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Using experimental spectral data for hadronic � decays from the OPAL experiment, supplemented by a

phenomenologically successful parametrization for the high-s region not covered by the data, we

construct a physically constrained model of the isospin-one vector-channel polarization function.

Having such a model as a function of Euclidean momentum Q2 allows us to explore the systematic

error associated with fits to the Q2 dependence of lattice data for the hadronic electromagnetic current

polarization function which have been used in attempts to compute the leading order hadronic contribu-

tion, aHLO� , to the muon anomalous magnetic moment. In contrast to recent claims made in the literature,

we find that a final error in this quantity of the order of a few percent does not appear possible with current

lattice data, given the present lack of precision in the determination of the vacuum polarization at low Q2.

We also find that fits to the vacuum polarization using fit functions based on vector meson dominance are

unreliable, in that the fit error on aHLO� is typically much smaller than the difference between the value

obtained from the fit and the exact model value. The use of a sequence of Padé approximants known to

converge to the true vacuum polarization appears to represent a more promising approach.
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I. INTRODUCTION

In the quest for a precision computation of the muon
anomalous magnetic moment a� ¼ ðg� 2Þ=2, the contri-
bution from the hadronic vacuum polarization at lowest
order in the fine-structure constant �, aHLO� , plays an

important role. While the contribution itself is rather small
(of order 0.06 per mille) the error in this contribution
dominates the total uncertainty in the present estimate of
the Standard Model value. In order to reduce this uncer-
tainty, and resolve or solidify the potential discrepancy
between the experimental and Standard Model values, it
is thus important to corroborate, and if possible improve
on, the total error in aHLO� .

Recently, there has been much interest in computing this
quantity using lattice QCD [1]. In terms of the vacuum
polarization �emðQ2Þ at Euclidean momenta Q2, aHLO� is

given by the integral [2,3]

aHLO� ¼ 4�2
Z 1

0
dQ2fðQ2Þð�emð0Þ ��emðQ2ÞÞ;

fðQ2Þ ¼ m2
�Q

2Z3ðQ2Þ 1�Q2ZðQ2Þ
1þm2

�Q
2Z2ðQ2Þ ;

ZðQ2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQ2Þ2 þ 4m2
�Q

2
q

�Q2

�
=ð2m2

�Q
2Þ;

(1.1)

where m� is the muon mass, and for nonzero momenta

�emðQ2Þ is defined from the hadronic contribution to the
electromagnetic vacuum polarization �em

��ðQÞ,

�em
��ðQÞ ¼ ðQ2��� �Q�Q�Þ�emðQ2Þ (1.2)

in momentum space.
Since the integral is over Euclidean momentum, this is

an ideal task for the lattice, if�emðQ2Þ can be computed at
sufficiently many nonzero values of Q2, especially in the
region Q2 �m2

� which dominates the integral. However,

because of the necessity of working in a finite volume,
momenta are quantized on the lattice, which turns out to
make this a difficult problem. Figure 1 demonstrates the
problem. On the left, we see a typical form of the sub-
tracted vacuum polarization, together with the low-Q2

points from a typical lattice data set.1 On the right, we
see the same information, but now multiplied by the weight
fðQ2Þ in Eq. (1.1).
Figure 1 clearly shows why evaluating the integral in

Eq. (1.1) as a Riemann sum using typical lattice data is
ruled out. In principle, going to larger volumes or using
twisted boundary conditions [4,5] can help, but it will be
necessary to fit the lattice data for �ðQ2Þ to a continuous
function ofQ2 in order to evaluate the integral. The problem
then becomes that of finding a theoretically well-founded
functional form for the Q2 dependence of �ðQ2Þ, so that
this functional form can be fitted to available data, after
which the integral in Eq. (1.1) is performed using the
fitted function.
A number of fit functions have been used and/or proposed

recently. One class of fit functions is based on vector

1For the curve and data shown here, see Secs. II and IV.
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meson dominance (VMD) [6–8], another class on Padé
approximants (PAs) [4,9], while a position-space version
of VMD-type fits was recently proposed in Ref. [10].
VMD-type fits, as well as the PAs used in Ref. [4], do not
represent members of a sequence of functions guaranteed to
converge to the actual vacuum polarization, whereas the PAs
of Ref. [9] do. Thus, theoretical prejudice would lead one to
choose the PAs of Ref. [9] as the appropriate set of functions
to fit lattice data for the vacuum polarization.

However, this does not guarantee that any particular fit
to lattice data for the vacuum polarization will yield an
accurate estimate of aHLO� with a reliable error. This de-

pends not only on the theoretical validity of the fit function,
but also, simply, on the availability of good data. Moreover,
even if a sequence of PAs converges (on a certain Q2

interval), not much is known in practice about how fast
its rate of convergence may be. For example, if the
convergence is very slow given a certain lattice data set,
it could be that only PAs with a number of parameters
far beyond the reach of these data give a numerically
adequate representation of the true vacuum polarization,
for the goal of computing aHLO� to a phenomenologically

interesting accuracy.
It would therefore be useful to have a good model, in

which the ‘‘exact’’ answer is known. One can then inves-
tigate any given fitting method, and ask questions such as
whether a good fit (for instance, as measured by the �2 per
degree of freedom) leads to an accurate result for aHLO� . If

the model is a good model, this will not only test the
theoretical validity of a given fit function, but also how
well this fit works, given a required accuracy, and given a
set of data for �ðQ2Þ. In other words, it will give us a
reliable quantitative estimate of the systematic error.

Such a model is available for the vacuum polarization.
The I ¼ 1 nonstrange hadronic vector spectral function has
been very accurately measured in hadronic � decays. From
this spectral function, one can, using a dispersion relation,
construct the corresponding component of the vacuum
polarization, if one has a reliable theoretical representation

for the spectral function beyond the � mass. Such a repre-
sentation was constructed in Refs. [11,12] from OPAL data
for this spectral function [13]. The thus obtained vacuum
polarization is closely related to the I ¼ 1 component of
the vacuum polarization obtained from �ðeþe� ! � !
hadronsÞ.
Three points are relevant to understanding the use of the

term ‘‘model’’ for the resulting I ¼ 1 polarization func-
tion, in the context of the underlying aHLO� problem. First,

aHLO� is related directly to �ðeþe� ! � ! hadronsÞ [14]
and the associated electromagnetic (EM) current polariza-
tion function, which, unlike the model, has both an I ¼ 1
and I ¼ 0 component. Second, even for the I ¼ 1 part
there are subtleties involved in relating the spectral func-
tions obtained from �ðeþe� ! � ! hadronsÞ and non-
strange � decays [15,16]. Finally, since the � data extend
only up to s ¼ m2

�, a model representation is required for
the I ¼ 1 spectral function beyond this point.
In fact, we consider the pure I ¼ 1 nature of the model

polarization function an advantage for the purposes of this
study, as it corresponds to a simpler spectral distribution
than that of the EM current (the latter involving also
the light quark and �ss I ¼ 0 components). Working with
the � data also allows us to avoid having to deal with the
discrepancies between the determinations of the 	þ	�
electroproduction cross sections obtained by different ex-
periments [17–20].2 We should add that, though a model is
needed for the part of the I ¼ 1 spectral function beyond
s ¼ m2

�, for the low-Q2 values relevant to aHLO� , the vac-

uum polarization we construct is very insensitive to the
parametrization used in this region. Finally, we note that
the model vacuum polarization satisfies, by construction,
the same analyticity properties as the real vacuum polar-
ization. In particular, the subtracted model vacuum polar-
ization is equal toQ2 times a Stieltjes function [9]. We thus
expect our model to be an excellent model for the purpose
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FIG. 1 (color online). Low-Q2 behavior of the subtracted vacuum polarization �ð0Þ ��ðQ2Þ (left panel) and of the integrand
fðQ2Þð�ð0Þ ��ðQ2ÞÞ in Eq. (1.1) (right panel). Red points show typical data on a 643 � 144 lattice with lattice spacing 0.06 fm and
periodic boundary conditions.

2Figures 48 and 50 of Ref. [19] provide a useful overview of
the current situation.
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of this article, which is to test a number of methods that
have been employed in fitting the Q2 dependence of the
vacuum polarization to lattice data, and not to determine
the I ¼ 1 component of aHLO� from � spectral data.

This article is organized as follows. In the following two
sections, we construct the model and define the fit func-
tions we will consider here. Throughout this paper, we will
consider only VMD-type fits, which have been extensively
used, and PA fits of the type defined in Ref. [9].3 In Sec. IV,
we use the model and a typical covariance matrix obtained
in a lattice computation to generate fake ‘‘lattice’’ data sets,
which are then fitted in Sec. V. We consider both correlated
and diagonal (‘‘uncorrelated’’) fits, where in the latter case
errors are computed by linear propagation of the full data
covariance matrix through the fit. From these fits, estimates
for aHLO� with errors are obtained, and compared with the

exact model value in order to test the accuracy of the fits.
Section VI contains our conclusions.

II. CONSTRUCTION OF THE MODEL

The nonstrange, I ¼ 1 subtracted vacuum polarization is
given by the dispersive integral

~�ðQ2Þ ¼ �ðQ2Þ ��ð0Þ ¼ �Q2
Z 1

4m2
	

dt

ðtÞ

tðtþQ2Þ ;

(2.1)

where 
ðtÞ is the corresponding spectral function, and m	

the pion mass. In order to construct our model for ~�ðQ2Þ,
we split this integral into two parts: one with 4m2

	 � t �
smin � m2

�, and one with smin � t <1. In the first region,
we use OPAL data to estimate the integral by a simple
Riemann sum:

ð�ðQ2Þ ��ð0ÞÞt�smin
¼ �Q2�t

XNmin

i¼1


ðtiÞ
tiðti þQ2Þ : (2.2)

Here the ti label the midpoints of the bins from the lowest
bin i ¼ 1 to the highest bin Nmin below smin ¼ Nmin�t,
and �t is the bin width, which for the OPAL data we use is
equal to 0:032 GeV2. For the contribution from the spectral
function above smin , we use the representation

ð�ðQ2Þ ��ð0ÞÞt�smin
¼ �Q2

Z 1

smin

dt

t�smin

ðtÞ
tðtþQ2Þ ; (2.3a)


t�smin
ðtÞ ¼ 
pertðtÞ þ e����t sin ð�þ �tÞ;

(2.3b)

where 
pertðtÞ is the perturbative part calculated to five

loops in perturbation theory, expressed in terms of
�sðm2

�Þ [21], with m� the � mass. The oscillatory term is
our representation of the duality-violating part, and models

the presence of resonances in the measured spectral
function. This representation of the spectral function was
extensively investigated in Refs. [11,12], and found to give
a very good description of the data between smin ¼
1:504 GeV2 and m2

�. Figure 2 shows the comparison be-
tween the data and the representation (2.3b) for this value
of smin ; the blue continuous curve shows the representation
we will be employing here. Our central values for �sðm2

�Þ,
�, �, � and � have been taken from the FOPT w ¼ 1
finite-energy sum rule fit of Ref. [12]4:

�sðm2
�Þ ¼ 0:3234;

� ¼ �0:4848; � ¼ 3:379 GeV�2;

� ¼ 0:1170 GeV�2; � ¼ 4:210:

(2.4)

The low-Q2 part of the function �ðQ2Þ obtained through
this strategy is shown as the blue curve in the left-hand
panel of Fig. 1.
As in Ref. [9] we will take as a benchmark the low- and

medium-Q2 part of aHLO� ,

~aHLO;Q
2�1

� ¼ 4�2
Z 1 GeV2

0
dQ2fðQ2Þð�ð0Þ ��ðQ2ÞÞ:

(2.5)

To make it clear that we are computing this quantity

from ~�ðQ2Þ defined from Eqs. (2.1)–(2.4), and not from
�emðQ2Þ, we will use the symbol ~a�, instead of a�, in the

rest of this article.
Using the OPAL data as described above, and fully

propagating errors,5 we find the value
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FIG. 2 (color online). The I ¼ 1 nonstrange vector spectral
function, from Ref. [12], as a function of t. The data are from
OPAL[13]; the curves are theoretical representationsobtained from
the w ¼ 1 finite-energy sum rule discussed in Refs. [11,12].

3For other PA fits considered in the literature, we are not aware
of any convergence theorems.

4The final one or two digits of these parameter values are not
significant in view of the errors obtained in Eq. (5.3) of Ref. [12],
but these are the values we used to construct the model.

5Taking into account the OPAL data covariance matrix, the
parameter covariance matrix for the parameters in Eq. (2.3b), as
well as the correlations between OPAL data and the parameters.

TESTS OF HADRONIC VACUUM POLARIZATION FITS . . . PHYSICAL REVIEW D 88, 114508 (2013)

114508-3



~aHLO;Q
2�1

� ¼ 1:204ð27Þ � 10�7: (2.6)

In our tests of lattice data in Sec. V below, we will
declare the model to be ‘‘exact,’’ and see how various fits
to fake lattice data generated from the model will fare
in reproducing this exact value. For our purposes, it is
sufficient to have a four-digit ‘‘exact’’ value, which we
take to be

~aHLO;Q
2�1

�;model ¼ 1:204� 10�7: (2.7)

We close this section with a few remarks. In the region

0 � Q2 � 1 GeV2, the model we constructed for ~�ðQ2Þ is
very insensitive to both the detailed quantitative form of
Eq. (2.3b), as well as to the choice of smin . Moreover, the

precise quantitative values that we obtain for ~�ðQ2Þ as a
function of Q2 are not important. What is important is that
this is a very realistic model, based on hadronic data which
are very well understood in the framework of QCD, for the
I ¼ 1 part of �emðQ2Þ.

III. FIT FUNCTIONS

We will consider two classes of fit functions to be
employed in fits to data for �ðQ2Þ. The first class of
functions involves PAs of the form

�ðQ2Þ ¼ �ð0Þ �Q2

�
a0 þ

XK
k¼1

ak
bk þQ2

�
: (3.1)

For a0 ¼ 0, the expression between parentheses is a
[K � 1, K] Padé; if also a0 is a parameter, it is a ½K;K�
Padé. With ak�1 > 0 and bk > bk�1 > � � �> b1 > 4m2

	,
these PAs constitute a sequence converging to the exact
vacuum polarization in the sense described in detail in
Ref. [9]. With ‘‘good enough’’ data, we thus expect that,
after fitting the data, one or more of these PAs will provide
a numerically accurate representation of �ðQ2Þ on a com-
pact interval for Q2 on the positive real axis. For each such

fit, we may compute ~aHLO;Q
2�1

� , and compare the result to
the exact model value. Of course, the aim of this article is
to gain quantitative insight into what it means for the data
to be ‘‘good enough,’’ as well as into what order of PA
might be required to achieve a given desired accuracy in
the representation of �ðQ2Þ at low Q2.

We note that in the model, by construction we have that
~�ð0Þ ¼ 0. In contrast, a lattice computation yields only the
unsubtracted �ðQ2Þ at nonzero values of Q2.6 It thus
appears that the model does not quite match the lattice

framework it is designed to simulate. However, if in the test
fits we treat �ð0Þ in Eq. (3.1) as a free parameter, we

discard the information that ~�ð0Þ ¼ 0 in the model, and
we can use the fake data generated from the model as a test
case for the lattice. In other words, if we treat �ð0Þ in
Eq. (3.1) as a free parameter, we can think of the model
vacuum polarization as �ðQ2Þ in a scheme in which �ð0Þ
happens to vanish, rather than as ~�ðQ2Þ. This turns out
to be a very important observation, because even if a
PA- or VMD-type fit does a good job of fitting the overall
Q2 behavior over a given interval, it is generally difficult
for these fits to yield the correct curvature at very low Q2.
Because the integral in Eq. (1.1) is dominated by the
low-Q2 region, this effect can lead to significant devia-

tions of ~aHLO;Q
2�1

� from the exact model value, as we will
see below.
We will also consider VMD-type fits, which have been

widely used in the literature. Typical VMD-type fits have
the form of Eq. (3.1), but with the lowest pole, b1, fixed to
the 
 mass, b1 ¼ m2


. We will consider two versions:

straight VMD, obtained by taking K ¼ 1 in Eq. (3.1) and
setting a0 ¼ 0, andVMDþ , which is similar but with a0 a
free parameter. Such VMD-type fits have been employed
previously [4,6–8,24]. We emphasize that VMD-type fits,
despite their resemblance to the PAs of Eq. (3.1), are not of
that type. The exact function �ðQ2Þ has a cut at Q2 ¼
�4m2

	, which has to be reproduced by the gradual accu-
mulation of poles in Eq. (3.1) toward that value. If instead
we choose the lowest pole at the 
mass, the fit function is a
model function based on the intuitive picture of vector
meson dominance, and is definitely not a member of the
convergent sequence introduced in Ref. [9]. However,
as already emphasized in Sec. I, the aim here is to inves-
tigate the quality of various fits on test data, without
theoretical prejudice. We will thus investigate both
PA- and VMD-type fits in the remainder of this article.
In Ref. [8] also a VMD-type fit with two poles, obtained

by choosing K ¼ 2, a0 ¼ 0 and b1 ¼ m2

, has been con-

sidered. In our case, such a fit turns out not to yield any
extra information beyond VMDþ : we always find that b2
is very large, and a2 and b2 are very strongly correlated,
with the value of a2=b2 equal to the value of a0 found in the
VMDþ fit. The reason this does not happen in Ref. [8] is
probably that in that case also the connected part of the
I ¼ 0 component is included in �ðQ2Þ, and this compo-
nent has a resonance corresponding to the octet component
of the�-!meson pair. In our case, in which only the I ¼ 1
component is present, these two-pole VMD-type fits never
yield any information beyond the VMDþ fits.

IV. THE GENERATION OF FAKE LATTICE DATA

In order to carry out the tests, we need data that corre-
spond to a world described by our model, and that resemble
a typical set of lattice data. In order to construct such a data

6A recent paper proposed a method for computing �ð0Þ
directly on the lattice [22], whereas another recent paper pro-
posed a method to obtain �ðQ2Þ at and near Q2 ¼ 0 by analytic
continuation [23]. Since we do not know yet what the size of the
combined statistical and systematic errors on�ð0Þ determined in
such ways will turn out to be, we do not consider these options in
this article.
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set, we proceed as follows. First, we choose a set of Q2

values. The Q2 values we will consider are those available
on an L3 � T ¼ 643 � 144 lattice with periodic boundary
conditions, and an inverse lattice spacing 1=a ¼
3:3554 GeV. The smallest momenta on such a lattice in
the temporal and spatial directions are

Q ¼
�
0; 0; 0;

2	

aT

�
! Q2

1 ¼ 0:02143 GeV2;

Q ¼
�
0; 0; 0;

4	

aT

�
! Q2

2 ¼ 0:08574 GeV2;

Q ¼
�
2	

aL
; 0; 0; 0

�
! Q2

3 ¼ 0:1085 GeV2;

(4.1)

etc. Next, we construct a multivariate Gaussian distribution
with central values �ðQ2

i Þ, i ¼ 1; 2; . . . , and a typical
covariance matrix obtained in an actual lattice computation
of the vacuum polarization on this lattice. The covariance
matrix we employed is the covariance matrix for the a ¼
0:06 fm data set considered in Ref. [9]. The fake data set is
then constructed by drawing a random sample from this
distribution.7 The data points shown in Fig. 1 are the first
three data points of this fake data set. The full data set
is shown in Fig. 3. We will refer to this as the ‘‘lattice’’
data set.

Below, we will also have use for a ‘‘science fiction’’ data
set. This second data set is obtained exactly as the fake data
set described above, except that we first divide the lattice
covariance matrix by 10000, which corresponds to reduc-
ing diagonal errors by a factor 100. After this reduction, the
data set is generated as before. We refer to this as the
science-fiction data set because it seems unlikely that a
realistic lattice data set with such good statistics will exist
in the near future. However, this second data set will allow
us to gain some additional insights in the context of this
model study.

V. FITS TO THE FAKE LATTICE DATA

In this section, we will present and discuss the results
of a number of fits, based on the data sets constructed
in Sec. IV.

A. Lattice data set

Table I shows the results of a number of correlated fits of
the lattice data set to the functional forms defined in
Sec. III. To the left of the vertical double line the fitted
data are those in the interval 0<Q2 � 1 GeV2; to the
right the fitted data are those in the interval 0<Q2 �
1:5 GeV2. In each of these two halves, the leftmost column
shows the fit function, and the second column gives the

value of ~aHLO;Q
2�1

� obtained from the fit, with the �2 fit
error between parentheses. The ‘‘pull’’ � in the third
column is defined as

� ¼ jexact value� fit valuej
error

: (5.1)

For instance, with the exact value of Eq. (2.7), we have
for the [1, 1] PA on the interval 0<Q2 � 1 GeV2 that
� ¼ j1:204� 1:116j=0:022 ¼ 4. The fourth column gives
the �2 value per degree of freedom (d.o.f.) of the fit.
Of course, the pull can only be computed because we

know the exact model value. This is precisely the merit of
this model study: it gives us insight into the quality of the
fit independent of the �2 value. Clearly, the fit does a good
job if the pull is of order 1, because if that is the case, the fit
error covers the difference between the exact value and the
fitted value.
The primary measure of the quality of the fit is the value

of �2=d:o:f: This value clearly rules out [0, 1] PA and
VMD as good fits. In this case, we do not even consider
the pull: these functional forms clearly just do not represent
the data very well. However, in all other cases, one might
consider the value of �2=d:o:f: to be reasonable, although
less so for fits on the interval 0<Q2 � 1:5 GeV2.
However, only the [1, 2] and [2, 2] PAs have a good value
for the pull for fits on the interval 0<Q2 � 1 GeV2,
whereas the pull for the [1, 1] PA and VMDþ is bad: the
fit error does not nearly cover the difference between the
true (i.e., exact model) value and the fitted value. Note that
with the errors of the lattice data set even the best result,
from the [2, 2] PA, only reaches an accuracy of 5% for ~a�.

On the interval 0<Q2 � 1:5 GeV2 all fits get worse, both
as measured by �2 and �, and only the [2, 2] PA may be
considered acceptable.
For illustration, we show the [1, 2] PA and VMDþ fits

on the interval 0<Q2 � 1 GeV2 in Figs. 4 and 5. The left-
hand panels show the fit over a wider range of Q2, includ-
ing the full set of Q2 values employed in the fit, while the
right-hand panels focus on the low-Q2 region of the inte-

grand in Eq. (1.1) of primary relevance to ~aHLO;Q
2�1

� , which
contains only a few of the Q2 fit points. The blue solid
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FIG. 3 (color online). Fake data set constructed in Sec. IV
and the model for �ð0Þ ��ðQ2Þ constructed in Sec. II
(thin blue curve).

7We used the Mathematica routines MultinormalDistribution
and RandomVariate.

TESTS OF HADRONIC VACUUM POLARIZATION FITS . . . PHYSICAL REVIEW D 88, 114508 (2013)

114508-5



curve shows the exact model, the green dashed curve the
fit, and the red points are the lattice data. Both fits to the
vacuum polarization look like good fits (confirmed by
the �2=d:o:f: values) when viewed from the perspective
of the left-hand panels. A clear distinction, however,
emerges between the [1, 2] PA and VMDþ cases when
one focuses on the low-Q2 region shown in the right-hand
panels. In these panels, the PA fit follows the exact curve
very closely, while the VMDþ fit undershoots the exact
curve by a significant amount, as quantified by the pull.
Looking at the left-hand panels in Figs. 4 and 5, one would

never suspect the difference in the results for ~aHLO;Q
2�1

�

illustrated in the corresponding right-hand panels.

B. Science-fiction data set

In Table II, we show the same type of fits as in Table I,
but now using the science-fiction data set defined in
Sec. IV. The corresponding figures are very similar to
Figs. 4 and 5, and hence are not shown here.
This data set is, of course, quite unrealistic: real lattice

data with such precision will not soon be generated. But

TABLE I. Various correlated fits of the lattice data set constructed in Sec. IV on the interval
0<Q2 � 1 GeV2 (left of the vertical double line), or on the interval 0<Q2 � 1:5 GeV2 (right
of the vertical double line). For a more detailed description, see the text.

Fit ~aHLO;Q
2�1

� � 107 � �2=d:o:f: ~aHLO;Q
2�1

� � 107 � �2=d:o:f:

PA [0, 1] 0.8703(95) 285=46 0.6805(45) 1627=84

PA [1, 1] 1.116(22) 4 61:4=45 1.016(12) 16 189=83

PA [1, 2] 1.182(43) 0.5 55:0=44 1.117(22) 4 129=82

PA [2, 2] 1.177(58) 0.5 54:6=43 1.136(38) 1.8 128=81

VMD 1.3201(52) 2189=47 1.3873(44) 18094=85

VMDþ 1.0658(76) 18 67:4=46 1.1041(48) 21 243=84
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FIG. 4 (color online). The [1, 2] PA fit on the interval 0<Q2 � 1 GeV2 of Table I: green dashed curves, in comparison with the
model (blue solid curves). The left panel shows the vacuum polarization and the right panel shows the blown-up low-Q2 region of
the integrand of Eq. (1.1); red points are lattice data points. Axes and units are as in Fig. 1.
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FIG. 5 (color online). The VMDþ fit on the interval 0<Q2 � 1 GeV2 of Table I: green dashed curves, in comparison with the
model (blue solid curves). The left panel shows the vacuum polarization and the right panel shows the blown-up low-Q2 region of
the integrand of Eq. (1.1); red points are lattice data points. Axes and units are as in Fig. 1.
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these fits address the question of which of the fit functions
considered might still be acceptable in this hypothetical
world, and whether simply decreasing the errors, in this
case by the large factor of 100, rather than also filling in
low-Q2 values, will be sufficient to achieve the goal of
getting to the desired �1% accuracy in the determination

of ~aHLO;Q
2�1

� . The answer is barely.
First, we see that the VMD-type fits are completely ruled

out already by the �2 values. The higher precision data are
also more punishing on the PA fits. By �2 values, the first
three PAs are excluded, in contrast to Table I, where only
the [0, 1] PA is really excluded by its �2 value. The [2, 2]
PA has a possibly reasonable �2 value, but its accuracy
does not match its precision, with a pull equal to 12.8 The
more precise data make it possible to perform a [2, 3] PA
fit, and this fit is borderline acceptable, given the value of
the pull.

The best fit for each data set yields aHLO;Q
2�1

� with an
error of 5% for the lattice data set, down to 0.2% for the
science-fiction data set. While this means that (real) lattice
data with a precision somewhere in between would yield
an error of order 1% or below, we also see from this
example that that precision does not necessarily translate
into an equal accuracy. We conjecture that in order to
increase accuracy, data at more low-Q2 values than present
in the fake data sets considered here will be needed. While
precision data in the region of the peak of the integrand
would be ideal, we suspect that filling in the region be-
tween the two lowest Q2 values in this data set might
already be of significant help.

C. Diagonal fits

It is important to emphasize that the data sets considered
here are constructed such that by definition the covariance
matrix employed is the true covariance matrix, and not
some estimator for the true one. However, it is possible
that for some unknown reason the covariance matrix we

employed for generating the fake data set is less realistic,
even though we took it to come from an actual lattice
computation. For instance, the vacuum polarization of
this lattice computation contains both I ¼ 1 and (the con-
nected part of the) I ¼ 0 components, whereas the vacuum
polarization considered here has only an I ¼ 1 component.
For this reason, we also considered diagonal fits, in

which instead of minimizing the �2 function, we minimize
the quadratic form Q2 obtained by keeping only the di-
agonal of the covariance matrix. However, our errors take
into account the full data covariance matrix by linear error
propagation. (For a detailed description of the procedure,
see the appendix of Ref. [11].9)
Results of diagonal fits are shown in Tables III and IV.

These tables show fits analogous to those shown in Tables I
and II, but instead of taking the full covariance matrix into
account through a �2 fit, it is only taken into account in the
error propagation, after the fit parameters have been deter-
mined from a diagonal fit.
The results of these diagonal fits are consistent with, and

confirm, the conclusions one draws from the correlated fits
shown in Tables I and II. For PA fits, the only differences
are that errors from the diagonal fits are larger, and the
maximum order of the PA for which we can find a stable fit
is one notch lower. Since the fit quality Q2 is not a �2

TABLE II. Fits analogous to those reported in Table I, ob-
tained using the science-fiction data set, for which the covariance
matrix was reduced by a factor 10000. The fitting interval is
0<Q2 � 1 GeV2.

Fit ~aHLO;Q
2�1

� � 107 � �2=d:o:f:

PA [0, 1] 0.87782(9) 1926084=46

PA [1, 1] 1.0991(2) 51431=45

PA [1, 2] 1.1623(4) 1340=44

PA [2, 2] 1.1862(15) 12 76:4=43

PA [2, 2] 1.1965(28) 2 42:0=42

VMD 1.31861(5) 20157120=47

VMDþ 1.07117(8) 70770=46

TABLE III. Fits like those reported in Table I, but using a
diagonal fit quality Q2, and linear propagation of errors. Fitting
interval 0<Q2 � 1 GeV2 (left of the vertical double line), or
0<Q2 � 1:5 GeV2 (right of the vertical double line).

~aHLO;Q
2�1

� � 107 � Q2 ~aHLO;Q
2�1

� � 107 � Q2

PA [0, 1] 0.997(23) 19 20.1 0.906(15) 20 62.4

PA [1, 1] 1.173(74) 0.4 13.8 1.108(39) 2.5 30.3

PA [1, 2] 1.30(32) 0.3 13.55 1.22(15) 0.1 29.5

VMD 1.2122(82) 1 75.2 1.2895(69) 12 510

VMDþ 1.083(17) 7 15.0 1.081(12) 10 30.7

TABLE IV. Diagonal fits like those reported in Table III,
but using the science-fiction data set. Fitting interval
0<Q2 � 1 GeV2.

~aHLO;Q
2�1

� � 107 � Q2

PA [0, 1] 0.99623(23) 40350

PA [1, 1] 1.12875(68) 623

PA [1, 2] 1.1762(21) 13 31.3

PA [2, 2] 1.1904(54) 2.5 22.1

VMD 1.21076(8) 589751

VMDþ 1.08341(16) 4081

8We define the ‘‘precision’’ as the error we obtain, while the
‘‘accuracy’’ is the difference between the exact and fitted values.

9We prefer to refer to this type of fit as a ‘‘diagonal’’ fit,
instead of an ‘‘uncorrelated’’ fit, as the latter phrase suggests,
incorrectly, that the off-diagonal part of the covariance matrix is
completely omitted from the analysis.
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function, its absolute value (per degree of freedom) has no
quantitative probabilistic meaning. But clearly the [0, 1],
[1, 1], VMD andVMDþ fits shown in Table IVare bad fits,
as judged from their Q2 values. We therefore did not
compute the pull for these fits. For all other fits in
Tables III and IV the pull is shown and is consistent‘
with those shown in Tables I and II for PAs of one higher
order.

Also from these diagonal fits we conclude that the
VMD-type fits considered here do not work. Amusingly,
VMD appears to get it right, if one takes the VMD fit on the
interval 0<Q2 � 1 GeV2 in Table III at face value.
However, this should be considered an accident. If one
adds a parameter to move to a VMDþ fit, the value of Q2

decreases significantly, as it should, but the pull increases
dramatically, showing that VMDþ is not a reliable fit. This
should not happen if the VMD result were to be reliable
itself. Likewise, if we change the fitting interval from 0<
Q2 � 1 GeV2 to 0<Q2 � 1:5 GeV2, the pull increases
much more dramatically than for the PA fits. In addition,
both VMD-type fits in Table IVare bad fits, as judged by the
Q2 values, even though, because of the same accident, the

VMD value for aHLO;Q
2�1

� looks very good. Note, however,
that again the error is nowhere near realistic as well: we did
not compute the pull because of the large Q2 value, but its
value given the numbers reported is very large.

We conclude from this example that in order to gauge
the reliability of a fit, ideally one should consider a se-
quence of fit functions in which parameters are systemati-
cally added to the fit function. This allows one to test the
stability of such a sequence of fits, and avoid mistakenly
interpreting an accidental agreement with the model result
as an indication that a particular fit strategy is reliable when
it is not, as happens here for the VMD fit and the specific 0
to 1 GeV2 fitting window. The PA approach provides a
systematic sequence of fit functions in this respect.

D. The region 1 � Q2 � 2 GeV2

While higher-order PAs appear to work reasonably well,
in the sense that their accuracy matches their precision, we
also noted that on our fake lattice data set this is less true
when one increases the fit interval from 0<Q2 � 1 GeV2

to 0<Q2 � 1:5 GeV2. At the same time, one expects
QCD perturbation theory only to be reliable above approxi-
mately 2 GeV2. This leads to the question whether one can
do better on the interval between 0 and 2 GeV2.

As we saw in Sec. V, the accuracy of the contribution to

~aHLO;Q
2�1

� is limited to about 5% on the lattice data set,
because of the relatively sparse data at low values ofQ2. We
will therefore limit ourselves here to a few exploratory
comments, in anticipation of future data sets with smaller
errors in the low-Q2 region, and a denser set ofQ2 values.10

A possible strategy is to fit the data using a higher-order
PA on the interval 0<Q2 � Q2

max , while computing the

contribution between Q2
max and 2 GeV2, ~aHLO;Q

2
max�Q2�2

� ,
directly from the data, for some value ofQ2

max such that the
PA fits lead to reliable results for ~aHLO� on the interval

between 0 andQ2
max . This is best explained by an example,

in which we choose Q2
max � 1 GeV2.

TheQ2 value closest to 1 GeV2 isQ2
49¼0:995985GeV2;

that closest to 2 GeV2 is Q2
129 ¼ 2:00909 GeV2. From our

fake data set, using the covariance matrix with which it was
generated, we use the trapezoidal rule to find an estimate

~a
HLO;Q2

49
�Q2�Q2

129
�

¼ 1

2

X128
i¼49

ðQ2
iþ1 �Q2

i ÞðfðQ2
i Þð�ð0Þ ��ðQ2

i ÞÞ

þ fðQ2
iþ1Þð�ð0Þ ��ðQ2

iþ1ÞÞÞ
¼ 6:925ð26Þ � 10�10 ðestimateÞ: (5.2)

This is in good agreement with the exact value

~a HLO;0:995985�Q2�2:00909
� ¼ 6:922� 10�10 ðexactÞ:

(5.3)

On this interval no extrapolation in Q2 is needed, nor does
the function fðQ2Þ play a ‘‘magnifying’’ role, so we expect
the error in Eq. (5.2) to be reliable, and we see that this is
indeed the case. In contrast, it is obvious from Fig. 1 that

estimating ~aHLO;Q
2�1

� in this way would not work. One may
now combine the estimate (5.2) with, for instance, the
result from a fit to the [1, 2] PA on the interval 0<Q2 �
0:995985 GeV2 in order to estimate ~aHLO;Q

2�2:00909
� .11

The error on this estimate would be determined completely

by that on ~aHLO;Q
2�1

� coming from the fit, since the error in
Eq. (5.2) is tiny. Of course, in a complete analysis of this
type, correlations between the ‘‘fit’’ and ‘‘data’’ parts of
~aHLO� should be taken into account, because the values

obtained for the fit parameters in Eq. (3.1) will be corre-
lated with the data. However, we do not expect this to
change the basic observation of this subsection: the con-
tribution to ~aHLO� from the Q2 region between 1 and

2 GeV2 can be estimated directly from the data with a
negligible error, simply because this contribution to ~aHLO�

is itself very small (less than 0.6%). With better data, this
strategy can be optimized by varying the value of Q2

max .

VI. CONCLUSION

In order to compute the lowest-order hadronic vacuum
polarization contribution aHLO� to the muon anomalous

magnetic moment, it is necessary to extrapolate lattice

10A denser set can be obtained by going to larger volumes, and/
or the use of twisted boundary conditions [4,5].

11The result from this fit is identical to that on the interval 0<
Q2 � 1 GeV2 given in Table I to the precision shown in that
table.
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data for the hadronic vacuum polarization �ðQ2Þ to low
Q2. Because of the sensitivity of aHLO� to �ðQ2Þ in the Q2

region around m2
�, one expects a strong dependence on the

functional form used in order to fit data for �ðQ2Þ as a
function of Q2.

It is therefore important to test various possible forms of
the fit function, and a good way to do this is to use a model.
Given a model, given a set of values of Q2 at which lattice
data are available, and given a covariance matrix typical of
the lattice data, one can generate fake data sets, and test
fitting methods by comparing the difference between the
fitted and model values for aHLO� with the error on the fitted

value obtained from the fit. In this article, we carried out
such tests, using a model constructed from the OPAL data
for the I ¼ 1 hadronic spectral function as measured in �
decays, considering fit functions based on both vector
meson dominance and a sequence of Padé approximants
introduced in Ref. [9]. We took our Q2 values and covari-
ance matrix from a recent lattice data set with lattice
spacing 0.06 fm and volume 643 � 144 [9].

For a fake data set generated for theseQ2 values with the
given covariance matrix, we found that indeed it can
happen that the precision of ~aHLO� (the analog of aHLO� for

our model), i.e., the error obtained from the fit, is much
smaller than the accuracy, i.e., the difference between fitted
and exact values. We considered correlated fits as well as
diagonal fits, and we also considered fits to a science-
fiction data set generated with the same covariance matrix
scaled by a factor 1=10000.

From these tests, we conclude that fits based on the VMD-
type fit functions we considered cannot be trusted. In nearly
all cases, the accuracy is much worse than the precision,
and there is no improvement with the more precise data set
with the rescaled covariance matrix. Adding parameters
(VMDþ) does not appear to help. Based on our tests, we
therefore call into question the use of VMD-type fits for the
accurate computation of aHLO� .12

The sequence of PAs considered here performs better, if
one goes to high enough order. The order needed may be
higher if one uses more precise data, as shown in the
comparison between Tables I and II. Still, with the lattice
Q2 values and covariance matrix of Ref. [9], the maximum
accuracy obtained is of order a few percent, but at least this
is reflected in the errors obtained from the fits. Of course,
given a certain data set, one cannot add too many parame-
ters to the fit, and indeed we find that adding parameters

beyond the [2, 2] PA ([2, 3] PA for the science-fiction data
set) does not help: parameters for the added poles at larger
Q2 have such large fitting errors that they do not add any
information. We also found that PA fits do less well when
one increases the fitting interval, and proposed that the
contribution to aHLO� from the region between around

1 GeV2 and the value where QCD perturbation theory
becomes reliable can, instead, be accurately computed
using (for instance) the trapezoidal rule (cf. Sec. VD).
The ability of a direct numerical integration of the fake

data to accurately reproduce the underlying model contri-
bution in the region above Q2 � 1 GeV2 represents an
important observation for the future. The source of the
systematic problem for the various fits discussed here is
the dominance of these fits by the large range of higher-Q2

data in the fit windows employed. These data have smaller
errors, but tend to lead to a fitted polarization function with
less curvature than the true polarization function in the
low-Q2 region which dominates the a� integral. Because

this low-Q2 region lies outside the range of presently
available data, the size of the resulting systematic error is
thus likely to increase as one increases the upper bound of
the fit window employed. This expectation is confirmed by
the comparison between the results obtained using the larger
0 � Q2 � 1:5 GeV2 and smaller 0 � Q2 � 1 GeV2 fit
windows. One thus wants to optimize the fits by keeping
the upper bound of the fit window as small as possible while
at the same time retaining sufficient data points to allow fits
using PAs of sufficiently high order to produce good repre-
sentations of the low-Q2 curvature.
We believe that tests such as that proposed in this article

should be carried out for all high-precision computations
of aHLO� . We have clearly demonstrated that a good �2

value may not be sufficient to conclude that a given fit is
good enough to compute aHLO� with a reliable error. The

reason is the ‘‘magnifying effect’’ produced by the multi-
plication of the subtracted vacuum polarization by the
kinematic weight in the integral yielding aHLO� . While other

useful models [for instance, based on �ðeþe� ! hadronsÞ
data] may also be constructed, the model considered here,
for the I ¼ 1 polarization function�ðQ2Þ, is already avail-
able, and data on this model will be provided on request.
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12This includes the recent work in Ref. [24], in which the error
on aHLO� is obtained from a VMDþ fit, and in which, reportedly,
the error from PA-type fits is much larger. Based on the results
we have obtained, we strongly suspect that the error on aHLO� in
Ref. [24] is significantly underestimated. For example, the
results from the [1,2] PA and VMDþ fits on the interval 0<
Q2 � 1:5 GeV2 in Table I are compatible within errors, with the
PA error five times larger than the VMDþ error. Moreover, in
both cases the fit error is too small.
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