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I. INTRODUCTION

Vector mesons have played a very important role in
hadron physics from the early days on [1–5] and were
theoretically studied using model Lagrangians for vector
fields or employing dispersion and/or current algebra tech-
niques. They were sometimes also interpreted as gauge
bosons of a hidden local symmetry [6,7]. We refer to [8] for
a comprehensive review. Nowadays, a convenient tool to
describe low-energy reactions and properties of hadrons is
given by chiral perturbation theory (ChPT) [9–13], the
low-energy effective field theory of quantum chromody-
namics (QCD) (see e.g. [14] for a recent review). In this
framework, the pions (and, in the case of three dynamical
quark flavors, also the kaons and the eta meson) are con-
sidered as the Goldstone bosons of spontaneously broken
chiral symmetry. The latter is an exact symmetry of the
QCD Lagrangian when the light quark masses are set to
zero and no electroweak interaction is present—a situation
that was sometimes called a ‘‘theoretical paradise’’ [15]. In
the real world, the masses of the u, d and s quark are
nonzero, but small compared to a typical hadronic scale of
�had � 1 GeV, while the ‘‘heavy’’ quarks ðc; b; tÞ are not
active as dynamical degrees of freedom (d.o.f.) and can be
integrated out of the theory. Moreover, quarks and gluons
are confined inside the hadrons, so that the long-range part
of the strong interaction is dominated by the Goldstone
boson dynamics. This situation allows an effective field
theory treatment of the interactions among hadrons, where
the light quark masses and Goldstone boson momenta are
treated as small quantities compared to �had. One has to
write down the most general effective Lagrangian consis-
tent with chiral symmetry and all other symmetries of the
underlying field theory (QCD) and impose a suitable
power-counting scheme to order the perturbation series in
a low-energy expansion in the small quantities (meson
momenta, quark masses etc.). Vector mesons were in-
cluded in ChPT at an early stage [16,17] as massive matter
fields interacting with the light Goldstone bosons.
However, when the massive particles appear in a loop
graph, it becomes nontrivial to keep the low-energy power
counting manifest due to the introduction of a new
‘‘heavy’’ mass scale (the vector meson mass in the chiral

limit). This phenomenon was also observed when incorpo-
rating baryons in ChPTon the one-loop level [12]. To solve
this problem, and to preserve the usual low-energy power-
counting scheme, a ‘‘heavy vector meson theory’’ was
designed [18–20], while schemes preserving the power
counting and manifest Lorentz covariance when including
vector mesons were worked out some years later [21–24].
All these schemes face a problem in the resonance energy
region, due to the fact that the � vector meson is not a
stable particle under the strong interaction and can decay
into two light Goldstone bosons (pions) which, by energy-
momentum conservation, cannot be both of ‘‘soft’’ mo-
mentum (this problem does not occur for baryons since a
decay into Goldstone bosons is prohibited by baryon num-
ber conservation): the imaginary part of the loop diagram
that generates the decay width of the vector meson does not
scale as expected from the naı̈ve application of the low-
energy counting rules to the diagram. In the language of the
infrared regularization scheme [25,26], this part should
belong to the ‘‘regular part’’ of the loop integral, which
is usually simply dropped in infrared regularization, with
the argument that it only contains analytic terms that can be
absorbed in the local operators of the effective Lagrangian.
In the present case, however, it is in general complex and
contains relevant physics. This problem is discussed
in [22,24]. While it is argued in [24,27] that the power-
counting violating portion of the imaginary part can
be absorbed in renormalized masses and couplings
(which then become complex), without spoiling perturba-
tive unitarity, this procedure is certainly only valid when
the resonance mass is far above the decay threshold, e.g.
2M� � M�. In the present contribution, we want to study

the vector meson masses for three dynamical flavors,
within a chiral Lagrangian framework, to one-loop accu-
racy, using lattice data from the QCDSF Collaboration
[28]. We will see that for most of the data points, the above
requirement given by the inequality is not met. Of course,
one could object that in this case the ChPT treatment is not
valid any more, and some model dependence is involved in
the quark-mass region where the vector mesons suddenly
‘‘become stable.’’ We are aware of that matter and consider
our study as an exploratory one, which, however, fully
incorporates all the one-loop effects relevant for the vector
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meson masses, widths and mixing amplitudes. In conclu-
sion, it seems that the usual low-energy power counting of
meson ChPT is not adapted to the analysis of the physics
we want to investigate here. We will explain our approach
to this problem in Sec. III. Note that the relevance of the
nonanalyticities due to resonance decay thresholds for
chiral extrapolations was recently discussed in [29].

An alternative way of examining the properties of meson
resonances, instead of explicitly including them as fields
in some Lagrangian, is to study a scattering process
(or form factor) where these resonances show up, using
some model-scattering amplitudes that obey two-particle
unitarity. For example, one can use a convenient model
amplitude for �� scattering to examine the properties of
the (modeled) � resonance. Such ideas are more than fifty
years old [30,31] and have been revived some time ago
employing ‘‘unitarized ChPT’’ in [32–36]. In [37–40], the
quark-mass dependence of the � and � resonance masses
was studied within such an approach. It would be very nice
to see a consistent picture emerge when comparing the
chiral Lagrangian framework to such nonperturbative
approaches. However, it is not clear a priori that the subset
of Feynman graphs that is effectively resummed in the
unitarized scattering amplitudes is sufficient to generate
the correct quark-mass dependence of the resonance pa-
rameters. For example, when studying the quark-mass
dependence of the � mass, one must take care that M3

�

terms are included, which are nonanalytic in the quark
masses and are generated by the !� sunset graphs, but
not by the purely pionic loops (see e.g. [19,22,24]). In this
work, we will not make use of such nonperturbative meth-
ods, and restrict ourselves to the one-loop level of pertur-
bation theory to study the quark-mass dependence of the
vector meson self-energies. For some earlier studies of
vector meson self-energies on the one-loop level, outside
the framework of ChPT, we refer to [41–44].

This article is organized as follows: In Sec. II, we present
and explain the general formalism needed to compute the
one-particle propagators of the vector particles on the one-
loop level. In Sec. III, we calculate the relevant vertices and
one-loop graphs, and in Sec. IV, we present and discuss the
results of our approach and draw some conclusions regard-
ing these results. Explicit expressions for the occurring loop
integrals can be found in the appendices.

II. GENERAL FORMALISM

The free Lagrangian for massive vector fields V�, S� is

given by

L V
free ¼ � 1

4
hV��V

��i þ 1

2
M2

V;bhV�V
�i; (1)

L S
free ¼ � 1

4
S��S

�� þ 1

2
M2

S;bS�S
�; (2)

where V�� ¼ r�V� �r�V� and S�� ¼ @�S� � @�S�
are the field strength tensors associated with the vector
fields V�, S�. The brackets h. . .i denote the trace in flavor

space. The lowest-lying vector meson octet is contained in

V� ¼ Va
��

a ¼

�0ffiffi
2

p þ �ð8Þffiffi
6

p �þ K�þ

�� � �0ffiffi
2

p þ �ð8Þffiffi
6

p K�0

K�� �K�0 � 2�ð8Þffiffi
6

p

0BBBBB@
1CCCCCA

�

: (3)

We also introduce a singlet field S� ¼ �ð0Þ
� . The ‘‘bare

masses’’ MV=S;b are interpreted as the masses of the vector

fields when all interactions are turned off. We are only
interested in the contributions to the self-energy of the
vector mesons due to the interaction with the lowest-lying
octet of pseudoscalar mesons ’, which are interpreted as
the pseudo-Goldstone bosons (PGBs) of spontaneously
broken chiral SUð3ÞL � SUð3ÞR symmetry [11], collected
in a matrix U ¼ u2,

U ¼ exp

� ffiffiffi
2

p
i’

F0

�
;

’ ¼ ’i�i ¼

�0ffiffi
2

p þ �ffiffi
6

p �þ Kþ

�� � �0ffiffi
2

p þ �ffiffi
6

p K0

K� �K0 � 2�ffiffi
6

p

0BBBB@
1CCCCA: (4)

The interaction Lagrangians needed for the calculation of
the vector meson self-energies are fairly standard by
now [16–18,45–52] (see also [53,54] for the ‘‘partially
quenched’’ case). There is a term linear in the vector fields,
describing e.g. the decay vertex � ! ��,

L lin ¼ � igV

2
ffiffiffi
2

p h½u�; u��V��i; (5)

and there are also bilinear terms,

L VV� ¼ gVA
2
	����hfr�V�; V�gu�i

þ gVSA 	����hr�V�S�u�i: (6)

We note that the V ! ’’, V ! V’ and S ! V’ vertices
derived from the above Lagrangians are transversal in the
sense that the contraction of the vertex rules with the four-
momentum k� of a vector field vanishes. Thus the scalar
degrees of freedom of the four-vector fields decouple from
the PGBs. For a review of the problems with additional
degrees of freedom, and other general aspects in the de-
scription of spin-one fields in an effective field theory
framework, we refer to the recent study in [55]. We also
note that we set the external source fields v̂�, â�, p̂,

introduced in the general ChPT framework [11,17], to
zero. The correct explicit chiral symmetry breaking known
from QCD is implemented by coupling the effective fields
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to an external matrix source field ŝðxÞ, which is set equal to
the quark-mass matrix M ¼ diagðm‘;m‘;msÞ in the end.
We use the notation familiar from ChPT [11,17],

u� ¼ iuyðr�UÞuy; 
þ ¼ uy
uy þ u
yu;


 ¼ 2B0ŝ ! 2B0M; r�V� ¼ @�V� þ ½��; V��;
�� ¼ 1

2
ðuy@�uþ u@�u

yÞ: (7)

We neglect isospin-breaking effects and set mu ¼ md ¼
m‘. F0 is the PGB decay constant in the three-flavor chiral
limit m‘;s ! 0, while the constant B0 is proportional to the

quark condensate in the same limit [11]. The contact term
Lagrangian including the source field ŝðxÞ will be given
below.

A. One-particle propagator

The free propagator of the vector field, in momentum
space, is derived from Eq. (1) (setting s ¼ k2),

ðD�1
0 Þ��ðkÞ ¼

ð�iÞðg�� � k�k�
M2

V;b

Þ
s�M2

V;b

¼ ð�iÞðg�� � k�k�
k2

Þ
s�M2

V;b

þ i
k�k�

k2M2
V;b

: (8)

Note that we assume MV;b to be real: The width of the

vector meson resonance is generated by the dressing due to
meson loops. We split up the self-energy (see Fig. 1) in a
transversal and a longitudinal part,

���ðkÞ ¼
�
g�� �

k�k�

k2

�
�TðsÞ þ

k�k�

k2
�LðsÞ; (9)

and resum the geometric series of two-point graphs,

ðD�1Þ��ðkÞ ¼ ðD�1
0 Þ�� þ ðD�1

0 Þ��ði�Þ��ðD�1
0 Þ�� þ � � �

¼ ðD0 � i�Þ�1
��: (10)

One easily finds

ðD0Þ�� ¼ iððk2 �M2
V;bÞg�� � k�k�Þ; (11)

and by matrix inversion,

ðD�1Þ��ðkÞ ¼
ð�iÞðg�� � k�k�

k2
Þ

s�M2
V;b ��TðsÞ

þ ik�k�

k2ðM2
V;b þ�LðsÞÞ

:

(12)

The first term is of a form similar to the transversal (i.e.
spin one) part of the free propagator, with a pole position

shifted perturbatively by �T , while the second term does
not contain a pole in the vicinity of M2

V;b, given that

perturbation theory is reliable here. Moreover, the second
term drops out when it is dotted between the vertices from
Eq. (5), due to the transversality property mentioned
above. We therefore concentrate on the calculation of
�T , but note that one should have �Tð0Þ ¼ �Lð0Þ for
general interactions, to assure that the self-energy does
not have a pole at s � k2 ¼ 0. Moreover, we are only
interested in the contribution to �T , which is due to the
interaction with the PGBs. In the following, we will as-
sume that all other hadronic contributions have already
been absorbed in the parameters occuring there, and in
M2

V;b. This is permissible in an effective field theory treat-

ment designed for the description of low-energy interac-
tions. Let us first treat the chiral limit case, whereM ! 0.
Then the denominator of the transversal part of the full
propagator reads

s�M2
V;b ��

	 PGB

T ðsÞ ¼ s�M2
V;b ��

	 PGB

T;loopðsÞ �
XN
n¼0

c
	
ns

n;

(13)

where the 	 denotes the function in the chiral limit. The cn
terms are counterterms needed to absorb the divergences in
the ‘‘loop’’ part. N depends on the degree of divergence of
the loop graphs. It is straightforward to construct the
corresponding counterterm Lagrangian for such energy-
dependent terms (see e.g. [49,55]). We will not need the
explicit form of these terms here.
Since the relevant interaction vertices of the vector

mesons with the PGBs [from Eqs. (5) and (6)] share the
transversality property, we can set the longitudinal part of
the self-energy to zero without limitation/loss of generality,

�
	 PGB

L ðsÞ ¼ 0, so that we must also have �
	 PGB

T ð0Þ ¼ 0. In

general, local couplings contributing only to �
	
L can be

transformed away by a field redefinition affecting only the
scalar (longitudinal, spin-zero) component of the four-
vector field (compare also the remarks on Eq. (3.9) in
[17]). Therefore we should have

c
	
0 ¼ 0 and �

	 PGB

T;loopðsÞ!s!0
0: (14)

The bare mass MV;b is thus not renormalized by the loop

graphs calculated in this work.

We define two real parameters M
	
V and �

	
V to denote

the pole position of the propagator in the chiral limit,

s
	
pole ¼ M

	 2

V � iM
	
V�

	
V , so that

s
	
pole �M2

V;b �
�
�
	 PGB

T;loopðs	poleÞ þ
XN
n¼1

c
	
ns
	n
pole

�
¼ 0: (15)

In this work, the corrections in the round brackets will be
treated only to one-loop accuracy. Moreover, we assume

that the width �
	
V is sufficiently small compared to M

	
V ,

Π

FIG. 1. The vector meson self-energy���ðkÞ. The double line
stands for the incoming/outgoing vector meson.
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�
	 2
V

M
	 2

V

� 1; (16)

so that we can neglect terms of quadratic order in the
imaginary part of the pole position. The validity of this
assumption will be discussed later. In addition, the vector
field propagators occuring in some of the loop functions
are taken as the free propagators [see Eq. (8)] with a pole

position shifted to s
	
pole, so that the width can immediately

be related to the imaginary part of the loop integrals

occurring in �
	 PGB

T;loopðM
	 2

VÞ within these approximations,

M
	
V�

	
V ¼ �Im�

	 PGB

T;loopðs	poleÞ � Im
XN
n¼1

c
	
ns
	n
pole


 �Im�
	 PGB

T;loopðM
	 2

VÞ: (17)

Obviously, the difference between M
	 2

V and M2
V;b, and also

the width �
	
V , amounts to a two-loop effect when inserted

in the loop corrections. Then, we can eliminate the unob-
servable parameter M2

V;b to one-loop accuracy,

M2
V;b ¼ M

	 2

V � Re�
	 PGB

T;loopðs	poleÞ � Re
XN
n¼1

c
	
ns
	n
pole

� M
	 2

V � Re�
	 PGB

T;loopðs	poleÞ � Re
XN
n¼0

d
	
nðs	pole �M

	 2

VÞn


 M
	 2

V � Re�
	 PGB

T;loopðs	poleÞ � d
	
0; (18)

where we have used the approximation indicated in
Eq. (16). We stress that we rely here on the applicability
of perturbation theory, but not on the convergence of the
(low-energy) expansion in s. Indeed, being interested in the
resonance region, it is appropriate to reorder the series of
counterterms cn like

XN
n¼0

cns
n ¼ XN

n¼0

dnðs�M
	 2

VÞn;
XN
n¼0

ð�1Þnd	 nM
	 2n

V ¼ 0:

(19)

Expanding the denominator of Eq. (13) around s
	
pole,

using Eqs. (18) and (19), one finds, neglecting terms of

Oððs� s
	
poleÞ2Þ,

s�M2
V;b ��

	 PGB

T ðsÞ 
 s
	
pole þ ðs� s

	
poleÞ

�
1� d

ds
�
	 PGB

T;loopjs¼s
	
pole

� XN
n¼1

nd
	
nðs	pole �M

	 2

VÞn�1

�

�
�
M
	 2

V þ�
	 PGB

T;loopðs	poleÞ � Re�
	 PGB

T;loopðs	poleÞ þ i Im
XN
n¼1

d
	
nðs	pole �M

	 2

VÞn
�


 ðs� s
	
poleÞ

�
1� d

ds
�
	 PGB

T;loopjs¼s
	
pole

� d
	
1 þ 2id

	
2M

	
V�

	
V

�
þ s

	
pole � ðM	 2

V � iM
	
V�

	
VÞ: (20)

In the vicinity of the pole, the transversal part of the
propagator is therefore of the form

ðD	 �1ÞT��ðkÞ ¼
ð�iÞR	 ðg�� � k�k�

k2
Þ

s� s
	
pole

; (21)

where the residue R
	
can be read from Eq. (20). We shall

require the renormalization condition ReR ¼ 1 (see also
Sec. 5 of [47]), so that to one-loop order we must have

d
	
1 ¼! �Re

d

ds
�
	 PGB

T;loopjs¼s
	
pole
: (22)

On the basis of this treatment of the chiral limit case, we
find in the general case (M � 0),

s�M2
V;b��PGB

T ðsÞ

¼ s�
�
M
	 2

Vþ ��PGB
T;loopðsÞþe0þ

XN
n¼1

dnðs�M
	 2

VÞn�DN

�
;

(23)

�� PGB
T;loopðsÞ ¼ �PGB

T;loopðsÞ � Re�
	 PGB

T;loopðs	poleÞ; (24)

DN¼Re
XN
n¼1

d
	
nðs	pole�M

	 2

VÞn¼Re
XN
n¼2

d
	
nð�iM

	
V�

	
VÞn; (25)

en ¼ dn � d
	
n: (26)

The en terms contain contributions from quark-mass-
dependent counterterms. Note that MV;b in Eq. (23) is the

same parameter as in Eq. (15), because the quark-mass
corrections to the bare mass are treated as a further pertur-
bation (in addition to the PGB loops) and are given
at leading order by e0. Also note that the constant DN is

of two-loop order (of order �
	 2
V); it is neglected in our

application of the above formulas.
Consider the pole position spole of the propagator in the

case of nonvanishing quark masses. Examining the rele-
vant loop graphs it turns out that the first corrections non-

analytic in the quark masses are of Oðm3=2
q Þ �OðM3

PGBÞ,
while the quark-mass-dependent counterterms yield only
even powers of MPGB. Schematically,

spole ¼ s
	
pole þ x2M

2
PGB þ x3M

3
PGB

þOðM4
PGB logMPGB;M

4
PGBÞ; (27)
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en ¼ eð2Þn M2
PGB þOðM4

PGBÞ: (28)

On expansion in spole � s
	
pole, one finds

0¼ spole �
�
M
	 2

V þ ��PGB
T;loopðspoleÞ þ e0 þ

XN
n¼1

dnðspole �M
	 2

VÞn �DN

�

¼ ðspole � s
	
poleÞ � iM

	
V�

	
V �Re ��PGB

T;loopðs
	
poleÞ �Re

XN
n¼0

enðs	pole �M
	 2

VÞn � i

�
Im�PGB

T;loopðs
	
poleÞ þ Im

XN
n¼1

dnðs	pole �M
	 2

VÞn
�

� ðspole � s
	
poleÞ

�
d

ds
�PGB

T;loopjs¼s
	
pole

þ XN
n¼1

ndnðs	pole �M
	 2

VÞn�1

�
þOððspole � s

	
poleÞ2Þ


 ðspole � s
	
poleÞ

�
1� d

ds
�PGB

T;loopjs¼s
	
pole

� d1 þ 2id2M
	
V�

	
V

�
� Re ��PGB

T;loopðs	poleÞ � e0 � i Imð�PGB
T;loopðM

	 2

VÞ ��
	 PGB

T;loopðM
	 2

VÞÞ;
(29)

or, due to the condition of Eqs. (22), (27), and (28),

spole � s
	
pole ¼ Re ��PGB

T;loopðs	poleÞ þ eð2Þ0 M2
PGB þ i Imð�PGB

T;loopðM
	 2

VÞ ��
	 PGB

T;loopðM
	 2

VÞÞ þOðM4
PGB logMPGB;M

4
PGBÞ þOðℏ2Þ;

(30)

where the last symbol stands for the two-loop terms
neglected in the approximations indicated above. The

coefficient eð2Þ1 can be fixed by the condition that ReR ¼
1þOðM4

PGBÞ. From the quark-mass dependence of the

vector meson masses and the above renormalization con-

dition, we can fix e0 and d1 up to and including OðM2
PGBÞ.

As far as we are aware, there is no model-independent

or natural way to determine the coefficients d
	
n�2.

Moreover, one has to be aware of the fact that the off-
shell behavior of an amplitude like �TðsÞ will in general
depend on the chosen parametrization of the fields
(see e.g. [56]).

The expansion around the chiral limit m‘, ms �
M2

PGB ! 0 has some shortcomings. First, in the real world,

the PGBs are not all light degrees of freedom compared

to the vector meson masses, e.g. MK

MK�
� 0:6,

M�

M!
� 0:7, due

to the large strange quark mass. Therefore, the extrapola-
tion from the chiral limit to the physical point is probably
not under sufficient theoretical control (for a discussion of
this point, for the case of baryon masses, see e.g. [57] and
references therein). Second, it is not a priori clear that a
one-loop calculation will be sufficient for a faithful repre-
sentation of the self-energy close to the chiral limit,
where the vector mesons can decay into states with three,
four. . . nearly massless PGBs. And third, the effects due to

terms of Oð�
	 2
V=M

	 2

VÞ neglected in some intermediate ap-
proximations need not be tiny (as e.g. ��=M� � 0:2).

In [28,57] a different extrapolation to the physical
point was explored, where the average quark mass �m ¼
1
3 ð2m‘ þmsÞ was kept fixed at its physical value, while the
flavor-SU(3) symmetry-breaking combination 
m‘ ¼
m‘ � �m ¼ 1

3 ðm‘ �msÞ was varied from zero to the

physical value. It was argued in [28] that this extrapolation
method was of some advantage because the terms linear in

m‘ dominate the quark-mass dependence of the hadron
masses for fixed �m in a sufficiently broad region of the
ðm‘;msÞ parameter space around the ‘‘symmetric point’’
where 
m‘ ¼ 0 and �m ¼ �mphys. Let all quantities eval-
uated at this symmetric point be indexed with a star ?
(instead of the 	 denoting the evaluation at the chiral limit
where 
m‘ ¼ 0 and �m ¼ 0); e.g., the eight PGBs (PGB ¼
f�;K;�g) are all of the same mass at the symmetric point,

M2
PGBð
m‘ ¼ 0Þ ¼ M2

? ¼ 2B0 �mþOð �m2 log �mÞ

 ð412 MeVÞ2 for �m ¼ �mphys: (31)

According to the evaluation on the lattice presented in [28],
the octet vector meson mass at the symmetric point is
M?

Vð �mphysÞ 
 855 MeV. Consequently, the octet vector
mesons are almost stable particles there, which is certainly
not a disadvantage when taking the symmetric point
as a reference point instead of the chiral limit. The above
Eqs. (23) and (30) will only be used to analyze the running

of (s?pole � s
	
pole) when �m is varied from 0 to �mphys. The

analysis of the symmetry-breaking effects, including
singlet-octet mixing, will make use of the reference point?.
To see how this works, reconsider Eq. (23) and use

(the first line of) Eq. (29) to write

s?pole¼M
	 2

Vþ ��?PGB
T;loopðs?poleÞþe?0 þ

XN
n¼1

d?n ðs?pole�M
	 2

VÞn�DN;

(32)

and hence we find
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s�M2
V;b��PGB

T ðsÞ
¼ s�s?pole�ð�PGB

T;loopðsÞ��?PGB
T;loopðs?poleÞþe0�e?0 Þ

�
�XN
n¼1


dnðs?pole�M
	 2

VÞnþ
XN
n¼1

fnðs�s?poleÞn
�
; (33)


dn ¼ dn � d?n ; (34)

fn ¼
XN
m¼n

dm
m
n

� �
ðs?pole �M

	 2

VÞm�n: (35)

In the following, we will neglect the tiny width at the
symmetric point and set Im s?pole ¼ 0, Re s?pole ¼ ðM?

VÞ2.
Since 
dn ¼ Oð
m‘Þ, s?pole �M

	 2

V ¼ Oð �mÞ, the 
dn
terms give �m corrections to the symmetry-breaking terms
in e0 � e?0 and can be absorbed in the latter combination,


e ¼ e0 � e?0 þ XN
n¼1


dnðs?pole �M
	 2

VÞn ¼ Oð
m‘Þ; (36)

so that the final expression for the denominator of the
vector meson propagator reads

s�M2
V;b��PGB

T ðsÞ
¼ s�s?pole

�
�

eþ�PGB

T;loopðsÞ��?PGB
T;loopðs?poleÞþ

XN
n¼1

fnðs�s?poleÞn
�
:

(37)

Since we fix s?pole ¼ ðM?
VÞ2 from the lattice data, any

reference to the chiral limit mass parameter M
	
V has dis-

appeared from Eq. (37). Also, for the fixed value of �m, the
propagators in the loop functions are taken as free propa-
gators with a pole position shifted to M?

V . The original
series of counterterms has been reordered, trading the dn
for the new coefficient functions fnð �m;
m‘Þ, so the energy
dependence is expanded around M?

V instead of M
	
V . Of

course, in the singlet case, one expands around M?
S in

complete analogy to the above. Moreover, we again require
that the real part of the residue of the propagator at the pole
is equal to one, in analogy to Eq. (22), which determines
the coefficient f1 order by order in 
m‘.

B. Singlet-octet mixing

In the general case m‘ � ms, the neutral octet isosinglet
field not only mixes with ’’ and V’, S’ states, but also
with one-particle singlet states. This results in an additional
complication: the one-particle propagator is nondiagonal

in the �ð0Þ ��ð8Þ sector [58]. Hence, one has to invert the
corresponding matrix,

D�1
mix¼ i

s�M?2
S �
�00 ��08

��80 s�M?2
V �
�88

 !�1

(38)

¼ i

det08

s�M?2
V �
�88 �08

�80 s�M?2
S �
�00

 !
; (39)

where again we only consider the transversal parts of the
self-energies and propagators and expand around the
reference point ?. The expressions 
�... thus stand for
the differences�...ðsÞ ��...ðs?V;S;poleÞ which also appear in
Eq. (37), and where, respectively, s?V;S;pole ¼ M?2

V;S (here we

neglect the tiny widths at the symmetric point as already
noted above). In the case of the mixing amplitude �08ðsÞ,
the subtraction of course vanishes because there is no
mixing at ?. Note that we use the notation �00 ¼ ��ð0Þ

and �88 ¼ ��ð8Þ here for a better legibility and to clarify

the matrix notation.
Since we are looking for the mass eigenvalues of the

�ð0Þ ��ð8Þ sector, we determine the (complex) zeros of the
determinant det 08 (see e.g. Sec. 3 of [44]),

det 08 ¼ ðs�M?2
V �
�88Þðs�M?2

S �
�00Þ��08�80:

(40)

In the simplified case of energy-independent self-energies
�, this results in a quadratic equation, the two roots of
which are identified with the mass of the �ð1020Þ and the
!ð782Þ. This leads to the expressions for masses and the
mixing angle �V , given e.g. in [18].

III. EXTRAPOLATION FORMULAS

In addition to the effective Lagrangians given in
Eqs. (1)–(6), we need some more ingredients. For our
purposes, the most important one is probably the chiral
Lagrangian which yields the leading quark-mass insertions
for the self-energies (see also [18–20,45]),

L ð0Þ

 ¼ bV0 hV�V

�ih
þi þ bVDhV�f
þ; V�gi
þ bVS0 S�S

�h
þi þ b08S�hV�
þi: (41)

These Oðp2Þ contact terms including the octet-singlet
mixing terms result in the following contributions to the
self-energies:

��;ct ¼ 8B0ðbV0 ð2m‘ þmsÞ þ 2bVDm‘Þ; (42)

�K�;ct ¼ 8B0ðbV0 ð2m‘ þmsÞ þ bVDðm‘ þmsÞÞ; (43)

��ð8Þ;ct ¼ 8B0

�
bV0 ð2m‘ þmsÞ þ 2

3
bVDðm‘ þ 2msÞ

�
; (44)

��ð0Þ;ct ¼ 8B0b
VS
0 ð2m‘ þmsÞ; (45)

�08;ct ¼ 4B0b08

ffiffiffi
2

3

s
ðm‘ �msÞ ¼ �80;ct: (46)
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Note that the mixing term disappears as soon as we go to the SUð3Þ symmetric limitm‘ ¼ ms. The terms of Eq. (41) also
lead to tadpole graphs (see Fig. 2) which also contain an octet-singlet mixing contribution proportional to b08,

��;tad ¼ � 4B0b
V
0

F2
0

�
6m‘I� þ 4ðm‘ þmsÞIK þ 2

3
ðm‘ þ 2msÞI�

�
� 4B0b

V
D

F2
0

�
6m‘I� þ 2ðm‘ þmsÞIK þ 2

3
m‘I�

�
; (47)

�K?;tad¼�4B0b
V
0

F2
0

�
6m‘I�þ4ðm‘þmsÞIKþ2

3
ðm‘þ2msÞI�

�
�4B0b

V
D

F2
0

�
3m‘I�þ3ðm‘þmsÞIKþ1

3
ðm‘þ4msÞI�

�
; (48)

��ð8Þ;tad¼�4B0b
V
0

F2
0

�
6m‘I�þ4ðm‘þmsÞIKþ2

3
ðm‘þ2msÞI�

�
�4B0b

V
D

F2
0

�
2m‘I�þ10

3
ðm‘þmsÞIKþ2

9
ðm‘þ8msÞI�

�
;

(49)

��ð0Þ;tad ¼ � 4B0b
VS
0

F2
0

�
6m‘I� þ 4ðm‘ þmsÞIK þ 2

3
ðm‘ þ 2msÞI�

�
; (50)

�08;tad ¼ �80jtad ¼ �B0b08
F2
0

ffiffiffi
2

3

s �
6m‘I� � 2ðm‘ þmsÞIK þ 2

3
ðm‘ � 4msÞI�

�
; (51)

where the loop functions I�;K;� are defined in Appendix B.
Again, the mixing contribution vanishes in the SUð3Þ limit
as it should. Of course, there are many more possible terms,
with undetermined coefficients, which could generate tad-
pole graphs (see e.g. Ref. [19], which uses large-Nc argu-
ments to limit and constrain the corresponding parameters).
So, strictly speaking, our calculation will only be complete
at leading one-loop orderOðp3Þ. We take along the tadpole
results above only to be able to estimate such higher-order
effects later. All other one-loop contributions to the vector
meson self-energies are shown in Fig. 3. Let us first inves-
tigate the bubble-type diagram shown in Fig. 3(a), which
only occurs for the octet vector mesons [see Eq. (5)]. This
diagram was not included in the ‘‘heavy vector meson’’
approach [19]. The contribution due to the intermediate

states with two PGBs is also absent in ‘‘quenched’’ QCD
[59]. Calculating this diagram results in both a contribution
to the masses of the vector mesons as well as to the widths.
The results for the bubble self-energy contributions to
�PGB

T;loopðsÞ for the respective octet members read

��;bblðsÞ ¼ �g2Vs
2

F4
0

ð4I��A ðsÞ þ 2I
�KK
A ðsÞÞ; (52)

�K?;bblðsÞ ¼ �g2Vs
2

F4
0

ð3I�KA ðsÞ þ 3IK�
A ðsÞÞ; (53)

��ð8Þ;bblðsÞ ¼ � g2Vs
2

F4
0

ð6I �KK
A ðsÞÞ: (54)

The explicit mass corrections arising from the sunset-type
diagrams Figs. 3(b)–3(d) take the following form:

FIG. 2. The three tadpole diagrams we include in our calculation. The double line represents the octet vector mesons and the double
dashed line represents the singlet vector meson. The dashed line stands for any of the pseudo goldstone bosons �, K or �.

FIG. 3. The other loop diagrams we include in our calculation. The double line represents the octet vector mesons and the double
dashed line represents the singlet vector meson. The dashed line stands for any of the pseudo-Goldstone bosons �, K or �.
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��;sunðsÞ¼�4ðgVAÞ2s
F2
0

�
2

3
I�VA ðsÞþ2IKV

A ðsÞþ2

3
I
�V
A ðsÞ

�
�4ðgVSA Þ2s

F2
0

I�SA ðsÞ; (55)

�K?;sunðsÞ ¼ � 4ðgVAÞ2s
F2
0

�
3

2
I�VA ðsÞ þ 5

3
IKV
A ðsÞ þ 1

6
I�VA ðsÞ

�
� 4ðgVSA Þ2s

F2
0

IKS
A ðsÞ; (56)

��ð8Þ;sunðsÞ ¼ � 4ðgVAÞ2s
F2
0

�
2I�VA ðsÞ þ 2

3
IKV
A ðsÞ þ 2

3
I�VA ðsÞ

�
� 4ðgVSA Þ2s

F2
0

I
�S
A ðsÞ; (57)

��ð0Þ;sunðsÞ ¼ � 4ðgVSA Þ2s
F2
0

ð3I�VA ðsÞ þ 4IKV
A ðsÞ þ I�VA ðsÞÞ:

(58)

The last two diagrams shown in Fig. 3 contribute to the
singlet-octet mixing and take the form

�08;sunðsÞ

¼�4gVAg
VS
A

F2
0

s

0@ ffiffiffi
6

p
I�VA ðsÞ�2

ffiffiffi
2

3

s
IKVA ðsÞ�

ffiffiffi
2

3

s
I
�V
A ðsÞ

1A:
(59)

The above results for the contributions to�PGB
T;loopðsÞ can be

directly plugged into Eqs. (37) and (38), with s?V;pole ¼ðM?
VÞ2 ¼ ð855 MeVÞ2 [28], and s?V;pole ¼ ðM?

S Þ2, where
M?

S is an unknown parameter to be determined from the
fits. The complex zeros of Eq. (37) give the mass and the
width of the corresponding vector meson, e.g. s�;pole ¼
M2

� � iM��� in the case of the � meson.
Having collected all the expressions for the loop con-

tributions, we now have to discuss how we treat the loop
integrals, with respect to regularization and power count-
ing. Here, it is important to realize that the loop integrals
are, in principle, determined, up to some polynomials in s,
by their corresponding threshold singularities and branch
cuts, by means of a dispersive representation (see e.g.
Appendix A for a demonstration and Sec. 5 of [47]; dis-
persive representations of the �� loop were also used in
[43,44,59]). We evaluate all loop integrals employing di-

mensional regularization and use the MS scheme to deal
with the ultraviolet divergences. Since a constant part of
the loop contribution has been effectively absorbed in
ðM?

VÞ2, in the form of the subtraction �?PGB
T;loopðs?poleÞ, and

due to renormalization conditions like Eq. (22), our renor-
malized loop corrections formally start at second chiral
order, with terms of Oððs� ðM?

VÞ2Þ2Þ and Oð
m‘Þ. While
our results for the loop portion of the self-energies �ðsÞ
can directly be mapped onto a dispersive representation,
the power counting for the loop graphs is not straightfor-
ward, as already mentioned in the Introduction, and

discussed in [22,24]. It was demonstrated in [22] that the
genuine ‘‘soft-pion’’ part of the bubble diagram scales with
the fractional power Md

� in dimensional regularization,

which leads to an Oðp4Þ contribution in d ! 4 space-
time dimensions and does not include the decay-threshold
singularity, which could however be important phenom-
enologically. Also, from a naı̈ve power counting, the sunset
graphs should scale as Oðp3Þ for d ! 4. Of course, one
could in principle employ a chiral expansion of the loop
graphs and absorb the real part of the Oðp2Þ terms in the
available counterterms. For the present application, how-
ever, a chiral expansion of the loop graphs is not effective
due to the nearby presence of the ’’, V’ and S’ decay
thresholds. Therefore, for the purpose of the present appli-

cation, we simply stick to the MS scheme (similar to the
treatment of the nucleon self-energy in [12]) in combina-
tion with dispersion-theoretic arguments, but note that one
should keep all these subtleties in mind if one attempts a
higher-order calculation within the present framework.
To complete our collection of formulas, we also give the

form of the counterterms f1 occurring in Eq. (37), up to
terms linear in the symmetry-breaking 
m‘,

f
�
1 ¼ fV?1 � 8B0z

V
D
m‘ þOðð
m‘Þ2Þ; (60)

fK
?

1 ¼ fV?1 þ 4B0z
V
D
m‘ þOðð
m‘Þ2Þ; (61)

f�
ð8Þ

1 ¼ fV?1 þ 8B0z
V
D
m‘ þOðð
m‘Þ2Þ; (62)

f�
ð0Þ

1 ¼ fS?1 þOðð
m‘Þ2Þ; (63)

f081 ¼ 0� 2
ffiffiffi
6

p
B0z08
m‘ þOðð
m‘Þ2Þ: (64)

Counterterms of Oððs� s?poleÞ2Þ and Oððs� s?poleÞð
m‘Þ2Þ
are neglected in the following, which sets the limits to our
accuracy in the determination of the energy dependence of
the self-energies in the vector resonance region. To further
clarify the origin of the above terms, note that e.g. the
counterterms contributing to �08 could be derived from
the following terms in a Lagrangian,

L mix ¼ b008S�hV�
þi � z08
4

S��hV��
þi þ � � � ; (65)

followed by a redefinition of the coupling (for a fixed
numerical value of M?

V), b
0
08 ¼ b08 þ z08M

?2
V . The intro-

duction of additional terms [indicated by the dots in
Eq. (65)] would necessitate more complicated redefini-
tions, eventually leading to a polynomial in (s�M?2

V ) of
higher degree. Similarly, the zDV terms above could be
derived from a quark-mass insertion like �ðzVD=4Þ�
hV��f
þ; V��gi, and so on. While fV;S?1 and zVD are deter-

mined from the condition ReR¼! 1, there is no natural way
to fix z08, so it should in principle be treated as a free
parameter, in order to avoid any prejudice in the descrip-
tion of the singlet-octet mixing amplitude.
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IV. RESULTS AND DISCUSSION

Before giving the results of our present work, we have to
specify our numerical input and the data set we use to fit
the undetermined parameters. Let us first discuss the decay
constants of the pseudoscalar mesons (PGBs). Since we
attempt an expansion around the reference point ? instead
of the chiral limit, we should replace F0 ! F? in the
loop contributions to the vector meson self-energies (where
the difference amounts to a two-loop effect anyway). To
one-loop order, one finds for F?ð �mÞ [11,57],

F? ¼ F0

�
1þ 2B0 �m

ð4�F0Þ2
�
64�2ð3L4 þ L5Þ

� 3 log

� ffiffiffiffiffiffiffiffiffiffiffiffi
2B0 �m

p
�

���
þOð �m2Þ: (66)

Numerically, for fixed �m, we set F? to the central value
found in [57] for our selected reference point, and fix
F? ¼ 112 MeV from now on. The only exception is the
analysis of the running ofM?

V with �m, where we take some
higher-order effects along and insert the expression of
Eq. (66), with the same parameters as we used in [57].
We also choose to fix the renormalization scale to
� ¼ 770 MeV. For the � ! �� decay width, we find
within our present approximations for the loop graphs,

�� ¼ g2VM
2
�

48�F4
?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

� � 4M2
�

q 3

: (67)

We fix gV by requiring that Eq. (67) reproduces the
experimentally known value of 150 MeV at the physical
point, which yields gV ¼ 0:125. Usually, one inserts the
pion decay constant F� ¼ 92:4 MeV in the formula for the
� ! �� decay width, which leads to the smaller value
gV ¼ 0:085. We will also use this second value in a further
set of fits, to estimate the impact of higher-order effects on
our results.

The input parameters which are probably afflicted
with the largest theoretical uncertainties (besides the
parameter z08) are the couplings gVA and gVSA which are

responsible for the sunset graph contributions. Comparing
our Lagrangian Eq. (6) to the heavy vector meson
Lagrangian of [18], we find the correspondences gVA � g2
and gVSA � g1, for which this paper seems to favor the

prediction of the nonrelativistic chiral quark model, so that

gVA � g

qm
2 ¼ 3

4
; gVSA � g


qm
1 ¼

ffiffiffi
3

p
2

: (68)

In [19], large-Nc arguments are used to neglect the combi-
nation g0 � gVSA � 2ffiffi

3
p gVA , and the estimate quoted above

then leads to g� 1
2g

V
A ¼ 3

8 ¼ 0:375. This reference also

cites some other estimates, which amount to somewhat
smaller values, g 
 0:3. Together with the assumption
g0 � 0, this would amount to gVA � 0:6 and gVSA � 0:7. In
our fits, we will use various different sets for the two axial

couplings to get a handle on the theoretical uncertainty.
We already remark here that this uncertainty is much less
influenced by the (smaller) uncertainty in the parametersF?

andM?
V , which we therefore choose to fix in all our fits. We

also add that the sunset graphs yield by far the dominant
corrections to the tree level results in most cases.
The framework outlined in the previous sections is

particularly adapted to analyze the lattice data of the
QCDSF collaboration presented in [28], where the data
leading to the so-called fan plots is generated by varying
the flavor symmetry-breaking quark-mass combination

m‘ while keeping the average quark mass �m fixed to its
physical value. To the accuracy needed here, it is adequate
to fix the PGB mass in the 
m‘ ! 0 limit,

2B0 �mþOð �m2 log �mÞ ¼ M2
? 
 ð412 MeVÞ2; (69)

(see [57] for more details). In the latter reference, we have
also introduced a convenient measure for the symmetry
breaking,

� ¼ M2
� � X2

�

X2
�

¼ 2B0
m‘

M2
?

þOð �m
m‘; ð
m‘Þ2Þ; (70)

where X2
� ¼ 1

3 ð2M2
K þM2

�Þ. The symmetric point ? is then

given by� ¼ 0 togetherwithEq. (69).At the physical point,
we have � 
 �0:885. In the fan plots, the vector meson
masses are normalized to the mass combination [28]

X� ¼ 1

3
ð2MK? þM�Þ ¼ M?

V þOð�2Þ: (71)

Besides the fan plot data for the � and the K?, we will
also use three data points for the dependence of M?

V

on M? � ffiffiffiffiffiffiffiffiffiffiffiffi
2B0 �m

p
, for M? 
 307, 357 and 413 MeV

(see again [28]). A fourth data point at higher M? is
excluded from the fit because we limit our data to sets
where the PGB masses are all & 500 MeV, so that the
application of a one-loop approximation in a chiral
Lagrangian framework can be justified.
The analysis of the dependence M?

Vð �mÞ is used to deter-

mine the vector meson mass in the chiral limit,M
	
V (which

does not appear in the other observables, where we have
eliminated it in favor of M?

V), and the LEC bV0 , which is

also absorbed inM?
V in those other observables (up to some

higher-order tadpoles). For the fan plots, the most impor-
tant parameter is bVD. The singlet mass appears in loop
corrections to both M?

V and the mass ratios displayed in
the fan plots, but is mainly determined from the condition
that the singlet-octet mixing determinant of Eq. (40) has
zeros at s ¼ M2

!;� � iM!;��!;� (see [60]) at the physical

point � ¼ �0:885, which is enforced by including its
absolute value at these two pole positions in the 
2 func-
tion (actually, we disregard �! here, because it is mostly
generated by a two-loop effect, where three pions occur in
an intermediate state). The parameter b08 is determined
only from the zeroes of the determinant and has no direct
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influence on the � and K? masses. To determine the

subleading z08 term, it would be necessary to include

more accurate information on the energy dependence of

the mixing amplitude. In the large-Nc limit, the vector

mesons form a nonet, given in our matrix notation by
N� ¼ V� þ 1ffiffi

3
p 1S�, and terms with additional flavor

traces are suppressed (see e.g. [18–20,45]). Comparing
with such a Lagrangian, this implies relations like

TABLE I. Fit results (type A) including tadpole contributions, where gV , g
V
A and gVSA have been used as input.

Fit gV gVA gVSA M
	
V (GeV) bV0 bVD M?

S (GeV) b08 Color

1A 0.125 3=4
ffiffiffi
3

p
=2 0.631 0.056 0.022 1.011 0.218 black

2A 0.125 0.6 0.7 0.627 0.054 0.019 1.000 0.237 orange

3A 0.125 1=2 1=2 0.625 0.053 0.017 0.988 0.249 blue

4A 0.125 0 0 0.618 0.051 0.015 0.979 0.266 red

5A 0.085 3=4
ffiffiffi
3

p
=2 0.693 0.031 0.065 0.958 0.231 black

6A 0.085 0.6 0.7 0.683 0.027 0.063 0.949 0.245 orange

7A 0.085 1=2 1=2 0.678 0.025 0.062 0.938 0.253 blue

8A 0.085 0 0 0.667 0.020 0.062 0.930 0.266 red

TABLE II. Fit results (type B) including tadpole contributions, where gV , g
V
A and gVSA have been used as input.

Fit gV gVA gVSA M
	
V (GeV) bV0 bVD M?

S (GeV) b08 Color

1B 0.125 3=4
ffiffiffi
3

p
=2 0.636 0.060 0.017 0.935 0.208 black

2B 0.125 0.6 0.7 0.630 0.057 0.015 0.924 0.220 orange

3B 0.125 1=2 1=2 0.626 0.054 0.015 0.914 0.227 blue

4B 0.125 0 0 0.618 0.051 0.015 0.902 �0:238 red

5B 0.085 3/4
ffiffiffi
3

p
=2 0.696 0.032 0.062 0.924 0.220 black

6B 0.085 0.6 0.7 0.685 0.028 0.062 0.914 0.230 orange

7B 0.085 1=2 1=2 0.679 0.025 0.061 0.904 0.237 blue

8B 0.085 0 0 0.667 0.020 0.062 0.893 �0:246 red

TABLE III. Fit results (type A) without tadpole contributions, where gV , g
V
A and gVSA have been used as input.

Fit gV gVA gVSA M
	
V (GeV) bV0 bVD M?

S (GeV) b08

1A’ 0.125 3=4
ffiffiffi
3

p
=2 0.630 0.076 0.025 1.010 0.247

2A’ 0.125 0.6 0.7 0.626 0.073 0.021 0.999 0.268

3A’ 0.125 1=2 1=2 0.623 0.072 0.019 0.988 0.281

4A’ 0.125 0 0 0.617 0.068 0.017 0.979 0.300

5A’ 0.085 3=4
ffiffiffi
3

p
=2 0.691 0.048 0.073 0.957 0.261

6A’ 0.085 0.6 0.7 0.682 0.043 0.072 0.947 0.276

7A’ 0.085 1=2 1=2 0.677 0.040 0.071 0.937 0.285

8A’ 0.085 0 0 0.666 0.034 0.070 0.929 0.300

TABLE IV. Fit results (type B) without tadpole contributions, where gV , g
V
A and gVSA have been used as input.

Fit gV gVA gVSA M
	
V (GeV) bV0 bVD M?

S (GeV) b08

1B’ 0.125 3=4
ffiffiffi
3

p
=2 0.635 0.080 0.019 0.934 0.234

2B’ 0.125 0.6 0.7 0.629 0.076 0.018 0.923 0.247

3B’ 0.125 1=2 1=2 0.625 0.073 0.017 0.913 0.256

4B’ 0.125 0 0 0.617 0.068 0.017 0.901 �0:268
5B’ 0.085 3=4

ffiffiffi
3

p
=2 0.694 0.050 0.071 0.923 0.247

6B’ 0.085 0.6 0.7 0.684 0.044 0.070 0.912 0.259

7B’ 0.085 1=2 1=2 0.678 0.040 0.070 0.902 0.266

8B’ 0.085 0 0 0.666 0.034 0.070 0.891 �0:277
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bV0 
0; b08� 4ffiffiffi
3

p bVD
0; z08� 4ffiffiffi
3

p zVD
0; (72)

(in the sense of a suppression by inverse powers of Nc).
Here, we will not rely on such estimates in general. Only
the last relation for z08 will be used in one set of fits
(fits of type A) where we set z08 ! 4ffiffi

3
p zVD. In a second set

(fits of type B), we will neglect this energy-dependent
correction, and set z08 ! 0. In the second case, the energy
dependence of the mixing amplitude is entirely given by
the loop graphs.
The fit results for various combinations of the input

parameters gVðSÞA are displayed in Tables I and II (including

the tadpole shown in Sec. III) and Tables III and IV
(without tadpoles). The fan plots for these sets of parame-
ters are shown in Fig. 4. The lines resulting from the
different fits can be barely distinguished. In the relative
vicinity of the symmetric point at � ¼ 0, this is expected
because our calculated corrections toM?

V are ofOð
m‘Þ. It
seems that the variation of the input parameters can be
almost completely compensated by the shift of the fitted
parameters displayed in the tables above. Specifically, one
observes that the LEC bVD absorbs a large contribution from
the real part of the bubble type loop graph �g2V=F

4
?. In

other words, the functional form of our leading one-loop
expressions fixes the shape of the curves to a large extent,
at least in the parameter range specified above. To a lesser
extent this also applies for the dependence of M?

V on M?

which is shown in Fig. 5. Here, however, the variation of gV

has some effect on the determination ofM
	
V , and obviously

some more data points for lowerM? would be needed for a
more accurate determination of the behavior of M?

Vð �mÞ
close to the chiral limit. One should be warned that the
theoretical uncertainty is also larger in the region M? *
400 MeV, where one certainly should not trust a leading
one-loop representation. This is also borne out by the fact
that the fourth data point at higher M?, which was not
included in the fits, is missed by the collection of these
lines. As a side remark, we note that a very slight cusp due
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1.05
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FIG. 4 (color online). The ratios M�=X� and MK�=X� plotted
for all parameter sets from Table I. The color code for the
different curves is shown in the tables above. Full lines: 1A–4A,
dashed lines: 5A–8A.X� is defined in Eq. (71). Colors from top to

bottom on the left of the graph for the �: red, blue, orange, black,
for both solid and dashed lines. The situation is mirror imaged for
the K�.
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FIG. 5 (color online). The symmetric mass M?
V (octet vector

meson mass for 
m‘ ¼ 0) plotted for all parameter sets from
Table I. The color code for the different curves is shown in the
tables above. Full lines: 1A–4A, dashed lines: 5A–8A. Colors from
top to bottom on the left of the graph: black, orange, blue, red.
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FIG. 6 (color online). The energy dependence of the real part of�� plotted for the parameter sets 1A–4A for � ¼ �0:885 (left) and
� ¼ 0 (right). The color code for the different curves is shown in the tables above. Colors from top to bottom on the left of the graph:
black, orange, blue, red.
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to the V? ! ’?’? decay threshold is visible in Fig. 5
(at about M? � 330 MeV). The effect does not seem to
be of much importance here—this would probably be
different for scalar meson resonances [29].

In Figs. 6 and 7, we show the real and the imaginary part
of the self-energy function for the �, for some typical fit
results from Table I. The fact that the curve for the real part
for � ¼ 0 is tangent to the s axis at s ¼ M?2

V just reflects

our chosen renormalization conditions. The energy depen-
dence of �08ðsÞ is shown in Fig. 8. Here the different
sets can be well distinguished, but the trend is always the
same: Our fits obviously favor a limited, but non-negligible

energy dependence of the mixing amplitude, which can be
partly traced back to the loop graphs, but also to the
counterterm coefficient z08 in the type A fits. We note in
passing that a strong energy dependence and a possible
sign change of the mixing amplitude in the energy region
between the ! and the � mass has been observed in [19]
(see their Table II).
Finally, the real part of the determinant det 08 for four

typical fits is shown in Fig. 9 in the ðRe½s�; �Þ plane, so that
its energy dependence and its zeros can be read off nicely

for the range of the flavor symmetry-breaking variable �
examined here. The contour plots for the same fit sets of
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FIG. 7 (color online). The energy dependence of the imaginary part of �� plotted for the parameter sets 1A–4A for � ¼ �0:885
(left) and � ¼ 0 (right). The color code for the different curves is shown in the tables above.
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FIG. 8 (color online). The energy dependence of �08 plotted for all parameter sets including tadpoles. The fit sets without tadpoles
have been omitted due to their similarity. The color code for the different curves is shown in the tables above. Colors from top to
bottom on the left of the graph: black, orange, blue, red.
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Tables I and II showing the positions of the zeros of

Re½det 08� are displayed in Fig. 10, to illustrate the running
of the (real part of the) zeros of the determinant when

tuning the symmetry-breaking variable �.
In the results collected above, we have discarded a

second class of fits where additional unphysical states
appear in the singlet-octet sector, in the energy region
where the present calculation should be applicable. This

class preferably emerges if the axial couplings gVðSÞA are

large. We give an example for such an alternative scenario
in the following Table V, illustrated in Fig. 11. Here, b08 is
much smaller than in the earlier fits (and M?

S is notably

larger), while the other parameters are in accord with the
previous class of fits. In Fig. 10, we plot the typical
behavior of the determinant det 08 for the two classes of
fits. All the fits we have obtained could be grouped in
one of the two classes, either the standard fits of Tables I,
II, III, and IVor fits showing spurious states, with relatively

large M?
S and gVðSÞA but smaller b08. Whereas the result-

ing plots for the masses look very much the same as in

the ‘‘standard’’ case, det 08 shows a very different
‘‘nonparabolic’’ behavior. The resulting parameter z08 for

fit f1A is 0:734 GeV�2, while it ranges between
0:826 . . . 0:900 GeV�2 for the fits 1A–4A and between
0:374 . . . 0:416 GeV�2 for 5A–8A.
While the formulas for the vector meson masses and

widths are accurate and model independent to one-loop
order, and to Oðp3Þ in the chiral counting, the question of

the form of the energy dependence of the two-point am-
plitudes is a subtle one and certainly deserves further study.

In our opinion, our results at least show that an analysis that
does not take into account the possibility of a sizeable

variation of the mixing amplitude between s ¼ M2
! and

s ¼ M2
� would not be under sufficient theoretical control.

It would be very interesting to have lattice data for the
variation of the ! and � masses for different values of

the symmetry-breaking quark-mass difference 
m‘ � � in
order to check whether the mixing scenario we have out-

lined here (see e.g. Fig. 9) is realistic. Our analysis of the
mixing here could of course only be on a qualitative level.

FIG. 9 (color online). The real part of det 08 plotted in the ðRe½s�; �Þ plane for fits 2A, 2B, 6A, 6B.
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FIG. 10 (color online). The plots depict the absolute value of Re½det 08�. The areas where jRe½det 08�j< 0:004 GeV4 holds are
colored red.
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FIG. 11 (color online). Re½det 08� at � ¼ �0:885 for a standard fit (1A of Table I) (left) and for the fits of Table V showing spurious
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For a more accurate quantitative discussion of the dynam-
ics in this sector, one has to consider vector meson decays,
take care of the corresponding relevant final-state interac-
tions, and so on (see e.g. [47,50,52,61,62]). Such an analy-
sis is beyond the scope of the present investigation.

As a general remark, we add that we do not observe a
clear ‘‘large-Nc’’ pattern in our results. The LEC bV0 is not

notably suppressed compared with bVD, and the mass-

splitting M?
S �M?

V comes out small but non-negligible.

Also, b08 is somewhat larger than expected from the rela-

tion in Eq. (72) (independently of the scenario chosen to fix
z08). Of course, such a pattern can also not be ruled out by
our findings, keeping in mind all the theoretical uncertain-
ties discussed above. In particular, given the present data

base, the result for bV0 is quite sensitive to higher-order

effects, see e.g. Tables. I, II, III, and IV. An extension of the
present calculation to a next-to-leading one-loop calcula-

tion, without assuming a large-Nc scaling, meets some
difficulties: First, many additional tadpole graph contribu-
tions appear, and to fix the corresonding new LECs, one
would need e.g. data on V’ ! V’. Second, fan plot data
at different values of the average quark mass �m would be
needed to fix all the quark- mass insertions at the fourth
chiral order. Moreover, at this order, one might also want to
include electromagnetic contributions and isospin breaking
due to the light quark-mass difference, which we have
completely neglected here (of course, these effects are
also not present in the lattice data used here). For numerical
estimates of these effects, we again refer to [19] (see also
[63] for the corresponding contributions to ��! mix-
ing). In a future study, finite-volume corrections should
also be included, although these were claimed to cancel to
a large extent in the mass ratios leading to the fan plots
[28]. In summary, the results of the present exploratory
study, together with the results obtained on the extrapola-
tion of baryon mass ratios in our previous work [57], lead
us to conclude that the simulation strategy proposed and
examined in [28], namely the extrapolation from the ‘‘sym-
metric point’’ (instead of the chiral limit) to physical quark
masses is very promising, and that chiral perturbation
theory can be used as a reliable tool to guide such an
extrapolation, while the uncertainties for an expansion
around the chiral limit are probably too large in the
three-flavor case (see also the discussion in [57] for the
case of baryon masses, and references cited therein). In
particular, for vector mesons we have the further advantage
that these particles are (almost) stable particles at the
symmetric point, so that the widths are given by
symmetry-breaking corrections calculated perturbatively
and are dominated by two-particle channels in the vicinity

of this reference point. Of course, additional data for
smaller average quark masses would be welcome in order
to determine the LECs more accurately and to relate the
results of the present application to the more common
extrapolations to the chiral limit.
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APPENDIX A: DISPERSIVE REPRESENTATION
OF THE �� LOOP

Restoring the energy dependence of the decay width of
Eq. (67),

�iM��� ! �i
g2V

6�F4
0

ðk2Þ32j ~q��cmsj3

¼ �i
g2V

48�F4
0

ðk2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

k2

s 3

; (A1)

where

j ~q��cmsj ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4M2

�

q
; (A2)

we can insert the emerging expression in a dispersion
relation with four subtractions (k2 � s),

���
� ðsÞ ¼ c0 þ c1sþ c2s

2 þ c3s
3

� g2Vs
4

48�2F4
0

Z 1

4M2
�

ds0

s0ðs0 � sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

s0

s 3

; (A3)

where it is understood that real values of s are approached
from the upper complex plane for s 2 ½4M2

�;1�. The
expression in Eq. (A3) can be directly related to the
‘‘bubble’’-type loop graph in Fig. 3. The integral occurring
here is given by

J��� ¼
Z 1

4M2
�

ds0

s0ðs0 �sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4M2

�

s0

s 3

¼1

s

0@8
3
�8M2

�

s
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4M2

�

s

s 3

Artanh

0@� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

s

q
1A1A:
(A4)

For fixed nonzeroM�, the expansion of this integral in s for
jsj< 4M2

� is given by

J��� ¼ 1

10M2
�

þ s

140M4
�

þ � � � ; (A5)

while the chiral expansion (for 4M2
� < s) is given by

TABLE V. Result for a fit showing spurious states.

Fit gV gVA gVSA M
	
V (GeV) bV0 bVD M?

S (GeV) b08f1A 0.125 3=4
ffiffiffi
3

p
=2 0.611 0.046 0.032 1.199 0.001
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J��� ¼ 1

s

�
8

3
þ log

�
M2

�

s

�
þ i�

� 6M2
�

s

�
1þ log

�
M2

�

s

�
þ i�

��
þOðM4

�Þ: (A6)

Matching the terms in Eq. (A3) to the expression for the
dimensionally regularized loop graph of Fig. 3(a) and the
first term in Eq. (52) (d is the space-time dimension),

i ~���
�� ¼ i

�
g�� �

k�k�

k2

�
~���
� ; (A7)

~���
� ¼ � 4g2V

F4
0

s2I��A ðsÞ; (A8)

I��A ðsÞ ¼ 1

d� 1

�
1

2
I� � 1

4
ðs� 4M2

�ÞI��ðsÞ
�
; (A9)

where the standard loop integrals I�, I�� can be found
in Appendix B, we obtain simple expressions for the four
subtraction constants:

c0 ¼ c1 ¼ 0; (A10)

c2 ¼ � g2V
8�2F4

0

M2
�

�
32�2 ��þ log

�
M2

�

�2

��
; (A11)

c3 ¼ g2V
48�2F4

0

�
32�2 ��þ log

�
M2

�

�2

�
þ 1

�
: (A12)

The subtraction constant c3 diverges logarithmically in the
chiral limit, but this is counterbalanced by the infrared-
divergent term in J��� [see Eq. (A6)]. Obviously, one needs

counterterms of the form s2M2
� and s3, which are not yet

present in the effective Lagrangian, to absorb the UV-
divergent terms � �� in c2;3. It is no problem in principle

to construct counterterms with more derivatives acting on
the vector fields (see e.g. [49]). In effect, this would leave
us with finite expressions for the subtraction constants

�c2 ¼ � g2V
8�2F4

0

M2
�

�
r2ð�Þ þ log

�
M2

�

�2

��
; (A13)

�c3 ¼ g2V
48�2F4

0

�
r3ð�Þ þ log

�
M2

�

�2

�
þ 1

�
; (A14)

with unknown constants r2;3ð�Þ. In our counting, higher

orders in k2 ¼ s are not suppressed, but, being interested in
the resonance region, we can apply the reordering scheme
of Eqs. (33)–(37) to any polynomial in s, where (s�M?2

V )
is considered as a small quantity in which one can expand
the polynomial part of the self-energies. UV divergences of
zeroth order in this quantity can then be absorbed in the
parametersM?2

V ; bVD . . . , those of first order in the constants
fV?1 ; zVD; z08 . . . [see Eqs. (60)–(64)], etc.

APPENDIX B: LOOP INTEGRALS

Throughout this work we have used abbreviations for the
appearing scalar integrals, and in this section we present
the explicit expressions. The integrals containing only one
propagator are given by

IM ¼
Z ddl

ð2�Þd
i

l2�M2
¼ 2M2 ��þ M2

16�2
log

�
M2

�2

�
; (B1)

IV ¼
Z ddl

ð2�Þd
i

l2�M2
V

¼ 2M2
V
��þ M2

V

16�2
log

�
M2

V

�2

�
: (B2)

The quantity �� contains the 1=	 pole and some numerical
constants. The subscript M stands for the species of PGBs
and the subscript V for the vector particles. The quantityM
in the propagators represents any of the meson masses, i.e.
M�, MK and M�. The scalar integral including two propa-

gators can be split up into two parts,

IMVðk2 � sÞ ¼
Z ddl

ð2�Þd
i

ððk� lÞ2 �M2
VÞðl2 �M2Þ

¼ IMVðM2
VÞ �

ðs�M2
VÞ

16�2
JMVðsÞ; (B3)

where
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VÞ ¼ 2 ��þ 1

16�2
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128�M3
V

þOðM4Þ; (B4)

and JMVðsÞ is the finite function,
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Z 1
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ds0
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where we have introduced the abbreviation

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� ðMV þMÞ2Þðs� ðMV �MÞ2Þp
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We note that (for M � 0),
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while for s � M2
V , the chiral expansion reads

JMVðsÞ ¼ 1
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The radius of convergence of the latter expansion vanishes as s ! M2
V , in which case the expansion of Eq. (B7) must be

used. The function JMVðsÞ diverges logarithmically when s ! M2
V and M ! 0.

The basic integrals IMM ðI��; I �K� . . .Þ can be found directly from Eq. (B3) by replacingMV by the corresponding mass of
�, K or � (of course, the chiral expansion is completely different in that case).

Furthermore, in the main text we have used the integral IMV
A , which is given by the following expression:

IMV
A ¼ 1

4sðd� 1Þ ðð4sM
2 � ðsþM2 �M2

VÞ2ÞIMV þ ðsþM2 �M2
VÞIM þ ðs�M2 þM2

VÞIVÞ: (B9)

The integral IMM
A can be obtained by replacingMV withM in Eq. (B9) [see e.g. Eq. (A9)]. The integrals IMS

A are of course of
the same form as IMV

A , withMV replaced by the mass of the singlet vector meson,MS. In the chiral limit, the integrals IMM
A ,

IMV
A are given by
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The chiral expansion of IMV
A ðsÞ is found to read, for s � M2

V ,

IMV
A ðsÞ ¼ 1
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