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We investigate the chiral properties of near-zero modes for thick classical center vortices in SUð2Þ
lattice gauge theory as examples of the phenomena which may arise in a vortex vacuum. In particular we

analyze the creation of near-zero modes from would-be zero modes of various topological charge

contributions from center vortices. We show that classical colorful spherical vortex and instanton

ensembles have almost identical Dirac spectra and the low-lying eigenmodes from spherical vortices

show all characteristic properties for chiral symmetry breaking. We further show that also vortex

intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry

breaking via the Banks-Casher formula. We discuss the mechanism by which center vortex fluxes

contribute to chiral symmetry breaking.
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I. INTRODUCTION

Quantum chromodynamics (QCD) at low energies is
dominated by the nonperturbative phenomena of quark
confinement and spontaneous chiral symmetry breaking
(�SB). Presently, a rigorous treatment of them is only
possible in the lattice regularization. Many of the important
features of non-Abelian gauge theories are already present
in SUð2Þ, which simplifies theoretical and numerical
calculations.

The nonperturbative vacuum can be characterized by
various kinds of topological gauge field excitations. A
well established theory of �SB relies on instantons [1–4],
which are localized in space-time and carry a topological
charge of modulus 1. According to the Atiyah-Singer index
theorem [5–8], a zero mode of the Dirac operator arises,
which is concentrated at the instanton core. In the instanton
liquid model [9–11] overlapping would-be zero modes
split into low-lying nonzero modes which create the chiral
condensate.

Center vortices [12–17], on the other hand, are promis-
ing candidates for explaining confinement. They form
closed magnetic flux tubes, whose flux is quantized, taking
only values in the center of the gauge group. These prop-
erties are the key ingredients in the vortex model of con-
finement, which is theoretically appealing and was also
confirmed by a multitude of numerical calculations, both in
lattice Yang-Mills theory and within a corresponding
infrared effective model; see e.g. [18–24]. Lattice

simulations indicate that vortices may be responsible for
topological charge and �SB as well [25–30], and thus
unify all nonperturbative phenomena in a common frame-
work. A similar picture of the instanton liquid model exists
insofar as lumps of topological charge arise at the inter-
section and writhing points of vortices. The colorful,
spherical SUð2Þ vortex, as introduced in previous articles
of our group [31–34], may act as a prototype for this
picture, as it contributes to the topological charge by its
color structure, attracting a zero mode like an instanton.
In this article we want to show how the interplay of

various topological structures from center vortices (and
instantons) leads to near-zero modes, which by the Banks-
Casher relation [35] are responsible for a finite chiral con-
densate. Using the overlap and asqtad staggered Dirac
operator, we compute a varying number of the lowest-lying
Dirac eigenfunctions, including the zero modes. By visual-
izing the probability density, we compare the distribution of
the eigenmode density with the position of the vortices and
the topological charge created by intersection points and
color structures. These results manifest the importance of
center vortices also for chiral symmetry breaking.

II. TOPOLOGICAL CHARGE FROM
CENTER VORTICES

From the definition

Q / �����F��F��; (1)

it is clear that topological charge contributions arise
where two perpendicular nontrivial plaquettes meet. On a
center vortex, the vortex sheet is locally orthogonal to the
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nontrivial plaquettes. Hence, topological charge emerges at
so-called singular points of center vortices, where the set of
tangent vectors to the vortex surface spans all four space-
time directions [36]. There are two possibilities where this
can occur:

(i) intersection points of two different surface patches:
Q ¼ �1=2,

(ii) writhing points of a single surface patch: jQj< 1=2.
In lattice language, intersection points have four plaquettes
attached to them extending in two particular space-time
directions (e.g. xy), and another four plaquettes extending
in the two orthogonal directions (e.g. zt). By contrast, at a
writhing point one can start at any attached plaquette and
pass around over all others along a continuous path since
they are connected by common links.

In SUð2Þ, a Wilson loop cannot distinguish between
center fluxes of opposite sign, since exp ði�Þ ¼
exp ð�i�Þ ¼ �1. However, the sign of the topological
charge is sensitive to the direction of the flux. To preserve
this information for thin vortices, one can assign an ori-
entation to the vortex patches. Note that this quantity is not
directly linked to the geometry of the vortex. A nonorient-
able vortex need not be nonorientable as a surface [37].

Vortices always have closed surfaces. Furthermore, lattice
studies show that the major fraction of vortex patches be-
longs to a single large vortex winding through the whole
lattice. Intersections between different vortices are therefore
only of minor importance. But for a closed oriented surface
the total charge is zero. Charged vortices must therefore be
globally nonoriented and consist of differently oriented
patches, which are separated by monopole worldlines. The
colorful spherical vortex is a classical representation of such
a vortex configuration, contributing to topological charge
only through its color structure. It will be discussed shortly
in Sec. IIB, but first let us explain the relation between
vortices and magnetic monopoles, thereby making precise
the definition of the orientation of a vortex.

On the lattice, monopoles are located by so-called
Abelian projection. First, one fixes the links up to a residual
Uð1Þ symmetry, which corresponds to an Abelian gauge
theory. For example, we can use the maximal Abelian
gauge [38] to rotate the color vector of the links as much
as possible in, say, the �3 direction by maximizing

R ¼ X
x;�

tr½U�ðxÞ�3U
y
�ðxÞ�3�: (2)

Afterwards, the link variables are replaced by their diago-
nal part

U�ðxÞ ¼ a01þ i ~a � ~� ! u�ðxÞ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a20 þ a23

q ½a01þ ia3�3�

¼ exp fi	�ðxÞg 0

0 exp f�i	�ðxÞg

 !
: (3)

Consider a three-dimensional cube on the lattice.
Normally, the total magnetic flux out of the cube vanishes

due to div ~B ¼ 0. If the cube contains a monopole, there
would be a nonzero net flux of the (nonphysical) Dirac
string, which compensates the physical monopole flux. The
magnetic charge inside the cube is defined by [39]

m ¼ 1

2�

X
p

�	p: (4)

	p is the sum of the angles 	� around one plaquette p;P
p	p is always zero as a consequence of the Bianchi

identity. �	p is 	p þ 2�k with k such that �	p falls into the

range ½��;��. If the absolute value of all plaquette angles
is smaller than �, �	p ¼ 	p andm ¼ 0, as usual. Plaquettes

which are greater than � are pierced by the Dirac string, at
the end of which a monopole is located. �	p discards the

flux caused by the Dirac string and a value m � 0 results.
Now let us return to center vortices. Traversing a thick

vortex sheet, the link variables change gradually, building
up to a center element. Pictured in group space of SUð2Þ ’
S3, we travel along a path from unity to the antipode �1.
After Abelian projection, only one possible direction for
the path remains and this path will go either in þ�3 or in
��3 direction. We can use this sign to allocate an orienta-
tion to every patch of the vortex surface. The sign also
corresponds to the direction of the center flux bundled
within the vortex, which is quantized in units ��. Where
regions of opposite orientation touch, the flux jumps by
2�, indicating the presence of a sink or source, i.e., a
magnetic monopole carrying a quantized magnetic charge.
To summarize, a center vortex can be imagined as a chain
of magnetic monopoles, whose flux is bundled within the
vortex surface. The monopole worldlines divide the vortex
sheet into patches of different orientations.

A. Plane vortices

We define plane vortices parallel to two of the coordi-
nate axes by links varying in a Uð1Þ subgroup of SUð2Þ.
This Uð1Þ subgroup is generated by one of the Pauli
matrices �i, i.e., U� ¼ exp ði
�iÞ. The direction of the

flux and the orientation of the vortices are determined by
the gradient of the angle 
, which we choose as a piece-
wise linear function of a coordinate perpendicular to the
vortex. The explicit functions for
 are given in Eq. (2.1) of
[40] (see also Fig. 1 therein). Upon traversing a vortex
sheet, the angle 
 increases or decreases by � within a
finite thickness of the vortex. Since we use periodic (un-
twisted) boundary conditions for the links, vortices occur
in pairs of parallel sheets, each of which is closed by virtue
of the lattice periodicity. We call vortex pairs with the same
vortex orientation parallel vortices and vortex pairs of
opposite flux direction antiparallel. Of course, there are
always two coordinates perpendicular to a vortex surface,
and vortices are always thin in one of these directions.
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Their cross sections thus strictly speaking do not corre-
spond to thickened tubes of magnetic flux, but rather thin
strips. If the thick, planar vortices intersect orthogonally,
each intersection carries a topological charge with modulus
jQj ¼ 1=2, whose sign depends on the relative orientation
of the vortex fluxes [41]; see Fig. 1. Figure 1(b) indicates
the position of the vortices after center projection, leading
to (thin) P vortices at half the thickness [18].

B. The colorful spherical vortex

The nonorientable spherical vortex of radius R and
thickness � was introduced in [31] and analyzed in more
detail in [32,34]. It is constructed with the following SUð2Þ
links:

U�ðx�Þ ¼
�
exp ði�ðj~r� ~r0jÞ ~n � ~�Þ t ¼ ti; � ¼ 4

1 elsewhere
with

~nð~r; tÞ ¼ ~r� ~r0
j~r� ~r0j ; (5)

where ~r is the spatial part of x� and the profile function � is
either one of �þ, ��, which are defined by

��ðrÞ ¼

8>>><
>>>:

�
�
2

�
1� r�R

�
2

�
0

. . .�þðrÞ

¼

8>>><
>>>:

� r < R� �
2

�
2

�
3þ r�R

�
2

�
R� �

2 < r < Rþ �
2

2� Rþ �
2 < r

: (6)

This means that all links are equal to 1 except for the t links
in a single time slice at fixed t ¼ ti. The phase changes
from � to 0 within a thickness � for ��ðrÞ [or from � to
2� for �þðrÞ]. The graph of ��ðrÞ is plotted in Fig. 2 in
[31], giving a hedgehoglike configuration, since the color
vector ~n points in the ‘‘radial’’ direction ~r=r at the vortex
radius R; see Fig. 2(a). The check that this configuration is
a vortex is done with maximal center gauge fixing and
center projection and results in a P vortex forming a lattice
representation of a 3-sphere of radius R at time slice ti; see
Fig. 2(c). The color structure of the thick vortex leads to a
monopole loop on a great circle of the P vortex after fixing
to maximal Abelian gauge and Abelian projection. The

(a) (b) (c)

FIG. 2 (color online). (a) The color structure of the vortex surface from the hedgehog configuration leads to (b) monopole lines after
Abelian projection in the maximal Abelian gauge. (c) Lattice representation of a 3-sphere for our spherical vortex after center
projection in maximal center gauge.
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FIG. 1 (color online). A single time slice of a 124 lattice with intersecting vortices (b). The horizontal planes are the xy vortices,
which exist only at this time. The vertical lines are the zt vortices, which continue over the whole time axis. The vortices intersect in
four points, giving topological charge Q ¼ 2 for parallel vortices (a) or Q ¼ 0 for antiparallel vortices (c).
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direction of the loop depends on the Uð1Þ subgroup chosen
as Abelian degrees of freedom. For the subgroup defined
by the Pauli matrices �1, �2 or �3 the monopole loops are
in the yz, zx and xy planes, respectively. This is indicated
schematically in Fig. 2(b) with three colors.

The hedgehoglike structure is crucial for our analysis.
The t links of the spherical vortices fix the holonomy of the
timelike loops, defining a map Utð ~x; t ¼ tiÞ from the xyz
hyperplane at t ¼ ti to SUð2Þ. Because of the periodic
boundary conditions, the time slice has the topology of a
3-torus. But, actually, we can identify all points in the
exterior of the three-dimensional sphere since the links
there are trivial. Thus the topology of the time slice is R3 [
f1g which is homeomorphic to S3. A map S3 ! SUð2Þ is
characterized by a winding number

N ¼ � 1

24�2

Z
d3x�ijk Tr½ðUy@iUÞðUy@jUÞðUy@kUÞ�;

resulting in N ¼ �1 for positive and N ¼ þ1 for negative
spherical vortices. Obviously such windings, given by the
holonomy of the timelike loops of the spherical vortex,
influence the Atiyah-Singer index theorem [5–8,42,43],
giving a topological charge Q ¼ �1 for positive and
Q ¼ þ1 for negative spherical vortices (antivortices).
Hence, spherical vortices attract Dirac zero modes similar
to instantons. In [34] we showed that the spherical vortex is
in fact a vacuum-to-vacuum transition in the time direction
which can even be regularized (smoothed out in the time
direction) to give the correct topological charge also from
gluonic definitions (see also [44] for more details).

III. DIRAC EIGENMODES

According to the Banks-Casher analysis [35], �SB is
necessarily associated with a finite density of near-zero
eigenmodes of the chiral-invariant Dirac operator, result-
ing in a finite chiral condensate, the order parameter of
chiral symmetry breaking. We compute the lowest-lying
chiral eigenvectors �R;L and eigenvalues j�j 2 ½0; 1� of the
overlap Dirac operator

Dov ¼ 1

2

2
41þ DWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dy
WDW

q
3
5 (7)

with the kernel Wilson Dirac operatorDW [45]. Henceforth
wewill simply write � instead of j�j and assume it to be the
absolute value of the two complex conjugate eigenvalues
of Dov if � � 0, 1. We will however distinguish between
right- and left-handed zero modes of Dov. When speaking
of an eigenmode, we always mean both of the eigenvectors
c� belonging to one value of � � 0, which have the same
scalar and chiral densities. For convenience, we will num-
ber the eigenfunctions in ascending order of the eigenval-
ues. #0þ denotes the right-handed zero mode, #0� the
left-handed zero mode. #1 labels the lowest nonzero mode,
#2 the second lowest etc. Their eigenvalues are referred to

as �#0þ , �#0� , �#1, etc., and their densities as �#0þ ,
etc. Finally, we will name near-zero modes which emerge
from would-be zero modes also by #0 for good reasons,
which will be discussed later.
The corresponding eigenvectors are given by

c� ¼ 1ffiffiffi
2

p ð�R � i�LÞ: (8)

They have scalar and chiral densities

� ¼ c y
�c� ¼ 1

2
ð�y

R�R þ �y
L�LÞ; (9)

�þ ¼ c y
�
1

2
ð1þ 
5Þc� ¼ 1

2
ð�y

R�RÞ; (10)

�� ¼ c y
�
1

2
ð1� 
5Þc� ¼ 1

2
ð�y

L�LÞ; (11)

�5 ¼ c y
�
5c� ¼ 1

2
ð�y

R�R � �y
L�LÞ ¼ �þ � ��: (12)

The chiral density �5 is important to assess the local
chirality properties, in particular to test the notion that the
near-zero modes arise from the splitting of exact zero
modes localized at lumps of topological charge.
In a gauge field with topological charge Q � 0, Dov has

jQj exact zero modes with chirality �signQ, and an equal
number of eigenvectors of opposite chirality and eigen-
value 1 (doubler modes). This is required in order that
Tr
5 ¼ 0. The topological charge is

Q ¼ Trð
5DovÞ ¼ n� � nþ ¼ indDov; (13)

as for any Ginsparg-Wilson operator.
The plot titles of the density plots (see e.g. Fig. 3) give

the x and y coordinates of the shown zt slice, the chirality
(i.e., ‘‘chi ¼ 0’’ means we plot �5, ‘‘chi ¼ 1’’ would be �þ
and ‘‘chi ¼ �1’’ ��), the numbers of plotted modes
(‘‘n ¼ 1–1’’ means we plot �#1, ‘‘n ¼ 1–2’’ would be
�#1þ �#2) and the maximal density in the plotted area
(‘‘max¼ � � � ,’’ since some maxima are cut off in order to
resolve other substructures). For instanton and spherical
vortex configurations we use 123 � 24 lattices and always
plot xt slices at y ¼ z ¼ 6 since they are symmetric in
spatial directions around their centers at x ¼ y ¼ z ¼ 6:5.
For plane vortex configurations we use 164 lattices; the
plotted slices vary.

A. Eigenvalue spectrum of the free Dirac operator

In this section we will analytically calculate the eigen-
values of the massless free Dirac operator. These eigenval-
ues and their multiplicity will come handy later when we
compare the eigenvalues for different gauge field configu-
rations to the eigenvalues for the free case. The free con-
tinuum Dirac operator for massless fermions is given by
D ¼ 
�@�, where 
� are the Euclidean Dirac matrices.
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We want to solve the Dirac equation D�� c �ðxÞ ¼
�c �ðxÞ. Using the well known ansatz of plane wave func-
tions c �ðxÞ ¼ u� exp ðip�x�Þ, one gets the eigenvalues of
the free continuum operator � ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p�p�

p
. Identifying

the eigenvalue �with the fermion massM makes clear that
this is simply the relativistic energy momentum relation in
Euclidean space given by M2 ¼ E2 þ p2, where we have
denoted p2

4 by E2 and pipi by p2. Note that both the
eigenvalues for the plus and the minus signs have a degen-
eracy of 2, which gives in total four eigenvalues for the 4�
4 Dirac matrix (4� 4 Dirac indices). Additional degener-
acy comes from the color indices. The free Dirac operator
is color-blind. Therefore, the degeneracy of the different
eigenvalues is multiplied by ncol, where ncol is the range of
the color indices. For the overlap Dirac operator the eigen-
values can also be calculated analytically for the free case
using the lattice ansatz c �ðnÞ ¼ u� exp ðiap�n�Þ, with
the lattice sites n�, and yield the continuum solutions

with corrections of orders of a2:

Dovðp�Þ ¼ 1

2

2
641þ i
� sin ðp�Þ �Mðp�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

�
sin ðp�Þ2 þM2ðp�Þ

r
3
75 (14)

with Mðp�Þ ¼ M�P
�ð1� cos ðp�ÞÞ. Here a ¼ 1 and

M ¼ 1 in the free case. This gives (Hov ¼ 
5Dov)

H2
ovðp�Þ ¼ Dy

ovDov ¼ 1

2

2
641�

Mðp�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
�
sin ðp�Þ2 þM2ðp�Þ

r
3
75

¼ �2 (15)

with expected multiplicities [H2
ovðp�Þ is a diagonal 4� 4

matrix]. For p� � 1 we get

�2 ¼ p�p�

4M2
ð1þOðp�p�ÞÞ: (16)

With the normalization of Eq. (7), which leads to �2 2
½0; 1�, a wave function renormalization is needed to convert
to the usual continuum normalization. This compensates

the factor 1
4M2 [see e.g. Eq. (6) in [46]], giving the usual free

Dirac eigenvalues in the continuum limit. Note that the
plane wave ansatz is periodic, not only in x� or lattice

indices n�, but also in p�. This means that p� and p� þ
2�z�
a (with z� 2 Z) correspond to the same eigenfunction.

Therefore, in order to get the correct multiplicities for the
eigenvalues, we have to restrict the range of p� to

� �

a
< p� � �

a
: (17)

For the usual periodic boundary conditions in the spatial
directions and periodic or antiperiodic boundary conditions
in the temporal direction, the allowed values for p� are

pi ¼ 2n�

aNsp

; p4 ¼
8<
:

2n�
aNt

for periodicBC

ð2nþ1Þ�
aNt

for antiperiodicBC
;

n 2 Z;

where Nsp is the spatial and Nt the temporal extent of the

lattice. The total multiplicity of an eigenvalue � is given by

nmultð�Þ ¼ 2ncolnpð�Þ;
where npð�Þ is the number of different p�’s corresponding

to a particular �. The factor 2 comes from the Dirac indices
as discussed above. Let us now have a quick look at the
multiplicity of the eigenvalues for one particular lattice size,
i.e., Nsp ¼ 12 and Nt ¼ 24, which we will use later for our

lattice configurations. We assume antiperiodic boundary
conditions in the temporal direction, a ¼ 1 and a SUð2Þ
gauge field theory (i.e., ncol ¼ 2). The momentum vectors
corresponding to the lowest eigenvalues are then given by
pi ¼ 0 and p4 ¼ ��=24. Therefore, we have npð�#1Þ ¼ 2

for the lowest eigenvalues �#1. That means we get a
multiplicity nmultð�#1Þ ¼ 2ncolnpð�#1Þ ¼ 8. For the sec-

ond lowest eigenvalues �#2 we have pi ¼ 0 and p4 ¼
�3�=24 ¼ ��=8 and therefore another degeneracy of 8.
Then we get pi ¼ ��=6 (with i 2 f1; 2; 3g) and
p4 ¼ ��=24, i.e., npð�#3Þ ¼ 12. This gives a multiplicity

nmultð�#3Þ ¼ 48.
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FIG. 3 (color online). Chiral density of the low-lying eigenmodes of the free overlap Dirac operator: �5#1 (left), �5#7 (center), �5#9
(right). The modes clearly show the plane wave behavior with oscillations of 2p� (see text).
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Figure 3 shows the chiral density of free overlap
eigenmodes obtained numerically using the MILC code.
The modes are found with the Ritz functional algorithm
[47,48] with random start and for degenerate eigenvalues
the eigenmodes span a randomly oriented basis in the
degenerate subspace. Therefore the numerical modes
presented in Fig. 3 are linear combinations of plane
waves with �p� and show plane wave oscillations of

2p� in the chiral density. The first eight degenerate

modes consist of plane waves with p4 ¼ ��=24; hence
there is one sine (cosine) oscillation in time direction, and
the next eight have p4 ¼ �3�=24, i.e., three oscillations
in the time direction. The oscillations of �R and �L are
separated by half an oscillation length, i.e., the maxima
of �þ correspond to minima of �� and vice versa.

Accordingly, the scalar density �ðx�Þ¼ 1
2ð�y

Rðx�Þ�Rðx�Þþ
�y
Lðx�Þ�Lðx�ÞÞ¼1=NV is constant (NV . . . lattice volume).

B. Zero modes and instantons

An instanton field gives rise to an exact zero mode (the
precise expression is given in e.g. [49]). Its probability
density

�ðxÞ ¼ 2

�2

R2

ðx� x0Þ2 þ R2
(18)

is localized at the instanton core x0, with a half-radius of
the instanton parameter R. Since the zero mode is exactly
chiral, its chiral density c y
5c equals ��. In the instan-
ton liquid model the near-zero modes originate from the
overlap of the would-be zero modes carried by individual
instantons and anti-instantons. If the overlap is not too
large, one expects that the resulting near-zero modes still
exhibit definite chirality locally. This picture predicts char-
acteristic properties of the low-lying modes [50]:

(i) Their probability density should be clearly peaked,
indicating the location of instantons.

(ii) The local chirality at the peaks should match the
sign of the topological charge and the size of the
chiral lump should be correlated to the extension of
the topological structure.

(iii) As an instanton and an anti-instanton approach
each other, the eigenvalues should be shifted fur-
ther away from zero and the localization and local
chirality properties should fade.

Numerical evidence supporting these assumptions about
the local chirality structure of the low-lying Dirac modes
are presented in e.g. [51–53]. Here we want to analyze
these issues for center vortices.

C. Zero modes and center vortices

Reinhardt et al. [54] analytically calculate the exact zero
modes of the Dirac operator in the background of plane
vortices, both nonintersecting and perpendicularly inter-
secting ones, for an AbelianUð1Þ gauge field onR2,R4, T2

and T4. The first vortex field of interest consists of two
(anti)parallel fluxes on a 2-torus. Because of a two-
dimensional translation symmetry we can identify this
with the four-dimensional configuration of a single vortex
pair presented in Sec. II A. The second example contains
four flat vortices on a 4-torus, which intersect orthogonally
in four points. This corresponds to the configuration shown
in Fig. 2(a).
Wewant to discuss the boundary conditions used in [54].

The four-dimensional problem can be reduced to two two-
dimensional ones because of the translation invariance
parallel to the vortex sheets. It therefore suffices to deal
with the T2 case. The boundary conditions for a gauge field
on T2 are specified by the two transition functions�x,�y.

In a suitable gauge, it is possible to set �x ¼ 1. The
cocycle condition then turns into a periodicity condition

�yðxþ LxÞ ¼ �yðxÞ (19)

for�yðxÞ, which lives only at the boundary of the rectangle
which represents the torus. Therefore�y defines a function

S1 ! S1 belonging to a class of the homotopy group
�1ðS1Þ ’ Z. Its winding number n determines the magnetic
flux through the xy plane by

� :¼
I

A�dx� ¼ 2�n: (20)

To prove this, we simply perform the line integral over the
boundary of the rectangle resulting from cutting up the
torus. We set �yðxÞ ¼ exp fi�ðxÞg. Since �y is periodic,

�ðxþ LxÞ ¼ �ðxÞ þ 2�n. Then

� ¼
Z Lx

0
Axðx; 0Þdxþ

Z Ly

0
AyðLx; yÞdy�

Z Lx

0
Axðx; LyÞdx

�
Z Ly

0
Ayð0; yÞdy

¼
Z Lx

0
Axðx; 0Þdxþ

Z Ly

0
Ayð0; yÞdy

�
Z Lx

0
½Axðx; 0Þ � @x�ðxÞ�dx�

Z Ly

0
Ayð0; yÞdy

¼
Z Lx

0
@x�ðxÞdx ¼ �ðLxÞ � �ð0Þ ¼ 2�n: (21)

Consequently, the flux on T2 is quantized. Note that this
would not hold for SUð2Þ since �1ðS3Þ ¼ 1. To create
two vortices which carry a flux of þ� each, Reinhardt
et al. use �y ¼ exp f2�ixg. Returning finally to the fer-

mion field, it obeys boundary conditions consistent with
gauge invariance,

c ðx; yþ LyÞ ¼ �yðxÞc ðx; yÞ: (22)

In [40] we analyzed the zero modes for plane vortex
configurations and found good agreement with the results
obtained by Reinhardt et al. [54]. The discrepancies
discussed in our work originate in the finite thickness of
our vortex configurations because of finite lattice sizes.
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We conclude this section with a quick discussion of the
eigenvalues for the spherical vortex. As already mentioned,
there always occurs exactly one zero mode, a positive
chirality one for the spherical vortex and a negative chi-
rality zero mode for the antivortex. The lowest nonzero
modes can be seen as some sort of modified eigenmodes of
the free Dirac operator. This point of view is motivated by
the results presented in Fig. 4(a). In this diagram, one can
see the eigenvalues for configurations with vortices of the
same size in lattice units but different spatial Nsp and

temporal Nt lattice extents. In other words, the vortex
gets smaller while the lattice gets finer. One sees from
the figures that the nonzero eigenvalues converge to eigen-
values of the free Dirac operator as the vortex gets smaller
and smaller. For the investigated eigenvalues, there seems
to be a one-to-one correspondence between the eigenvalues
of the free Dirac operator and the nonzero eigenvalues of
the Dirac operator for the vortex configuration. The zero
mode is not a lowered nonzero mode; it occurs in addition
to the low-lying modes. Because the total number of
eigenmodes only depends on the lattice size, the number
of complex eigenvalues is lowered by 2 (because of the
zero and the doubler mode) for the vortex configuration in
comparison to the free case. Note that we still can have a
one-to-one correspondence between all the complex eigen-
values for the vortex and the free case. One can see this by
remembering that the correspondence is established in the
limit of an infinitely large lattice.

IV. INTERACTIONS BETWEEN
TOPOLOGICAL OBJECTS

We want to discuss the Dirac equation for a gauge field
A� ¼ A1� þA2� consisting of two fields A1� and

A2� which are separated in Euclidean space and have

nonvanishing topological charge Qi. Therefore, the Dirac
operators D1 for A1� alone and D2 for A2� alone would

have at least one zero mode. In the following, the zero
modes of D1 and D2 will be called would-be zero modes.
Let us discuss the case in which A1� has Q1 ¼ 1 and

A2� has Q2 ¼ �1. For simplicity we assume that D1 has

only one left-handed zero mode j c 1i and D2 only one
right-handed zero mode j c 2i. Clearly, these two would-be
zero modes are orthogonal and can be part of an orthogonal
basis. Let us now have a look at the Dirac operator in this
orthogonal basis. In particular we are interested in the
upper left 2� 2 block

hc 1 j D j c 1i hc 1 j D j c 2i
hc 2 j D j c 1i hc 2 j D j c 2i

 !
(23)

of the Dirac matrix. The continuum Dirac operator D is
given by

D ¼ 
�ð@� þ iA�ðxÞÞ
¼ 
�ð@� þ iA1�ðxÞ þ iA2�ðxÞÞ
¼ D1 þ 
�iA2�ðxÞ ¼ D2 þ 
�iA1�ðxÞ: (24)

The first element of (23) therefore evaluates to

hc 1 j D j c 1i ¼ hc 1 j D1 j c 1i
þ hc 1 j 
�iA2�ðxÞ j c 1i ¼ 0: (25)

One can see that hc 1 j 
�iA2�ðxÞ j c 1i vanishes from
hc 1 j 
�iA2�ðxÞ j c 1i ¼ hc 1 j 
�iA2�ðxÞ
2

5 j c 1i
¼ �hc 1 j 
5
�iA2�ðxÞ
5 j c 1i
¼ �hc 1 j 
�iA2�ðxÞ j c 1i:

(26)
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spherical vortex on 243x12 lattice

free overlap Dirac operator (trivial gauge field)

(b)
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FIG. 4 (color online). (a) The lowest eigenvalues for the spherical vortex with R ¼ d ¼ 3a compared to the eigenvalues of the free
Dirac operator (red crosses). Eigenvalues are calculated on a 123 � 6 lattice with relative lattice constant a ¼ 2 (magenta boxes), on a
163 � 8 lattice with a ¼ 3

2 (blue stars) and on a 243 � 12 lattice with a ¼ 1 (green crosses). The multiplicity of �#1 is 8, and that of

�#2 is 48. (b) Spatial distribution of the zero mode, mainly located at the vortex core.
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In the same way one can prove

hc 2 j D j c 2i ¼ 0: (27)

Let us now calculate the off-diagonal terms. The first
off-diagonal term evaluates to

hc 1 j D j c 2i ¼ hc 1 j D2 j c 2i þ hc 1 j 
�iA1�ðxÞ j c 2i
¼ 0þ c¼ c: (28)

Here c stands for the overlap integral hc 1 j 
�iA1�ðxÞ j
c 2i. In general, cwill be large for eigenmodes that overlap
a lot, and small for eigenmodes that overlap only a little.
Note that it is crucial that j c 1i and j c 2i have different
chirality. Otherwise, by the same argument as used in (26),
the overlap integral would have to vanish. The second
off-diagonal term of the upper left 2� 2 block is

hc 2 j D j c 1i ¼ ðhc 1 j Dy j c 2iÞ� ¼ ð�hc 1 j D j c 2iÞ�
¼ �c�: (29)

Here it was used that the continuum Dirac operator D is
anti-Hermitian, i.e., Dy ¼ �D.

Combining (25) and (27)–(29), the upper left 2� 2
block of the Dirac matrix reads

0 c

�c� 0

 !
: (30)

This 2� 2 block can easily be diagonalized. The eigen-
values �1;2 and the normalized eigenvectors c 0

1;2 of (30)

are

�1;2 ¼ �i
ffiffiffiffiffiffiffi
cc�

p
¼ �ijcj; c 0

1;2 ¼
1ffiffiffi
2

p �i
ffiffiffiffi
c
c�

p
1

 !
: (31)

This means that the interaction transforms the two (would-
be) zero modes into two near-zero modes. Those near-zero
modes also occur additionally to the free Dirac eigenmodes

and therefore we still enumerate them like zero modes by
#0. The strength of the interaction quantified by the overlap
integral c determines the size of the near-zero eigenvalue.
Note that the new near-zero modes consist in equal parts of
the would-be zero modes j c 1i and j c 2i. Therefore the
scalar and chiral densities of the near-zero modes are
simply an average of the densities of the would-be zero
modes.
So far we have ignored everything except the upper left

2� 2 block of the Dirac matrix. To get exact eigenmodes
we clearly have to diagonalize the whole Dirac matrix and
not only this 2� 2 block. However, (31) represents a
legitimate approximation to the exact eigenvalues and
eigenmodes if the elements of the form

hc j jD j c 1;2i ¼ hc j j 
�iA2;1�ðxÞ j c 1;2i with j> 2

are a lot smaller than the overlap integral c ¼ hc 1 j

�iA1�ðxÞ j c 2i. Usually this will be the case, because

j c 1i is localized at A1� and j c ji with j > 2 is not. Let

us also have a quick look at what happens when we have
two would-be zero modes with the same chirality. In this
case also the off-diagonal terms of the upper left 2� 2
matrix vanish and the would-be zero modes are actual zero
modes.
Note that the mechanism discussed in this section is the

basis for the instanton liquid model of spontaneous chiral
symmetry breaking (see [49] for a detailed review). In the
instanton liquid model the QCD-vacuum consists of an
ensemble of instantons and anti-instantons whose would-
be zero modes split into near-zero modes because of inter-
actions. Therefore, one gets a nonvanishing eigenmode
density around zero, which gives via the Banks-Casher
relation a finite chiral condensate and broken chiral sym-
metry. Clearly, one can construct such a model also with
other topological objects, as will be shown in the next
section for center vortices.
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FIG. 5 (color online). The lowest overlap eigenvalues for instanton and spherical vortex configurations compared to the eigenvalues
of the free (overlap) Dirac operator.
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FIG. 6 (color online). Chiral densities of overlap eigenmodes: (a) zero mode (left), first (center), ninth (right) and (b) eighth (�5 left,
�þ center and �� right) nonzero modes for an instanton. (c) and (d): The same as (a) and (b) but for a spherical vortex.
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FIG. 7 (color online). Chiral densities (�5 left, �þ center and �� right column) of the (a) lowest (near-zero), (b) second-lowest
(nonzero) and (c) eighth (nonzero) eigenmodes of the overlap Dirac operator for an instanton–anti-instanton pair. (d) �5 of the sixth
(left), seventh (center) and ninth (right) eigenmodes.
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FIG. 8 (color online). Same as Fig. 7 but for a spherical vortex–antivortex pair. Chiral densities (�5 left, �þ center and �� right
column) of the (a) lowest (near-zero), (b) second-lowest (nonzero) and (c) eighth (nonzero) eigenmodes. (d) �5 of the sixth (left),
seventh (center) and ninth (right) eigenmodes.
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FIG. 9 (color online). Chiral densities of overlap eigenmodes for spherical vortices at t ¼ 4 and t ¼ 20 and an antivortex at t ¼ 12:
(a) zero mode ��#0� (left), �5#1 (center) and �5#5 (right); (b) near-zero (second-lowest) mode #0; (c) #7 ( 	 #0� ); and (d) #8
( 	 #0) with �5 (left), �þ (center) and �� (right).
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V. VORTICES AND �SB

In Sec. II we discussed the various possibilities of vor-
tices to create topological charge, i.e., via writhing and
intersection points as well as through their color structure.
In previous works we presented results on the attraction of
zero modes for flat [40] and spherical [31–34] vortex
configurations. Here we present some results on how vor-
tices form near-zero modes from would-be zero modes
through interactions.

A. Spherical vortices and instantons

We start with spherical vortices and show that their
effects on fermions are pretty much the same as those of
instantons. We have shown in Fig. 4 that they attract a zero
mode and its scalar density peaks at the vortex surface. We
interpreted the nonzero modes as eigenmodes of the free
Dirac operator, which are shifted slightly because of
their interaction with the nontrivial gauge field content.
In Fig. 5(a) we see that a single instanton has nearly exactly
the same eigenvalues as a single spherical vortex. In Fig. 6
we show that even the chiral densities of the lowest eigen-
modes distribute similarly, except for the fact that the
response of the fermions to the spherical vortex is squeezed
in the time direction, since the vortex is localized in a
single time slice (t ¼ 5). Another interesting issue is that
the nonzero eigenmodes show nice planewave oscillations,
like the free eigenmodes in Fig. 3; mode #8 however shows
some similarity to the zero mode, and its eigenvalue is also
clearly enhanced compared to the free spectrum. This is
only a side remark however, as we are not sure how to
interpret this and it does not seem to be important for the
creation of near-zero modes since we observe the same
effect for instantons.

We further plot the spectra of instanton–anti-instanton,
spherical vortex–antivortex and instanton-antivortex pairs

in Fig. 5(a). We again see nearly exactly the same eigen-
values for instanton or spherical vortex pairs, but now we
get instead of two would-be zero modes a pair of near-zero
modes for each pair. The chiral density plots in Fig. 7 for
the instanton–anti-instanton pair and in Fig. 8 for the
spherical vortex–antivortex pair show, besides the similar
densities, that the near-zero mode is a result of two chiral
parts corresponding to the two constituents of the pairs.
The nonzero modes can again be identified with the free
overlap modes with the same side remark for mode #8. In
Fig. 5(b) we plot the eigenvalues of two (anti-)instantons
and two spherical (anti)vortices giving topological charge
Q ¼ 2 (Q ¼ �2) and therefore two zero modes, two
vortex-antivortex pairs with two near-zero modes and a
configuration with two vortices and an antivortex (i.e., a
single vortex plus one vortex-antivortex pair) giving one
zero mode (Q ¼ 1) and one near-zero mode. The chiral
densities for the last configuration in Fig. 9 show that the
zero mode peaks at both spherical vortices, the near-zero
mode again consists of two chiral parts from the (second/
would-be) zero mode of the two vortices and the (would-
be) zero mode of the antivortex. Now the modes #7 and #8
clearly deviate from the free eigenvalues showing similar
densities as the zero and the near-zero modes respectively.
Finally we want to analyze the effect of the distance

between vortex and antivortex. In Fig. 10(a) we plot the
low-lying eigenvalues for a spherical vortex–antivortex
pair with varying distance in time direction. The near-
zero mode is clearly shifted away from zero as the vortex
and antivortex approach each other. If they lie in neighbor-
ing time slices (i.e., t ¼ 3 and t ¼ 4) the Dirac operator
cannot resolve them as individual objects; i.e., the eigen-
modes overlap heavily and no near-zero mode is produced.
This can also be seen from the plane wave behavior in
the chiral density of the lowest eigenmode in Fig. 10(b).
The chiral densities of the near-zero modes for
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FIG. 10 (color online). (a) The lowest overlap eigenvalues for spherical vortex–antivortex pairs with varying distance compared to
the eigenvalues of the free (overlap) Dirac operator. (b) Chiral density of the lowest overlap eigenmode for spherical vortex and
antivortex in neighboring time slices (t ¼ 3 and t ¼ 4). Its plane wave behavior shows that this eigenmode is not a near-zero mode and
hence it appears as mode #1 in (a).
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vortex-antivortex pairs with distances 2, 3, and 4 are shown
in Fig. 11; they show no plane wave behavior and an
increasing degree of local chirality. From the density plots
we conclude that the eigenmode peaks at the spherical
vortices extend over 3–4 time slices. Hence we expect
the overlap of the modes to vanish if the vortex and anti-
vortex are separated by 5–6 time slices and indeed we see
that the eigenvalues do not change significantly if we
increase the distance further. Thus, the spherical vortices
reproduce all characteristic properties of low-lying modes
for chiral symmetry breaking given in [50] and summa-
rized at the end of Sec. III B. The results clearly show that
we may draw the same conclusions for spherical vortices
as for instantons concerning the creation of near-zero
modes.

B. Planar vortex configurations

For plane vortices the situation is more complicated, as
we do not get single, localized lumps of topological charge
Q ¼ �1, which would attract single zero modes. We rather

deal with vortex intersection points each contributing with
Q ¼ �1=2 and only attracting zero modes as combina-
tions of topological charge contributions. Recall from
Fig. 9(a) that even for two spherical vortices and one
antivortex the corresponding zero mode cannot be matched
to a single vortex, but the zero mode belongs to both
topological charge contributions. As shown in Figs. 1(a)
and 1(c) one can get two different values of topological
charge Q for two pairs of planar vortex surfaces, intersect-
ing in four points. For parallel flux direction we get two
real zero modes, according to the total topological charge
Q ¼ �2. These modes we analyzed in [40]; they peak at
least at two of the four topological charge contributions of
Q ¼ 1=2. For pairs of planar vortex surfaces with opposite
(antiparallel) flux directions we getQ ¼ 0 according to the
topological charge contributions in Fig. 1(c) and four real
near-zero modes. The sum of local chiralities of these four
modes peaks at the intersection points according to the sign
of the local topological charge, as shown in Fig. 12(b).
Figure 13 shows that every near-zero mode is concentrated

y 6, z 6, chi 1, n 1 1, max 0.000742976

12

4

8

12

t

0.0005

0

0.0005

4

8x

y 6, z 6, chi 1, n 1 1, max 0.00167432

12

4

8

12

t

0.001

0

0.001

4

8x

y 6, z 6, chi 1, n 1 1, max 0.00170233

12

4

8

12

t

0.001

0

0.001

4

8x

FIG. 11 (color online). Chiral density of the overlap near-zero mode for a spherical vortex at t ¼ 3 and an antivortex at t ¼ 5, t ¼ 7
and t ¼ 9.
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FIG. 12 (color online). (a) The lowest overlap eigenvalues for plane vortex configurations compared to the eigenvalues of the free
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only occur for appropriate boundary conditions (see text for details). (b) Chiral density �5#0 in the intersection plane of all four near-
zero modes of crossing flat vortex pairs with opposite flux direction (Q ¼ 0).

HÖLLWIESER et al. PHYSICAL REVIEW D 88, 114505 (2013)

114505-14



on two intersections with opposite topological charge con-
tribution. The number of near-zero modes seems to be
related to the four possible combinations to get topological
charge Q ¼ 0 from two of the four Q ¼ �1=2 contribu-
tions. The nonzero modes again show plane wave
oscillations.

The presented results are obtained for the usual anti-
periodic boundary conditions in the time direction and

periodic boundary conditions in the spatial directions.
However, we want to emphasize that the number of
(near) zero modes does not change with respect to bound-
ary conditions, even if we impose antiperiodic boundary
conditions in all directions. The reason it is important to
ascertain this is that plane vortex pairs by themselves are
somewhat special, as they can attract zero modes already
on their own according to their magnetic flux, due to their
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FIG. 13 (color online). The individual modes of Fig. 12(b) are mainly localized at two neighboring intersection points with opposite
topological charge contributions: (a) mode #1 mainly peaks at the intersections in the back at z ¼ 12; (b) mode #2 is mainly localized
at the intersections to the left (x ¼ 4); (c) mode #3 at x ¼ 12 (right); and (d) mode #4 at z ¼ 4 (front).
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FIG. 14 (color online). Chiral densities of the low-lying eigenmodes of the overlap Dirac operator for plane vortices: (a) two zero
modes of one parallel vortex pair, i.e., two vortices with the same flux direction; (b) four near-zero modes; and (c) first nonzero mode
of one antiparallel vortex pair, i.e., two vortices with opposite flux direction. Note that the modes in (a) and (b) are only present for
periodic boundary conditions in directions parallel to the vortex flux (see text for details).

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  8  16  24  32

λ

mode #

spherical SU(2) (anti)vortex
spherical vortex-antivortex pair

single (anti)instanton
instanton-anti-instanton pair

instanton + antivortex
free asqtad staggered Dirac operator (trivial gauge field)

(b)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.02  0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

ch
ir

al
ity

λ

spherical SU(2) (anti)vortex
spherical vortex-antivortex pair

single (anti)instanton
instanton-anti-instanton pair

instanton + antivortex
free asqtad staggered Dirac operator (trivial gauge field)

FIG. 15 (color online). (a) The lowest asqtad staggered eigenvalues for instanton and spherical vortex configurations compared to the
eigenvalues of the free Dirac operator. (b) Chirality of the corresponding eigenmodes.

CENTER VORTICES AND CHIRAL SYMMETRY BREAKING . . . PHYSICAL REVIEW D 88, 114505 (2013)

114505-15



essentially two-dimensional nature (see Sec. III C and
Reinhardt et al. [54]). For periodic boundary conditions
we get for a single pair of planar vortex surfaces with the
same (parallel) flux direction two nonchiral zero modes.
They have the same chirality peaking at the two vortices;
see Fig. 14(a) and compare to Fig. 1 in [54]. In fact, these
modes are remnants of the trivial gauge fields, where one
gets four nonchiral zero modes for periodic boundary
conditions. The two ‘‘missing’’ zero modes, which would
of course have opposite chirality, are suppressed by the
vortex structure. For a single vortex pair with opposite flux
direction (antiparallel vortices) we get four nonchiral near-
zero modes peaking at the two vortices with opposite
(local) chiralities (two left-handed and two right-handed);
see Fig. 14(b). The nonzero modes again show plane
wave oscillations; see Fig. 14(c). In four dimensions these

nonchiral modes can be removed by antiperiodic boundary
conditions in at least one of the directions parallel to the
vortex flux, i.e., for usual antiperiodic boundary conditions
in the time direction the near-zero mode results in this
paragraph are only valid for ‘‘spatial’’ plane vortices, e.g.
xy vortices. For zt vortices there are no (near) zero modes,
as there are none for antiperiodic boundary conditions in
the z direction and in the case of xy vortices with anti-
periodic boundary conditions in the x or y direction. Since
the (near) zero modes induced by single pairs of planar
vortices can be removed by appropriate boundary condi-
tions, but they persist for two intersecting vortex pairs
regardless of boundary conditions, we conclude that indeed
the intersections by themselves can cause near-zero modes.
Now, the mechanism of Sec. VA, or the analog instanton

liquid model, does not directly apply to the case of planar
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vortices, since there are no localized lumps of topological
charge Q ¼ �1. Nevertheless the vortices attract chiral
(near) zero modes via their intersections with topological
charge Q ¼ �1=2, similar to the cases of merons [55] and
calorons [56]. We conclude that the color structure of
vortices and their intersection points are able to create a
finite density of near-zero modes and break chiral symme-
try via the Banks-Casher relation.

C. Asqtad staggered modes

For completeness we shortly discuss the asqtad stag-
gered eigenmodes for the presented configurations (see
Figs. 15–19). In principle the same conclusions as for
overlap modes apply if we consider the double degeneracy
of asqtad staggered modes due to charge conjugation.
Hence we have two (would-be) zero modes for Q ¼ �1
and there are four times as many near-zero modes since
two would-be zero modes do result in two pairs of near-
zero modes instead of one for overlap modes. Remember
that for a single pair of plane vortices with parallel flux the
overlap operator finds two nonchiral zero modes. It is
interesting to note that the staggered operator identifies
them as nonchiral near-zero modes as indicated by their
number and chiralities (magenta boxes in Fig. 16). The
nonchiral modes for single vortex pairs can again be re-
moved by antiperiodic boundary conditions in directions
parallel to the vortex flux. The chirality of the asqtad

staggered eigenmodes is given by hc
5c i, where 
5

corresponds to a displacement along the diagonal of a
hypercube. Staggered fermions do not have exact zero
modes, but a separation between would-be and nonzero
modes is observed for improved staggered quark actions
[57]. The plots show that the would-be and near-zero
modes have enhanced chirality compared to nonzero
modes and we even observe the local chiral density prop-
erties for the near-zero modes which we discussed for the
overlap modes.

VI. CONCLUSIONS

The instanton liquid model provides a physical picture
of chiral symmetry breaking via the idea of quarks hop-
ping between random instantons and anti-instantons,
changing their helicity each time. This process can be
described by quarks propagating between quark-instanton
vertices. As fermions do not seem to make much of a
difference between instantons and spherical vortices this
picture can be extended to colorful spherical center vor-
tices. In fact, the spherical vortices reproduce all charac-
teristic properties of low-lying modes for chiral symmetry
breaking [50]:
(i) Their probability density is clearly peaked at the

location of the vortices.
(ii) The local chirality at the peaks exactly matches the

sign of the topological charge and the size of the
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FIG. 18 (color online). Chiral density of the asqtad staggered near-zero mode for a spherical vortex in time slice t ¼ 3 and an
antivortex in (a) t ¼ 5, (b) t ¼ 7 and (c) t ¼ 9.
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chiral lump is correlated to the extension of the
topological structure.

(iii) As a spherical vortex and an antivortex approach
each other, the eigenvalues are shifted further away
from zero and the localization and local chirality
properties fade.

In the vortex picture the model of chiral symmetry
breaking can be formulated even more generally, as we
have shown that various shapes of vortices attract (would-
be) zero modes which contribute via interactions to a finite
density of near-zero modes with local chiral properties,
i.e., local chirality peaks at corresponding topological
charge contributions. The simple picture of localized
would-be zero modes from the instanton liquid model or
spherical vortex configurations as discussed in Secs. IVand
VA does not apply directly to general vortex structures as
there are not only topological charge contributions of
Q ¼ �1. In Monte Carlo configurations we do not, of
course, find perfectly flat or spherical vortices, as one
does not find perfect instantons. The generation of topo-
logical charge from vortex intersections, writhing points
and even color structure contributions or instantons can
provide a general picture of �SB: any source of topological
charge can attract (would-be) zero modes and produce a
finite density of near-zero modes leading to chiral symme-
try breaking via the Banks-Casher relation. Here one also
has to ask what could be the dynamical explanation of
�SB. We can try the conjecture that only a combination of
color electric and magnetic fields leads to �SB, electric
fields accelerating color charges and magnetic fields trying
permanently to reverse the momentum directions on spiral
shaped paths. Such reversals of momentum keeping the
spin of the particles should especially happen for very
slowly moving color charges. Alternatively we could argue
that magnetic color charges are able to flip the spin of slow
quarks, i.e., when they interact long enough with the vortex
structures.

Finally, it seems that vortices not only confine quarks
into bound states but also change their helicity in analogy
to the instanton liquid model. We therefore emphasize that

the center vortex model of quark confinement is indeed
capable of describing chiral symmetry breaking. While we
cannot give a conclusive answer to the question of a
dynamical explanation for the mechanism of �SB, we
can speculate that the generation of near-zero modes dem-
onstrated for artificial configuration in this paper carries
over to vortices present in Monte Carlo generated configu-
rations. As the near-zero modes are located around inter-
section and writhing points of vortices that carry
topological charge, the behavior away from these points
would seem to be far less important.
We conclude by remarking that other mechanisms of

chiral symmetry breaking, in addition to the instanton
liquid paradigm or the vortex picture described in this
paper, may be operative in the Yang-Mills vacuum. For
instance, it also seems possible that, even in the absence of
would-be zero modes, the random interactions of quarks
with the vortex background may be strong enough to smear
the free dispersion relation such that a finite Dirac operator
spectral density at zero virtuality is generated. In fact, a
confining interaction by itself generates chiral symmetry
breaking, independent of any particular consideration of
would-be zero modes connected to topological charge [58].
However, this effect on its own is not sufficiently strong for
a quantitative explanation of the chiral condensate; other
effects, among them possibly the ones considered in this
article, must play a role. Also, the importance of the long-
range nature of low-dimensional topological structures for
the understanding of the mechanism of �SB in QCD was
underlined by various results of different groups [59–66],
and agrees well with a vortex picture of �SB.
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