introducing magnetic flux on
the torus [47–49].
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suitable boundary condition at the corresponding point
interactions.

This basic idea is found in Ref. [46]. Nevertheless, there
are two different points between the models in this paper
and in Ref. [46]:

(i) In the previous model [46], the Higgs VEV cannot
possess a nontrivial complex phase, and a CP phase
in the CKM matrix has not been realized. On
the other hand, the VEV in our present model has a
y-position-dependent complex phase, which will
produce a CP phase of the CKM matrix.

(ii) In the previous model [46], the extra dimension has
been taken to be an interval, where the twisted BC in
Eq. (2.2) cannot be realized. In the present model,
we set the extra dimension to be a circle S1, for
which the geometry is compatible with the twisted
BC (2.2).

In the following part, we briefly explain how to construct
our model. The 5D action for fermions is given by5

S ¼
Z

d4x
Z L

0
dyf½ �Qði@M�M þMQÞQ

þ �Uði@M�M þMUÞUþ �Dði@M�M þMDÞD�g;
(3.1)

where we introduce an SUð2ÞW doublet (Q), an up-quark
singlet (U), and a down-type singlet (D) with the corre-
sponding bulk masses (MQ, MU, MD). We note that our

model contains only one generation for 5D quarks, but
each 5D quark produces three generations of the 4D
quarks, as we will see below.

We adopt the following BCs for Q, U, D with an
infinitesimal positive constant " [46]:

QR¼0 at y¼LðqÞ
0 þ"; LðqÞ

1 �"; LðqÞ
2 �"; LðqÞ

3 �";

(3.2)

U L¼0 at y¼LðuÞ
0 þ"; LðuÞ

1 �"; LðuÞ
2 �"; LðuÞ

3 �";

(3.3)

D L¼0 at y¼LðdÞ
0 þ"; LðdÞ

1 �"; LðdÞ
2 �"; LðdÞ

3 �";

(3.4)

where �R and �L denote the eigenstates of �5, i.e.,

�R � 1þ�5

2 � and �L � 1��5

2 �. Here LðiÞ
j for i ¼ q, u, d

and j ¼ 0, 1, 2, 3 means the positions of point interactions
for the 5D fermions. See Figs. 1 and 2 for details. A crucial
consequence of the above BCs is that there appear
threefold degenerated left- (right-)handed zero modes
in the mode expansions of QðU;DÞ and that they form
the three generations of the quarks. The details have
been given in Ref. [46]. We will not repeat the discussions
here.
The fields Q,U,D with the BCs in Eqs. (3.2)–(3.4) are

KK decomposed as follows:

Qðx;yÞ¼ Uðx;yÞ
Dðx;yÞ

 !
¼

P
3
i¼1u

ð0Þ
iL ðxÞfqð0ÞiL

ðyÞP
3
i¼1d

ð0Þ
iL ðxÞfqð0ÞiL

ðyÞ

0
B@

1
CAþðKKmodesÞ;

(3.5)

U ðx; yÞ ¼ X3
i¼1

uð0ÞiR ðxÞfuð0ÞiR
ðyÞ þ ðKKmodesÞ; (3.6)

FIG. 1 (color online). The wave function profiles of the quarks and the VEV of �ðyÞ are schematically depicted. Here we take

LðqÞ
0 ¼ Lð�Þ

0 ¼ 0. Note that all the profiles have the periodicity along y with the same period L. Differently from the model on an

interval in Ref. [46], we can find the (1, 3) elements of the mass matrices due to the periodicity along the y direction.

5We adopt the representations of the gamma matrices as �� ¼
��, �y ¼ �y ¼ �i�5 ¼ �0�1�2�3, and the Clifford algebra is
defined as f�M;�Ng ¼ �2�MN .
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D ðx; yÞ ¼ X3
i¼1

dð0ÞiR ðxÞfdð0ÞiR
ðyÞ þ ðKKmodesÞ: (3.7)

Here the zero-mode functions are obtained in the following
forms:

f
qð0ÞiL

ðyÞ¼N ðqÞ
i eMQðy�LðqÞ

i�1
Þ½�ðy�LðqÞ

i�1Þ�ðLðqÞ
i �yÞ�

in ½LðqÞ
0 ;LðqÞ

3 �; (3.8)

f
uð0ÞiR

ðyÞ¼N ðuÞ
i e�MUðy�LðuÞ

i�1
Þ½�ðy�LðuÞ

i�1Þ�ðLðuÞ
i �yÞ�

in ½LðuÞ
0 ;LðuÞ

3 �; (3.9)

f
dð0ÞiR

ðyÞ ¼ N ðdÞ
i e�MDðy�LðdÞ

i�1
Þ½�ðy� LðdÞ

i�1Þ�ðLðdÞ
i � yÞ�

in ½LðdÞ
0 ; LðdÞ

3 �; (3.10)

where

�LðlÞ
i ¼LðlÞ

i �LðlÞ
i�1 ðfor i¼1;2;3;l¼q;u;dÞ; (3.11)

N ðqÞ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MQ

e2MQ�L
ðqÞ
i �1

s
; N ðuÞ

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MU

1�e�2MU�LðuÞ
i

s
;

N ðdÞ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MD

1�e�2MD�LðdÞ
i

s
:

(3.12)

N ðqÞ
i , N ðuÞ

i , N ðdÞ
i are the wave function normalization

factors for f
qð0ÞiL

, f
uð0ÞiL

, f
dð0ÞiL

, respectively.

Since the length of the total system is universal,

LðlÞ
3 � LðlÞ

0 ðl ¼ q; u; dÞ should be equal to the circumfer-

ence of S1, i.e.,

L :¼ LðqÞ
3 � LðqÞ

0 ¼ LðuÞ
3 � LðuÞ

0 ¼ LðdÞ
3 � LðdÞ

0 : (3.13)

Note that all the mode functions in Eqs. (3.8)–(3.10) [and a
form of a singlet VEV in Eq. (3.17)] are periodic with the
common period L, whereas we do not indicate that thing
explicitly in Eqs. (3.8)–(3.10).
In this model, the large mass hierarchy is naturally

explained with the Yukawa sector

SY ¼
Z

d4x
Z L

0
dyf�½�YðuÞ �Qði�2H

�ÞU�YðdÞ �QHD�
þ H:c:g; (3.14)

whereYðuÞ=YðdÞ is the Yukawa coupling for up-/down-type
quark;H and� are an SUð2ÞW scalar doublet and a singlet.

It should be noted that although the Yukawa couplingsYðuÞ

and YðdÞ can be complex, they cannot be an origin of the
CP phase of the CKM matrix because our model contains
only a single quark generation so that the number of the 5D
Yukawa couplings is not enough to produce a CP phase in
the CKM matrix. An outline of our system is depicted in
Fig. 1. Note that the five terms of �Qði�2H

�ÞU, �QHD,

� �QQ, � �UU, � �DD with the Pauli matrix �2 are ex-
cluded by introducing a discrete symmetry H ! �H,
� ! ��. � is a gauge singlet, and there is no problem
with gauge universality violation.6

The 5D action and the BCs for � are assumed to be of
the form [46,50]

S�¼
Z
d4x

Z L

0
dy

�
�yð@M@M�M2

�Þ����

2
ð�y�Þ2

�
;

(3.15)

�þ Lþ@y� ¼ 0 at y ¼ Lð�Þ
0 þ ";

�� L�@y� ¼ 0 at y ¼ Lð�Þ
3 � ";

(3.16)

where M� (��) is the bulk mass (quartic coupling) of the
scalar singlet � and L� can take values in the range of

�1 � L� � 1 and Lð�Þ
0 and Lð�Þ

3 indicate the locations of

the two ‘‘end points’’ of the singlet.
The VEV of � with the BCs, named Robin BCs, in

Eq. (3.16) is expressed in terms of Jacobi’s elliptic

FIG. 2 (color online). This is an overview of our system with
point interactions. The red (blue) circular spots show the Dirichlet
BC for the left- (right-)handed part at the corresponding boundary
points, respectively. The green, purple, and black circular spots
represent the ordinary periodic in Eq. (3.19), the Robin BCs in
Eq. (3.16), and the twistedBCs inEq. (2.2), respectively. It is noted
that we adopt the assumption in Eq. (4.3).

6If there exists the doublet-singlet mixing term �CHyH�y�
with a coefficient C, which cannot be prohibited by the discrete
symmetry H ! �H, � ! �� in our theory, gauge universality
violation should be revisited. A bound from the universality in Z
boson gauge couplings was already calculated as CL & 0:003
(when a KK scale is around a few TeV) in a model on an interval
[46]. In this paper, we simply ignore this term.
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functions in general, and its phase structure has been
discussed in Ref [50]. We adopt a specific form in the

region [Lð�Þ
0 þ ", Lð�Þ

3 � "] [46],

h�ðyÞi¼
�
M�ffiffiffiffiffiffiffi
��

p f ffiffiffiffiffiffiffiffiffiffiffi
1þX

p �1g1=2
�

� 1

cn

�
M�f1þXg1=4ðy�y0Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
1þ 1ffiffiffiffiffiffiffiffi

1þX
p

	r �;
(3.17)

with

X :¼ 4��jQj
M4

�

: (3.18)

Here y0 and Q are parameters which appear after integra-
tion on y, and we focus on the choice of Q< 0. We note
that the values of y0 and Q are automatically determined
after choosing those of L�. As shown in Ref. [46], we get
the form of h�ðyÞi to be an (almost) exponential function
of y by choosing suitable parameter configurations.
Although there is a discontinuity in the wave function

profile of h�i between y ¼ Lð�Þ
0 þ " and y ¼ Lð�Þ

3 � " in

Eq. (3.16), this type of BC is derived from the variational
principle on S1 and leads to no inconsistency [50].

The BCs for the 5D SUð3ÞC, SUð2ÞW , Uð1ÞY gauge
bosons GM, WM, BM are selected as

GMjy¼0 ¼ GMjy¼L; @yGMjy¼0 ¼ @yGMjy¼L; (3.19)

where we only show the GM’s case. In this configuration,
we obtain the standard model gauge bosons in zero modes.
Based on the discussion in Sec. II, we conclude that the W
and Z bosons become massive, and their masses are
suitably created through ‘‘our’’ Higgs mechanism as
mW ’ 81 GeV, mZ ’ 90 GeV. The overview of the BCs
is summarized in Fig. 2. We mention that, on S1 geometry,

Gð0Þ
y , Wð0Þ

y , and Bð0Þ
y would exist as massless 4D scalars at

the tree level, but they will become massive via quantum
corrections and are expected to be uplifted to near KK
states. We will discuss those modes in another paper. We
should note that in our model on S1 with point interactions,
the 5D gauge symmetries are intact under the BCs
summarized in Fig. 2.7 Hence, the unitarity in the
scattering processes of massive particles are ensured in
our model.8

IV. CP PHASE IN THE CKM MATRIX

In this section, we verify that our mechanism can ac-
tually produce a nontrivial CP phase in the CKM matrix.
We further would like to find a set of parameter

configurations in which the quark mass hierarchy and the
structure of the CKM matrix are derived naturally. In the
following analysis, we rescale all the dimensional valua-
bles by the S1 circumference L to make them dimension-
less, and the rescaled valuables are indicated with the tilde~.
We set the parameters concerning the scalar singlet� as

~M �¼8:67; ~y0¼�0:1; ~��¼0:001; j ~Qj¼0:001;

(4.1)

where the VEV profile becomes an (almost) exponential
function of y, which is suitable for generating the large
mass hierarchy.9 In this case, the values of L� in Eq. (3.16)
correspond to

1
~Lþ

¼ �6:07;
1
~L�

¼ 8:69; (4.2)

where the broken phase is realized [46].
As in the previous analysis [46], the signs of the fermion

bulk masses are assigned as MQ > 0,MU < 0,MD > 0 to
make much larger overlapping in the up-quark sector than
in down ones for top mass. Here we assume the positions of
the two end points of both the quark doublet and the scalar
singlet are the same,

LðqÞ
0 ¼ Lð�Þ

0 ¼ 0; LðqÞ
3 ¼ Lð�Þ

3 ¼ L; (4.3)

where we set LðqÞ
0 and Lð�Þ

0 as zero. In addition, we also

assume that the orders of the positions of point interactions
are settled as

0< LðuÞ
0 <LðuÞ

1 < LðqÞ
1 < LðuÞ

2 <LðqÞ
2 < L< LðuÞ

3 ;

0< LðdÞ
0 <LðdÞ

1 < LðqÞ
1 < LðdÞ

2 <LðqÞ
2 < L< LðdÞ

3 :
(4.4)

Here our up-quark mass matrix MðuÞ and that of down

ones MðdÞ take the forms

MðuÞ ¼
MðuÞ

11 MðuÞ
12 MðuÞ

13

0 MðuÞ
22 MðuÞ

21

0 0 MðuÞ
33

2
6664

3
7775;

MðdÞ ¼
MðdÞ

11 MðdÞ
12 MðdÞ

13

0 MðdÞ
22 MðdÞ

21

0 0 MðdÞ
33

2
6664

3
7775;

(4.5)

where the row (column) index of the mass matrices shows
the generations of the left- (right-)handed fermions, re-
spectively. Differently from the model on an interval in

7In Refs. [51–53], the 5D gauge invariance has been discussed
from a quantum mechanical supersymmetry point of view.

8Some related works are found in Refs. [54–61].

9The smallness of Q is not an unnatural thing because they are
resultant values derived from the two input parameters L�, for
which the dimensionless values are within Oð10Þ as in Eq. (4.2).
We note that �� always appears in the form of the singlet VEV
in Eq. (3.17) as the combination jQj��. �� in itself only affects
the overall normalization. Therefore, some room might remain
for a more ‘‘natural’’ choice of ��.
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Ref. [46], the (1, 3) elements of the mass matrices are
allowed geometrically due to the periodicity along the y
direction. The general form of the nonzero matrix elements

of MðuÞ and MðdÞ can be expressed as

Mð	Þ
ij ¼ Yð	Þ Z b

a
dyf

qð0ÞiL
ðyÞf

	ð0Þ
jR
ðyÞh�ðyÞihHðyÞi; (4.6)

where 	 indicates the up/down type of quark and the
concrete information is stored in Table I.

A. Quark masses and mixing parameters

The parameters which we use for calculation are

~LðqÞ
0 ¼0; ~LðqÞ

1 ¼0:30; ~LðqÞ
2 ¼0:660; ~LðqÞ

3 ¼1;

~LðuÞ
0 ¼0:024; ~LðuÞ

1 ¼0:026; ~LðuÞ
2 ¼0:52; ~LðuÞ

3 ¼1:024;

~LðdÞ
0 ¼0:07; ~LðdÞ

1 ¼0:18; ~LðdÞ
2 ¼0:646; ~LðdÞ

3 ¼1:07;

~MQ¼6; ~MU¼�6; ~MD¼5; �¼3; (4.7)

where the twist angle � is a dimensionless value and
should be within the range ��< � � �. We note that

the values of ~LðqÞ
3 , ~LðuÞ

3 , and ~LðdÞ
3 are automatically deter-

mined after we choose the other positions of point
interactions. In the Appendix, we will comment on the
orders of significant digits of the input parameters in
Eq. (4.7). We should note that in our system, the EWSB
is only realized on the condition of M2 � ð�LÞ2 > 0 as in

Eq. (2.13). Recently, the ATLAS and CMS experiments
have announced that the physical Higgs mass is around

126 GeV over 5� confidence level [62,63]. ~� is 0.262
irrespective of the value of L, while ~M is slightly depen-
dent on the value of L as 3.01303 (3.00052) in the case of
MKK ¼ 2 TeV (MKK ¼ 10 TeV), where MKK is a typical
scale of the KK mode and defined as 2�=L. Here some
tuning is required to obtain the suitable values realizing
the EWSB.

After the diagonalization of the two mass matrices, the
quark masses are evaluated as

mup¼2:5MeV; mcharm¼1:339GeV;

mtop¼173:3GeV; mdown¼4:8MeV;

mstrange¼104MeV; mbottom¼4:183GeV;

mup

mupjexp¼1:07;
mcharm

mcharmjexp¼1:05;
mtop

mtopjexp¼1:00;

mdown

mdownjexp¼0:993;
mstrange

mstrangejexp¼1:10;
mbottom

mbottomjexp¼1:00;

(4.8)

and the absolute values of the CKM matrix elements are
given as10

jVCKMj ¼
0:971 0:238 0:00377

0:237 0:971 0:0403

0:00887 0:0395 0:999

2
664

3
775;









 VCKM

VCKMjexp








 ¼

0:997 1:06 1:07

1:06 0:998 0:978

1:02 0:978 1:00

2
664

3
775:

(4.9)

B. CP phase

The Jarlskog parameter J containing information about
the CP phase is defined by

Im½ðVCKMÞijðVCKMÞklðV�
CKMÞilðV�

CKMÞkj�¼J
X3

m;n¼1


ikm
jln;

(4.10)

with the completely antisymmetric tensor 
, and is
invariant under the Uð1Þ unphysical rephasing operations
of six types of quarks [64,65]. This value is easily
estimated as

J ¼ 3:23� 10�5;
J

Jjexp ¼ 1:09; (4.11)

where we also provide the differences from the latest
experimental values in Ref. [66]. All the deviations from
the latest experimental values are within about 10%, and
we can conclude that the situation of the SM is suitably
generated. In the Appendix, we discuss distribution pat-
terns of quark mass-matrix elements and required orders in
tuning the input parameters with the results for realizing
the accuracy.

V. SUMMARYAND DISCUSSION

In this paper, we have proposed a new mechanism for
generating a CP phase via a Higgs VEV originating from

TABLE I. The summary table for the overlap integrals in
Eq. (4.6).

MðuÞ
ij a b MðdÞ

ij a b

MðuÞ
11 LðuÞ

0 LðuÞ
1 MðdÞ

11 LðdÞ
0 LðdÞ

1

MðuÞ
22 LðqÞ

1 LðuÞ
2 MðdÞ

22 LðqÞ
1 LðdÞ

2

MðuÞ
33 LðqÞ

2 L MðdÞ
33 LðqÞ

2 L

MðuÞ
12 LðuÞ

1 LðqÞ
1 MðdÞ

12 LðdÞ
1 LðqÞ

1

MðuÞ
23 LðuÞ

2 LðqÞ
2 MðdÞ

23 LðdÞ
2 LðqÞ

2

MðuÞ
31 L Lþ LðuÞ

0 MðdÞ
31 L Lþ LðdÞ

0

10The values of ~YðuÞ and ~YðdÞ are also chosen as ~YðuÞ ¼
�0:0532þ 0:0156i and ~YðdÞ ¼ �0:00335� 0:00146i by set-
ting the initial conditions MðuÞ

33 ¼ mt and MðdÞ
33 ¼ mb with the

top mass mt and the bottom mass mb.
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the geometry of an extra dimension. A twisted BC for the
Higgs doublet has been found to lead to an extra-dimension
coordinate-dependent phase in the Higgs VEV, which con-
tains a nontrivialCP phase degree of freedom. This mecha-
nism is useful for generating a CP phase to a single
generation extra-dimensional field theory incorporating
with a generation production mechanism. The electroweak
symmetry breaking is also generated dynamically due to
the twisted boundary condition with the suitable W- and
Z-boson masses.

As an illustrative example, we applied our mechanism to
a five-dimensional gauge theory on a circle with point
interactions [46]. Point interactions, which are additional
boundary points with respect to the extra dimension, are
responsible for producing the three generations while the
model consists of a single-generation fermion and make
the quark profiles be localized. Since each element of the
mass matrices picks up a different phase through the over-
lap integrals, there is some possibility of realizing a non-
trivial CP phase. After numerical calculations, we found
that a nontrivial CP phase appears with good precision,
maintaining the property of the original model in which the
generations, the quark mass hierarchy, and the CKM ma-
trix appear from the geometry of the extra dimension.
Certainly, our new mechanism for generating a CP phase
via Higgs VEV works.

A key point of our mechanism is that we can generate
both the EWSB and a CP phase simultaneously as a
complex Higgs VEV. To make our CP-violation mecha-
nism work correctly, quark profiles should be split and
localized. In this situation, flavor mixing and mass hier-
archy of the quarks are also naturally activated. We would
like to emphasize that in the model adopting our mecha-
nism, all the concepts of quark flavor in the SM, namely,
EWSB, the number of generations, flavor mixing, mass
hierarchy, and CP violation, are interlinked closely.

One of the most important remaining tasks is to con-
struct a model which brings both the quarks and the leptons
into perspective. Using our mechanism, not only the quark
sector but also the lepton sector can acquire a nontrivialCP
phase. Since the origin of the CP phase is common, we can
predict the value of the CP phase of the lepton sector after
fitting the value of the CP phase in the quark sector. The
result will be reported elsewhere. Accommodation of our
mechanism to another single-generation model is also an
important task.

Another crucial topic is the stability of the system. Our
system is possibly threatened with instability. Some
mechanisms will be required to stabilize the moduli repre-
senting the positions of point interactions (branes).11 In a
multiply connected space of S1, there is another origin of

gauge symmetry breaking, i.e., the Hosotani mechanism
[70,71]. Since further gauge symmetry breaking causes a
problem in the model, we need to insure that the Hosotani
mechanism does not occur. To this end, we might introduce
additional 5D matter to prevent zero modes of y compo-
nents of gauge fields from acquiring nonvanishing VEVs.
We will leave those issues in future work.
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APPENDIX: CONSIDERING INPUT-PARAMETER
DEPENDENCE

In this appendix, we discuss distribution patterns of
quark mass-matrix elements and required orders in tuning
the input parameters with the results given in Secs. IVA
and IVB. We first focus on the matrices in Eq. (4.5). In our
model, the geometry of the extra dimension strongly re-
stricts the form of the matrices. In fact, we cannot fill all the
elements of the mass matrices, and at least three of the nine
elements for each mass matrix have to be zero, as shown in
Eq. (4.5). This property is contrasted with that of the
standard model, where all the mass matrix elements are
free parameters. This fact means that possible patterns of
mass matrices are constrained by the shape of the geometry
of our model. Furthermore, it turns out that the values of
the nonzero elements in the mass matrices (4.5) cannot be
controlled freely. To see this, we investigated correlations
of matrix elements. In the left figure of Fig. 3, we chose
100,000 points randomly around the configuration in
Eq. (4.7) within �10% being consistent with the order in
Eq. (4.4) and depicted the resultant values as two scatter

plots (MðuÞ
33 �MðuÞ

13 ). The right figure of Fig. 3 shows the

same thing when we pick up 100,000 points randomly only
with following the order in Eq. (4.4). It follows from Fig. 3

that we find no random distribution in the MðuÞ
33 �MðuÞ

13

plane and a strong correlation between MðuÞ
13 and MðuÞ

33 .

We further see the property that the typical value of MðuÞ
13

is much smaller than that of MðuÞ
33 . In the quark sector, the

mixing angles are known to be small, so that off-diagonal
elements of the mass matrices will be preferred to be
subleading compared with the diagonal ones with suitable
magnitudes. Our geometry realizes this point naturally via
its geometry. From the above observations, we may
conclude that the quark mass matrices in our model are

11Moduli stabilization via Casimir energy in the system where a
scalar takes the Robin BCs (but no point interaction in the bulk)
has been studied in Refs. [67–69].
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FIG. 3 (color online). The left scatter plot shows the distribution of MðuÞ
33 �MðuÞ

13 when we choose 100,000 points randomly around
the configuration in Eq. (4.7) within �10% being consistent with the order in Eq. (4.4). The right one represents the same thing when
we pick up 100,000 points randomly only with following the order in Eq. (4.4).
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FIG. 4 (color online). From left to right, distributions of mup �mdown, mcharm �mstrange, and mtop �mbottom with 10,000 random
points within�20% parameter deviations from the central values in Eq. (4.7) following the order in Eq. (4.4). The green (yellow) band
in the left and center plots represents �30% range from the central values in Eq. (4.7). In the right plot, we skip depicting the bands
because all the shown ranges are covered by them.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

sin2
12

si
n

2
23

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
0.000

0.002

0.004

0.006

0.008

0.010

sin2
13

J
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considerably restricted from the geometry of the extra
dimension and hence that it is nontrivial to reproduce the
quark-related properties of the standard model, although
we have 16 input parameters for quark profiles, where 13
parameters are independent, to explain the 10 standard
model parameters (6 quarks masses and 4 CKM parame-
ters). As another consideration, we investigate the resultant
quark masses and CKM matrix elements when we change
the input parameters around the central values in Eq. (4.7)
and then find that the quark masses and CKM matrix
elements are very sensitive to some of the input parame-
ters. To show the sensitivity of the input parameters, we
first alter all the parameters randomly within 10%, 1%,
0.1% and 0.01%, respectively, obeying the order in
Eq. (4.4), and calculate the masses and the elements.
When we proceed with the above procedure 100,000 times
in each case, 11, 11,039, 81,955, and 100,000 points sur-
vive after putting the cut where all the resultants are within
15%. These results indicate that parameter tuning less than
1% is required as our inputs are so in Eq. (4.7). The scatter
plots in Figs. 4 and 5 represent the distributions of the
physical parameters with 10,000 random points within
�20% around the central values, where the CKM angles
and the Jarlskog parameter are apt to getting away from the
required range easily, for which the experimental central
values are sin 2�12 	 0:05, sin 2�23 	 0:002, sin 2�13 	
0:00001, and J 	 0:00003, respectively. This issue is

explained by the fact that off-diagonal elements of the

CKM matrix are closely related to those of the up- and

down-quark mass matrices, which at least parts of them

are, sensitive to perturbation of the input parameters. We

can also find the tendency that bottom and top masses are
not away from the central values by the perturbation. On

the other hand, we try to alter an input parameter sepa-

rately. In each case, points of the numbers in Table II pass

the cut which rejects the possibilities that at least one

resultant value is out of the �15% deviation range from

the central value in Eq. (4.7). According to the result, we

understand that quark masses and mixing angles are sensi-

tive to the positions of point interactions, while those are
insensitive to (absolute values of) the bulk masses and the

twisted angle. Then we can conclude that parameter tuning

inMQ,MU,MD, and � in Eq. (4.7) is not always necessary.

Finally, we briefly comment on the required orders of

significant digits in the input parameters. As we have
discussed before based on Table II, the system is insensi-

tive to MQ, MU, MD, and � around the central region of

the parameters, and then single digits are sufficient for

them. On the other hand, for LðqÞ
2 and LðdÞ

2 , as also ex-

pressed in Table II, triple digits are required because of

their great sensitivity. For the other values, tuning up to

double digits is enough for our purpose since they are less

sensitive than LðqÞ
2 and LðdÞ

2 as shown in Table II.
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