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Spin polarized photons and dileptons from axially charged plasma
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Axial charge in a QCD plasma is P- and CP-odd. We propose and study P- and CP-odd observables
in photon and dilepton emissions from an axially charged QCD plasma, which may provide possible ex-
perimental evidences of axial charge fluctuation and triangle anomaly in the plasma created in heavy-ion
collisions. Our observables measure spin alignments of the emitted photons and dileptons, and are shown
to be related to the imaginary part of chiral magnetic conductivity at finite frequency-momentum,
which ultimately arises from the underlying triangle anomaly of the QCD plasma with a finite axial charge
density. We present an exemplar computation of these observables in a strongly coupled regime using

AdS/CFT correspondence.
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I. INTRODUCTION

Triangle anomaly (or chiral anomaly) of the axial
symmetry in QCD with (nearly) massless quarks is a result
of an interesting quantum mechanical interplay between
spins, helicities and charges of the fundamental fermionic
constituents of the matter we observe in the Universe. It
dictates that the axial current conservation, which naively
holds true in the classical limit, is violated quantum
mechanically by',
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in the presence of a P- and CP-odd environment provided
by a nonzero E - B. Its physics consequences are rich, in
both low and high temperature/density phases of QCD
matter, and quite recently a lot of interests have been at-
tracted to some of its effects in a high temperature
quark-gluon plasma created in heavy-ion collisions and
their possible experimental observations, which could be
one of the direct experimental tests of the fundamental sym-
metries of QCD.

One such phenomenon is the chiral magnetic effect
(CME) [1-5] which dictates the existence of an electromag-
netic current in the presence of a background magnetic
field,
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Jem =
where p, is the axial chemical potential. It should be
emphasized that the above result is valid in the zero
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momentum limit, (w, k) — 0, and one can introduce fre-
quency dependent chiral magnetic conductivity at finite
 [6]. In off-central heavy-ion collisions, the ultrarelativis-
tic heavy-ion projectiles can create a huge magnetic field
which provides an ideal setup for CME [2], and the
axial charges may be created event-by-event either by
the glasma color fields in the early stage of collisions or
by thermal sphaleron transitions in a later stage [2,7,8].
The induced event-by-event charge separation from the
CME may lead to some experimental signatures [9] that
indeed seem to be consistent with the observations in
RHIC [10] and LHC [11]. However, as the proposed signal
is roughly the square of the charge separations in order to
avoid event-averaging to zero, the signal is in fact P-even
and may get additional contributions from other back-
ground effects unrelated to triangle anomaly [12-15],
which makes it hard to draw definite conclusions on the
CME in heavy-ion collisions.

Another related phenomenon is the chiral magnetic wave
(CMW) [16,17] which is a gapless soundlike propagation
of chiral (that is, left-handed or right-handed) charges along
the direction of the magnetic field. The CMW may lead to a
nonzero electric quadrupole moment in the plasma fireball
[18-20] that can explain the experimentally observed
[21,22] charge-dependent elliptic flows of pions at RHIC
[19,20]. Although this is quite suggestive to the existence
of the phenomenon, similarly to CME the observable is
sensitive to other background effects not originating from
triangle anomaly [23-27].

It is desirable to have some observables which are direct
consequences of triangle anomaly, yet without having
contributions from other backgrounds that have nothing
to do with triangle anomaly. A promising direction is to
use discrete symmetries, that is, parity (P) and charge
conjugation (C) transformations, to identify such observ-
ables, since the axial charge and the triangle anomaly is
P- and CP-odd which is a unique characterization of
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its physics effects. As these discrete symmetries are exact in
QCD, any P- and CP-odd observable would be a direct con-
sequence of axial charge fluctuations and the triangle
anomaly.

As a first step in this direction, we study possible P- and
CP-odd observables in the photon and dilepton emission
rates from a quark-gluon plasma. Since QCD as a theory
is P- and CP-even, these observables are necessarily based
on event-by-event P- and CP-odd fluctuations of axial
charges. However, photons and dileptons are relatively
cleaner observables than the hadrons, so our observables
may have some potential to be experimentally measurable
event-by-event.

Our P- and CP-odd observables for photons and dilep-
tons from an axially charged plasma are essentially spin
alignments along the momentum direction which measure
the net helicity of the photons and dileptons. Since the axial
charge is nothing but the helicity asymmetry of the fer-
mionic quasiparticles of the plasma’, our observables
measure how such fermionic helicity is reflected to
the helicities of the emitted photons and dileptons. We
will see that our observables are proportional to the imagi-
nary part of the chiral magnetic conductivity ¢,(w, k) at
finite frequency-momentum, defined by a P- and CP-
odd part of the retarded current-current correlation
functions [6]

Gy =io,(w. k)epuk*, i j k=123 (13)

which is well known to be a consequence of triangle
anomaly. Note that o,(w.k) is the coefficient of the
CME at finite frequency-momentum,

Jem = €26, (0, k)B(w, k), (1.4)

treating the magnetic field as a linear perturbation with a
finite frequency-momentum. Hence, our observables are
the direct tests of the existence of triangle anomaly in QCD.

We emphasize that our observables are not based on the
presence of external electromagnetic fields such as the
magnetic field in CME/CMW, nor on the geometric flows
and anisotropies, and only assume the existence of axial
charge fluctuations®. Since the typical relaxation time scale
of axial charges in the RHIC plasma is about ~1-10 fm
depending on aj, (and larger for LHC with a smaller a;)
[40], the sign of the net axial charge in a fireball can be
coherent event-by-event, and our observables may well
be nonzero event-by-event.

See Ref. [28] for an interesting exact relation between
fermionic helicity and the axial chemical potential.

The possible effects of the magnetic field to the photon
emission rate, explaining the measured elliptic flow [29,30], have
been discussed in Refs. [31-39].
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An interesting observation on the effect of triangle
anomaly to the photons interacting with the plasma was
previously made in Ref. [41], showing that the photon field
with a particular polarization is unstable and seems to grow.
The physics is based on the same P- and CP-odd part of
the retarded correlation functions (1.3), now entering the
dispersion relation of a photon field interacting with the
plasma medium. Although this is quite interesting, for this
instability to be realized, the time scale should be long
enough to allow multiple interactions between photons
and the plasma. Due to a smallness of electromagnetic cou-
pling agy < 1, this required time scale is parametrically
long (proportional to agy), and based on this, it has been
typically assumed that the photons in heavy-ion collisions
once emitted from the plasma do not interact with the
plasma again before they leave out the fireball, and the
well-known photon emission rate is based on this premise.
In this case, the more plausible phenomenon happening in
real heavy-ion collisions seems to be a simple asymmetry
in the emission rates for different spins we discuss.

II. P- AND CP-ODD OBSERVABLES

The axial charge in the QCD plasma is a P- and CP-
odd quantity, and the experimental signatures from the
axially charged plasma should naturally feature some of
P- and CP-odd observables. In this section, we identify
such observables in photon and dilepton emissions, whose
experimental measurements may serve as definitive eviden-
ces of the existence of axial charges in the plasma created in
heavy-ion collisions. Since these observables naturally
involve P- and CP-odd part of the charge current correla-
tion functions which is one of the consequences of the
underlying axial-vector-vector triangle anomaly, their
observation would also be a direct evidence of triangle
anomaly in QCD.

A. Photons

Recall that we are considering a homogeneous, isotropic
QCD plasma without any external electromagnetic field
present. Our only assumption is that the plasma is axially
charged, while the vector charge may or may not be
present. The axial charge may come from the longitudinal
color fields in the early glasma phase, or from thermal spha-
leron fluctuations in a later thermalized stage. Since QCD
is P- and CP-even (with Ogcp = 0), these axial charge fluc-
tuations can only be nonzero event-by-event. Therefore,
our P- and CP-odd observables that we discuss in this work
should also be taken as event-by-event observables.

We are interested in P- and CP-odd observables in pho-
ton emissions from an axially charged isotropic plasma.
Since the plasma is isotropic, let us choose without loss
of generality the direction of momentum of the emitted
photon to be along x*: k = k%°. What remains is the choice
of the polarization of the photon, and it is easy to think of a
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P-odd quantity associated with photon polarization, which
is the circular polarization of the photon. This is equivalent
to the helicity that is whether the unit spin angular momen-
tum of the photon is along or opposite to the direction of the
momentum. The corresponding polarization vectors for our
choice of momentum vector are

1
&= (¢!, €2, 63) = —(0,1, +i,0),
= ( ) =201 %0.0)

where =+ is the helicity of the photon state. In the presence
of axial charge which is P- and CP-odd, the natural and
simple observable signal of the axial charge is the differ-
ence in the photon emission rates between + and — circu-
larly polarized states, and we define “* circular polarization
asymmetry,”

(2.1)

A — %(€+) _;131;2(67) (2 2)
iy = y ; .
@ TSRy

where dI' /d3l:(€”) is the photon emission rate per unit
volume and per unit phase space with a polarization €.
Since photons are C eigenstates, it is easy to see that
A, is P- and CP-odd. In Sec. III, we provide an exemplar
model computation of A, in strongly coupled regime,
showing that A, is nonzero if and only if an axial charge
is present.

To see how A,, probes the P- and CP-odd property
of QCD plasma which ultimately comes from the underly-
ing triangle anomaly, let us relate A, with the charge cur-
rent correlation functions by a well-known formula for the
photon emission rate,

ﬁ»(e”) = WG”(G )G (k)| o (2.3)
with
Gilb = [ dxe O w) @4

where J, is the electromagnetic charge current, and
our metric convention is 7= (—,+,+,+). In the
Appendix A, we present a quantum mechanics derivation
of (2.3) as a pedagogic exercise, which also clarifies how
the polarization vector ¢ enters the formula. Relating (2.3)
with the retarded correlation functions needs some caution
because our polarization vector is complex-valued.
Following the steps in Sec. 2 of Ref. [37], we show that
the result is

&2 -2

Y
(27)*2|k| Pkl — 1

)

PE m[eﬂ(ev)*Ggﬂ(k)Hkoz\E\’

2.5)
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with the retarded correlation functions

GLK =1 [ dixe 0LO)(1,(0.,00). 26

Note that the polarization vectors are contracted with the
retarded correlation functions first before taking the imagi-
nary values. Using the expression (2.1), the polarization-
contracted retarded correlation _function takes a form with
our choice of the momentum k = k&> as

e‘i(e’;)*Gf,, = (Gﬁ + G§2 * iG’f2:|:iG§1), (2.7)

N =

for the + polarized states, respectively. Since we have a
rotational symmetry in the (x',x?)-plane, the correlation
functions along (x!, x?) must take a form

Gf; = Ad;; + Bej, i,j=12, (2.8)
which dictates that
Glﬁ = G§27 Glfz = _G§1- 2.9)
Then, (2.7) simplifies to
€i(e1) Gy, = (Gf £iGY) = GE, (2.10)

in terms of which the circular polarization asymmetry is
written as

_ ImG{ —ImG® _ ReG})
= ImGﬁ + Il’IlGl_e k(]:\la N ImGlfl kO:\E\
2ReGR Imo,, (K°
_ReG | Imoy(K) 0) , (2.11)
ImTrG® [o_j;  Reoy (K°)

where we used Gf, ~ ik, (k%) and G¥ ~ —ik% (k")
to get the last line. We will find the first expression most
useful in practical computations later, while the other
expressions show that A, probes a nonvanishing Gk,
or a nonvanishing imaginary part of the chiral magnetic
conductivity o, (k°).
Since in the zero frequency limit, the chiral magnetic
conductivity o, (k%) is given by
Ha

. 0y _ HA
klﬂlin»oax(k )= 27’

(2.12)
which is real, we expect the imaginary part of the chiral
magnetic conductivity hence the circular polarization
asymmetry Ay, to vanish in the zero frequency limit of
our numerical computation. We also expect the circular
polarization asymmetry A, to be proportional to the axial
chemical potential 4.
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The nonvanishing G, when the momentum is k = k&3 is
indeed the P- and CP-odd part of the current correlation
functions. The only 3D rotationally invariant expression
that contributes to G%, is

GF ~io, (k)eyk", i,jk=1,2,3, (2.13)
which is P- and CP-odd. The coefficient ¢, (k), called the
chiral magnetic conductivity [6], which is in general a func-
tion of k*, is responsible for the chiral magnetic effect at
finite frequency and momentum, and it is one of the trans-
port phenomena originating from triangle anomaly. In
Refs. [6,42], o, has been computed in weak and strong cou-
pling regimes in the limit k — 0 while &° is kept finite. Our
formula shows that A, measures the imaginary part of the
chlral magnetic conductivity in the kinematic domain of

\k| which hasn’t been computed in literature before.

B. Dileptons

Let us continue our idea of identifying P- and CP-odd
observables in the preceding subsection to the dilepton
emissions from an isotropic axially charged QCD plasma.

We first derive that it is impossible to have P- and CP-
odd observables in the dilepton emission rates if the lepton
is strictly massless. Let us recall how P and C transforma-
tions act on the leptons and antileptons arising from quan-
tizing a single massless Dirac field of the lepton species.
For notational familiarity, we will denote leptons as e~
and antileptons e. A single massless Dirac field divides
into a left-handed Weyl field y; and a right-handed
Weyl field y . Upon quantization, y; produces left-handed
leptons e; and right-handed antileptons e, while yg
field produces right-handed leptons e and left-handed
antileptons e; . The P transformation interchanges handed-
ness without affecting the charges (that is &), and the C
transformation interchanges the charges without affecting
handedness,

P: e <ep, ep<e;
C: ej<e;, eg<rep (2.14)

The crucial point in the argument is that a dilepton pair
is created from a virtual photon whose interaction vertex
with the lepton field does not mix y; and wp, that is,
the interaction Hamiltonian takes a form

H;=ie / XA, (FLr*wr + Wrr'wr). (2.15)

This implies that a created dilepton pair is either (e}, ej)
or (eg,e; ), and other combinations are forbidden. Now
imagine acting P and C transformations on the created
dilepton pair. From (2.14), we have
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P: (ef,ef)<
C: (ef,ep)<

(er-er)
(ef.ex) (2.16)
which shows that P and C transformations on our restricted
set of allowed dilepton pairs are identical to each other. It is
straightforward to conclude that it is impossible to have
something which is P- and CP-odd (which requires to have
C-even while P-odd). In our argument, we assumed that the
interchange of the momenta of the final lepton and antilep-
ton pair has no effect in the emission rate, which is true in
an isotropic plasma when the magnitudes of the two
momenta are the same and the rate depends only on the
relative angle of the two momenta. More sophisticated sit-
uations with different magnitudes of momenta of the lepton
and antilepton might allow some P- and CP-odd observ-
ables, but we have not explored this possibility, leaving
it as an open question.

The above discussion brings us to consider a massive
lepton species. We emphasize that this applies to all known
leptons in nature including electrons, but we will see that
our proposal for P- and CP-odd observable in dilepton
emission rates is in fact proportional to the mass square
of the lepton species, so that it vanishes for a massless spe-
cies in line with the above discussion. This implies that the
signal we propose should be more prominent for heavier
lepton species.

Let us define our P- and CP-odd observable in dilepton
emission rates. We focus on the case where the two
momenta of the lepton and antilepton have the same mag-
nitude, and form an angle 26. Calling the two momenta p,
and p,, respectively, we conveniently choose them to be

p(—sin 6,0, cos ), P> = p(sin 0,0, cos 6),

p =15 =Ipl. 2.17)

which is schematically depicted in Fig. 1. The total center
of mass four-momentum that is carried by the virtual
photon is then

FIG. 1 (color online). A schematic illustration of the lepton (p,)
and antilepton (p,) momenta in the dilepton emission from an
isotropic axially charged plasma.
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E=\/p>+m? (2.18)

where m is the mass of the lepton species. The emitted
lepton and antilepton carry 1/2 spin degrees of freedom.
For our purpose of discussing parity transformation, it is
convenient to choose the helicity basis such that the
+1/2 state is defined to be a state whose spin along the
direction of the momentum is +1/2, and similarly for
—1/2 state. Each massive lepton and antilepton can have
the two possible spin states, and under parity P transforma-
tion, the helicity changes its sign. Let us denote the emis-
sion rate per unit volume and per unit phase spaces of
lepton and antilepton with the spin states given by s
and s,, respectively, by 12,

pl} = (2E,0,0,2p cos 6),

drsis:

s = ,
d3pld3p2

(2.19)

and for a given pair of momentum (p;, p,), there are four
possible rates [#2%2, Because of the rotational symmetry of
the plasma, the rates with a fixed spin polarization depend
only on the relative angle 26 of the two momenta (p, p,).
Under charge conjugation C, the lepton transforms to the
antilepton without changing helicity, so that the actions of P
and C on the spin-polarized emission rates are given by

1 1 1_1 1_1 1 1
P: I el Mol 2h

C: l—*j:%,:t%er*i%.j:%’ 11

| NS ) (2.20)

We see that in the subsector of (['F1/271/2 T=1/241/2) (e,
the opposite spin polarizations for lepton and antilepton),
the P and C transformations are identical to each other,
hence it is impossible to have P and CP-odd observable
from that sector. It is however possible to construct a simple
P- and CP-odd observable from I'*!/2+1/2 sector which is

Aj:lT =T oo 1 1- (2.21)
2 2

Note that the total dilepton rate

[p=THH 4T84 T8 4037 (222)
is what used to be computed in literature, and does not
depend on the choice of the spin basis.

Let us discuss in detail how A ; probes the P- and CP-
odd properties of the QCD plasma. In Appendix B, we give
a mundane quantum mechanics derivation of the dilepton
emission rate with a specified spin polarization (s, s,)
given by
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drsi-$2
d3P1d3P2

e (1\2 1 1
= — G5 (py)(—1
(27)° (;;}) 2E; 2E;, w(pr)(=1)
X [f’(ﬁz,sz)wu(ﬁhSl)][’_‘(ﬁh Sl)]’””(ﬁzvsz)}v
(2.23)

S5 =

where Ej = +/p*>+m?*, p=pi+ph, the Wightman
function G, is defined in (2.4) before, and u, v are
Dirac spinors of lepton and antilepton, respectively. Our
convention for the Dirac matrices is

=29 n=(-L+L+L+1), (229
so that y° is anti-Hermitian while y' (i =1, 2, 3) are
Hermitian. We will use the following explicit representation
of them

0 ( 0 i12><2) i < O iGi)
=1 ) V= . )
llZXZ 0 —io! 0

i=1,2,3, (2.25)

upon which the spin matrix corresponding to a spatial
rotation of angle 0 along an axis 7 is given simply by

o 1 /6 0
~ __ ,if0Sn i — )
S(n,0) = S = <0 01).

(2.26)
Recall that the above acts on the lepton wave functions,
both positive and negative energy states. For the antileptons
which are holes of the lepton wave functions with negative
energy, the actual spin matrix is in fact a negative of the
above. Note also that our definition for W is y =
—iy'y?, and the Dirac equation is (y#9, —m)y = 0.
With the above conventions, the Dirac spinors are given by

u(p,s) = ( E_ﬁ'(;.f‘?)
’ VETj-oe)

v(ps) = < E-p-or ) (227)
—VE+p-on
where
(p-0)& = @2s)lple.  (P-o)n' =—Q2s)[pln’,
= (2.28)

With our choice of the momenta p; and p, as in Fig. 1, the
Dirac spinors are explicitly found to be
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u(ﬁlﬁ+]/2) =

and

U(ﬁZv +1/2) =

PHYSICAL REVIEW D 88, 114029 (2013)

+VE + p sin(6/2)
- +vE + p cos(0/2)
M(ph _]/2) = ’

+vE = p sin(0/2)
+vE — p cos(0/2)

(2.29)

(2.30)

With the above expressions, let us then compute the spin-polarization contracted Wightman function that the emission

rate (2.23) is proportional to

G = (-1)G;;

N —

Im

P

G (pp)[0(Pa. s2)r*u(pyr, s)l[a(pyr. s1)r*v(Pa, 52)]].

() [0(P2s s2) 7 u(py, si)|[a(prs s1)r v(pa 52)]

2.31)

where the second line is obtained from the standard manipulation with Lehmann representation, using the fact that what
multiplies to G,;, from Dirac spinors is Hermitian with respect to v indices (see Sec. 2 in Ref. [37]). After some algebra, we

((1F cos 0)* Im(GER, +iGR)) + (1 & cos 0)’Im(GR, — iGK)))

(2.32)

find
G341 = 4m?((1 + c0s20)Gr, F2i cos 0GT,)
=2m*((1F cos 0)*(Gy, +iGy,) + (1 £ cos 0)*(Gy, — iGT,))
B —4m?
PP —1
—4m?
= ——((1F cos )’ ImGR + (1 £ cos 0)’ImGR),
P —1
|
where we have used G¥, = G%, and G¥, = —G%, from the

rotational symmetry as in (2.9), and GX = (GF, £+ iGE)) as
defined before. It is possible to compute G*'/2¥!/2 too, but
the results are not of interest to us. They are given by

= 4(p*cos’0 — E*)(Gyy — G53) + 4E%sin’0GT,,
(2.33)

after using the Ward identity

EG§, + p cos 0G5, = 0, EGg; + p cos 0G3; = 0.

(2.34)

We confirm that G*'/>*!/2 are proportional to the mass
square of the lepton species, so that our P- and CP-odd
observable A.;; constructed from them is well defined
for a massive species only.

Using the above results, our final expression for P- and
CP-odd observable A, ; in the dilepton emission rate in
terms of retarded correlation functions is

2cos 0\ ImGR —ImGR
Ay = 20 R R
1 +cos70) ImG% + ImG2

9’

pr=pi=pi+r}

(2.35)

which is similar to the expression (2.12) for A, except an
additional angular factor and a different kinematic domain
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probed. We see that A, 5 is also a consequence of the under-
lying triangle anomaly, and it measures the chiral magnetic
conductivity in a different kinematic domain.

In the next section, we give an exemplar computation
of ImG® in strongly coupled regime, using AdS/CFT
correspondence, and present some numerical results for
our P- and CP-odd observables A, and A, that may
be relevant in realistic heavy-ion experiments.

III. STRONG COUPLING COMPUTATION

The purpose of this section is to present one exemplar
model computation of our P- and CP-odd observables
Ay, and A in strongly coupled regime using AdS/CFT
correspondence. Since the chiral symmetry, especially
the triangle anomaly represented by 5 dimensional
Chern-Simons terms, is an important ingredient in our
observables, the holographic model to be used should
describe the right chiral symmetry in the real QCD.
Instead of using a bottom-up approach, we choose to work
in the Sakai-Sugimoto model [43] which is the only
top-down holographic model whose chiral symmetry is
identical to the one in QCD *,

For our purposes, it is enough to start from the following
description of the model in its finite temperature deconfined
phase. Our presentation is oriented only for its practical
usage skipping details of its derivations (For a more com-
plete description, see for example Sec. 5 of Ref. [42] and
Sec. 3 of Ref. [37].) We consider the case of having a single
massless Dirac quark species whose electric charge is e.
The model lives in a 5 dimensional space-time, (x*, U)
where U is an extra holographic dimension. There are
two 5 dimensional U(1) gauge fields, Ay and A,, corre-
sponding to the vector and axial symmetry of the massless
quark species in the QCD side, whose 5 dimensional
dynamics describes the chiral dynamics of the massless
quark holographically. Especially, there are 5 dimensional
Chern-Simons terms that are the holographic manifestation
of the triangle anomaly in the QCD side

N,
Ses = gtz [ AU (AL, (FL )y (FL)gn

+ (Ar)m(Fr)np(Fr)or)s (3.1
where we introduce chiral gauge fields defined by
A=Ay — A, Ap =Ay +A,. (3.2)

*We should bear in mind that the background holographic
space-time from the D4 branes in the deconfined phase of the
model has a problem with center symmetry, which prevents us
from relating it to the true gluonic sector of the real QCD
[44]. However, this problem is absent for the chiral symmetry
dynamics described by the probe D8 branes that our analysis
is focused on.
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The QCD plasma with a finite axial charge is described in
the model by a nonzero background configuration of the
axial gauge field A, which is °

0 a
(Fa)EU) -

VU + a2

where the parameter a is related to the axial chemical
potential y, by the relation

(3.3)

R R R E R
Ha = v, /7U5+0’273U%72 "\10°2'10° U5T .
3.4)

The parameter Uy in the above in turn is determined by the
temperature 7 by
47T\ 2
()

with a numerical value R® = 1.44 in units of GeV. The U
is in fact the location of the black-hole horizon at U = Uy
in the background holographic space-time describing a
finite temperature plasma, and the holographic coordinate
U has a range Uy < U < oo where U = oo is the region
corresponding to the UV regime of the QCD side.

Our main interest is to compute retarded (vector) current
correlation functions in the axially charged plasma
described above. To do this in holography, one first solves
the linearized equations of motion for the vector gauge field
Ay fluctuations from the background solution given by
(3.3) [42]

Oy(A(U)Fy) — B(U)(0;Fy;) = 0,
A(U)(0,F,y) + B(U)(0;F,;) + C(U)(0;Fy;) =0,

(
B(U)(0,Fy;) + 0y(B(U)F; + C(U)Fy;)

Ne o
72C (Fa)glj)eijjk =0,

(3.5)

D(U)d;F;; — (3.6)

where i, j,k = 1,2,3, C = 0.0211 in units of GeV, and the
functions A(U), B(U), C(U), D(U) are given by

A(U) = US(U + a®)3,
B(U) = (U)i(u5 +a)t,
C(U) = FU)(U° +a?),

D(U) = <5>3U5(U5 +a?),

U (3.7)

SWe put 2712 = 1 in the formulas from Ref. [42] for conven-
ience, since its value does not appear in the final QCD observ-
ables.
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FU)=1— (%)2

Note that the last term in the third equation in (3.6) is
from the 5 dimensional Chern-Simons term which is a
consequence of triangle anomaly. The solution has a near
U — oo behavior given by

with

(3.8)

AM_A,§0>+%+%Z)+%+---, (3.9)
with
AV =0, AV =2pRFY,
AP = 2RF). AP = 2RO F).  (3.10)
where A,(f)) is a free parameter (the UV boundary condition)

acting as a source for the QCD vector current J*, while the
A, is a dynamically determined quantity which encodes
the expectatlon value of the current in the presence of
the source A( by [37]

-8
J,) = 3C<At + gR%a,ajFﬁj’)> ,

~ 2 0 1 0

(J;) = 3C<A,~ 4R (a O;F\ +§a,2F§,.> —ga,-ajFﬁj)».

(3.11)
The solution with a given source Af,o) and the incoming
boundary condition at the horizon U = Uy is unique
and it is proportional to Afl ), and hence the current expect-
ation value (3.11) is a linear function of A( ) from which we
finally obtain our desired retarded correlanon functions as

(J,) = —GRval). (3.12)

Since we are interested in computing only the transverse
part of the correlation functions, we can consistently turn
on A;, components only, after taking the frequency-
momentum (w, k= k&3 ), so that 0, = —iw, 0; = ik8;3.
The relevant equation of motion is the third equation in
(3.6),

0 ii
—K2D(U) (F.)evA; =0,

.. N
A; + ik 871';(7 (3.13)
with i, j = 1,2 and €'> = —€?! = +1. From the structure
of the above equation, it is natural to work with a helicity

basis

PHYSICAL REVIEW D 88, 114029 (2013)
1
V2

in terms of which the equation of motion diagonalizes as

Ai:

(A FiA,), (3.14)

— k*D(U) < (F)A, =o0. (3.15)

7*C

Once we find the solution of A, we can read off the source

AY = 1/v2(A FAY
(3.11)

) and the expectation value via

) == ' Fi)

2
3C<Ai + 4R} (—iw) <k2 - gaﬂ)Af)). (3.16)

S

From the relation (Ji) = —GRiJ A( , and the rotational sym-

metry GX, = G%, and GF, = G§l, it is straight forward to
see that
() = (G} £ iGR)AY = —GRAY,  3.17)

so that we can naturally obtain our desired G%, entering our
expressions (2.12) and (2.35) for A, and A, from the
solutions of A..

Numerically, what we do is to solve Eq. (3.15) from the
horizon U = Uy up to a UV maximum U,,,, and then
compare its value and derivative at U,,, with the UV
expansion (3.9),

0 2R% —iw 0 —2R3k2 0 A
Ai(Umax):A(i)+ (l )A(i)+ A<i)+ gi i
U%nax Umax U%nax
12R}(—iw) (9) 2R%* (9 3 A
aUAi(Umax):_Eg— v 2 Ai)—z =,
Ubax max Utnax
(3.18)

to obtain Ain and A . We then compute (J*) from (3.16),
and finally get GX from

%)

Gk =_Y 1
0
AY

(3.19)

Figure 2 shows our numerical results of photon circular
polarization asymmetry A,, as a function of frequency,
where 7 = 300 MeV with u, = 100 MeV (solid) and
us = 50 MeV (dashed). Since the model is trustable only
up to a few GeV'’s, we compute A, only for o <2 GeV.
We observe that the asymmetry is about a percent level with
a peak around @ = 1 GeV. Itis easy to check that the result
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FIG. 2 (color online). The photon circular polarization asym-
metry A, from an axially charged plasma as a function of fre-
quency o, where T = 300 MeV with y, = 100 MeV (solid) and
1y = 50 MeV (dashed).

A
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pin GeV

FIG. 3 (color online).  The dilepton spin polarization asymmetry
A, ; from an axially charged plasma as a function of one lepton
momentum p = |p| for the case of muon, where T = 300 MeV
with g, = 100 MeV (solid) and p4 = 50 MeV (dashed). The
relative angle between muon and antimuon pair is taken to be
20 =73.

is absent without the Chern-Simons term (triangle
anomaly) and the effect is roughly proportional to the axial
chemical potential.

Figure 3 shows our numerical results for the dilepton
spin polarization asymmetry A, ; in the case of a dimuon
pair with a relative angle 26 = 7 as a function of the muon
momentum p = |p| (see Fig. 1). Note that the p/; which
probes the plasma is

Py =24/p*+m, m, =100 MeV,
|P¢l =2p cos 6. (3.20)

We observe again that the effect is about a percent level.

IV. DISCUSSION

In this work, we identify P- and CP-odd observables in
the photons and dilepton emission rates from an axially

PHYSICAL REVIEW D 88, 114029 (2013)

charged isotropic QCD plasma, whose experimental obser-
vation can be a direct confirmation of the triangle anomaly in
QCD. Although at present, experimentally measuring polari-
zation of photons and dileptons seems hard with the current
detectors, it may be an interesting future direction to pursue.
One possible channel is the spin dependent weak muon and
antimuon decays since the weak interaction is chiral: only
muons with left-handed spin (the “-” spin in our notation)
would decay to e~ + 7, +v, and only antimuons with
right-handed spin (“+” spin) decay into e* + v, + 7, so
that a positive A ;; would result in an excess of e + v, +
v, production compared to e~ + 7, +v,,.

We show that these observables are proportional to the
imaginary part of the chiral magnetic conductivity at a
finite frequency-momentum region, which is originating
from the underlying triangle anomaly. With an ideal set
of parameters of the temperature and the axial chemical
potential, our exemplar model computation in AdS/CFT
correspondence shows that our observables are of a percent
level. Clearly, a more realistic estimate of the net effect is
desirable, including various real time fireball dynamics and
the axial charge fluctuation dynamics in both early glasma
phase and the later quark-gluon plasma stage. Another
direction is to compute our observables in different models
such as weak coupling chiral kinetic theory that has been
recently developed in Refs. [45-47].
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APPENDIX A: PHOTON EMISSION FORMULA
FROM QUANTUM MECHANICS

We derive the photon emission rate formula (2.3) in
terms of the Wightman function G,

dar &2

D ey=—" Al
72 = ok A

() Gy (K) oz

in the framework of quantum mechanics perturbation
theory. The Hilbert space of our interest is a tensor product
of the QCD plasma Hilbert space and the Hilbert space of
photons,
H - HQCD ® Hy. (AZ)
The photon emission process from a QCD plasma is a
quantum mechanical transition from an initial state
i) = la;) ® [0). (A3)
to a final state containing one photon quantum with a
momentum k and a polarization e*,
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1) =lay) ®

) (A4)

where |a; ;) are QCD states describing the plasma. We will
perform a thermal ensemble average for the initial QCD
state |a;), while summing over all possible final QCD states
las) to get a final emission rate for a fixed photon
state ).

The transition from our initial state to the final state with
one photon arises due to an interaction Hamiltonian

H =e / dxA, (Xt =0)J/(X,1 =0),  (A5)

where A, is the photon field operator and J* is the electro-
magnetic current operator in the QCD sector. Note that A,
acts only on H,, and J* on Hqcp only. Since it is easy to
see that the matrix element of H; between our initial and
final states is nonzero, the transition process is described by
a first order perturbation theory where the transition rate is
given by Fermi’s golden rule

Tiy = 2n)[(f|H,1i) ?5(E; — E)), (A6)

where E; ; are the energies of the initial and final states. In
this expression, it is important to have the right normaliza-
tion for the states, (i|i) = (f|f) = 1. To keep track of nor-
malization of the states properly, we work in a finite volume
case throughout our derivation until we take an infinite
volume limit at the end. A spatial momentum in a finite
volume V is discrete and labeled by a triple of integers
i1, so that we denote it as kn The number of such momen-
tum states in a phase space volume d’k is well known to
be V%.

The photon field operator A, (X, f) in a finite volume V
has a standard expansion in terms of creation and annihi-
lation operators of individual photon states with momenta
k and polarization e,(,> as

g 1 1 s) \S) —i ikix
A”(x’t)_VZ (e ()a]((n)e il | 1+-iks-% + o),
* \/2lk)
(A7)
where the creation/annihilation operators satisfy
(@ al"] = Vo6, (A8)

In the above, we are careful about how the volume factors
enter to have a right normalization of the field commutation
relations. With this, the properly normalized one photon
state in the Hilbert space H, is

PHYSICAL REVIEW D 88, 114029 (2013)

—a(0)

kn,s
.5) = el

(A9)

It is then straightforward to compute the matrix element
(f|H,i) for our initial and final states (A3) and (A4). Using

- 1 1 -
(ki, s|A, (%, 1 = 0)[0) = —= el emikiE (A10)
V -
\/_\/2| il
we have
e §)*
(f|H i) = ¢
f 2
x/d3x<af|J”(f,t:O)|ai>e’ﬁﬂ'f. (A11)

Denoting the energies of the QCD states |, ;) by &,
the initial and final state energles are E; =¢; and

n

Hf%ﬁ " e5(e; — &+ [s])
/ / D (g 171 = O)]at)
x (ag|JH (X, t = 0)]a;). (A12)

We now do the following_manipulation on the above. We
first replace 5(e; —&; + |kz|) by

1 /dtezt £r—¢ +|kz |)
2

and combine the factor e”(¢7—¢) from the above with
(as|J#(x.1 = 0)|a;) to have

S(ep — &+ |k ) = (A13)

e (ap | JH (X, t = 0)|a;) = (as[JM(X.1)|e),  (A14)
using the fact that J#(X,t) = e'J¥(x,t = 0)e !, The
result is
Ti.;= / dx / Ay

' V2|k |

/dte’lk"|'+’k < |J”(y,t— )|af>
X (ap |7 (%. 1) ). (A15)

We then sum over the final QCD states |ay) to remove
> slag){as| =1 in the middle, and perform a thermal
ensemble average over a;,
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(v, 1 = 0)J"(x, 1))

——Ze ~peu

x| (¥, 1 = 0) (X, 1)|a;),  (A16)

to have

[ s

X / dte"|kﬂ"+ik'7‘(y1ﬂ<J”()7,t:O)J”()?, 1)). (A17)

Exploring the translational symmetry of the plasma
such that (J*(y, t = 0)J#(x, 1)) depends only on the relative
displacement x — y, one can simply replace X — y with X in
the integrand while getting additional volume factor
J[d®y =V, to have

e <>/
T =—— e [ ddx
f 2|k| U

/dte"k Ali=ike ¥ (J(0, 1 = 0)J#(X. 1))
2

- -
1

= =G (K0 = [kl ki),

(A18)

where the Wightman function is defined as before

G (k) = / d*xe= ™ (] ,(0)],(x)). (A19)

Recalling that the number of momentum states within a
phase space volume d’k is V (g ’§3, the total transition rate
to the states having one photon within a phase space
volume @’k is obtained by multiplying the above Tiny
by V (d ’)( Then, the photon emission rate per unit volume
and per unit phase space volume is

ar_ 1
&Pk (2n)
2
:76 — 6(‘Y)”*
(27)2 k|

- -

WGy (K0 = |kl ki), (A20)

which is our desired formula (Al) after taking an infinite
volume limit to replace discrete ka with a continuum £.

APPENDIX B: DILEPTON EMISSION FORMULA
FROM QUANTUM MECHANICS

We would like to give a quantum mechanics derivation
of the dilepton emission formula (2.23),

PHYSICAL REVIEW D 88, 114029 (2013)
drs: - elef <i>2 11 L G2ty
&p\dp,  (27)° \p}) 2Ej 2Ej
X (‘1)[17(1727Sz)V“M(PhSl)][ﬁ(ﬁhsl)?/yv
x (P2, 52)], (B1)

where py=p;+p, is the total dilepton energy-
momentum and ¢; is the electric charge of the lepton spe-
cies. The Hilbert space of our interests consists of three
parts, the QCD sector Hcp, the photon sector H,, and
the lepton sector H;:'H = Hoep ® H, ® H;. The dilepton
emission process is a transition from the initial state
1) = |a;) ® |0) ® [0). (B2)
to a final state containing the lepton and antilepton pair with
momenta p;, and spin polarizations s ,, respectively,
If) = |af> ® |0) ® |P1. 513 Pas 52)- (B3)
The interaction Hamiltonian responsible for the transition is
given by

H; = e/d3xAM()?, t=0)J*(x,t=0) + ie

« / PxA, (7.1 = Oppy(F.1=0),  (Bd)

where y is the lepton field operator. Noting that J# acts on
Hqcep only, and similarly A, acts on H,,, and yy*y on 'H,, it
is easy to see that the matrix element of H; between our
initial and final states (B2), (B3) vanishes

(fIH,]i) =0,

so that there is no first order transition. This brings us to
consider a second order perturbation theory where the ini-
tial state first makes a transition to an intermediate state |m)
and the intermediate state makes a transition to our final
state. Inspecting Hj, it is clear that the intermediate state
|m) should contain one photon quantum to have a net non-
vanishing transition by H;. For the situation like ours where
the transition is allowed only at the second order perturba-
tion theory, we have to use the corresponding Fermi’s
golden rule at the second order perturbation theory,

f|H |m){m|H,|i)|?
7oy = n)| 3, L]

From the structure of H;, we find that there are two classes
of possible intermediate states

Case A: The intermediate state involves one photon state
only

(BS)

S(E; — E;). (B6)

m) = |a,) ® ki) @ [0), B7)
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and this intermediate photon decays to the final
dilepton pair.
Case B: The intermediate state consists of one photon

and the dilepton pair,

m) = lan) @ [k.6) @ [Frosi: Faosa). (BY)
and the intermediate photon is subsequently absorbed by
the QCD plasma to leave the dilepton pair in the final state.

Case A is more intuitive from the picture of the relativ-
istic Feynman diagram of having a virtual photon line
between the QCD current and the final dilepton pair.
Case B in fact arises from the same Feynman diagram with
a reversed time ordering where the QCD current operator
appears later than the photon-lepton interaction vertex.
Only after summing the two cases A and B in our mundane
quantum mechanics treatment can we reproduce the rela-
tivistic result from a single Feynman diagram with a rela-
tivistic photon propagator. We will be able to check this
shortly.

The quantization of the photon field A, in a finite volume
V is explained in (A7) in the Appendix A, and we have a
similar quantization of the lepton field y as

—iEj_t+ip;X ()
Z /E,;Q s)e G a5

n s

+v(Pi, S)€+iEﬁ’7,_ipﬁbxb§;->+)’ ®2

where (ag?, b(f)) are annihilation operators of lepton and

antilepton, respectively, which satisfy the anticommutation
relations

) 60y gl

{a Ao Dpa } = {bpa

(5/>T _ LSS,
O = Vet (BI0)

Our conventions for the Dirac spinors « and v are explained
in (2.27) in Sec. IIB. The properly normalized dilepton state
in a finite volume is

g = L s Ty (s2)F
s 512 B 52) = 5 '050). (B1)
We are now ready to compute the matrix elements of H;.
Case  A: Takmg the  intermediate  state
|m> |am> ® |kn’€/4 > ® |O> we have
. 1 e (s)%
m|H,|i — €
< | 1| > \/V\/Qﬁ H
x | dxe*F(q, |J4(F,t = 0)|a;), (BI2)

and after some algebra,

PHYSICAL REVIEW D 88, 114029 (2013)

\/_\/2|k |\/2E \/ZE pn]

x (p~ S
(pnz s s2)5af,am 5]('7,1,’71 +7,

(f|H m) = s1)rvv
(B13)

Since the
Em =&y

_energies of the states are E; =g,

B, W have

75,

Em_Ei:‘em_ei—’—Vz%:Sf_8'+|]€ﬁ|

~(Ep, +Ep.) +|Px, + P, (B14)

where we have used ¢, = &, from 6(,],% in (B13), and
the §(E; — E;) factor in Fermi’s golden rule gives us the
equality

8f — & = _(Eﬁ,;] + Eﬁr?z)’ (BIS)

and finally we replace k: with Pii, + P, due to the

5];’”7”_ s term in (B13). Note that the sum over the
1 2

intermediate states reduces to a sum over the intermediate

photon polarizations only, since |a,,) = |a;) and ky =

Pii, + Pi,- Collecting things together, we have

H;\m)(m|H;|i
Z(fl |m) (m|H,i)

Em - Ei

ee; 1 1 1
V(=pO+5:)2lp R R
(=py +15:D 2174l 2B J2E;,
(Ze,, e Y750 0752

X /d3xeiﬁf"?<af\f"(f,l— 0)]a;),

(B16)

where

p,j‘ - <E +Ep1 vpnl +Pnz) (B17)

is the total energy-momentum of the di-lepton pair.
Case B: With an(ogher class of the intermediate states
Ky - - . .
Im) =) ® ki en') ® |Pg,. 513 Prye82),  a  similar
computation gives

(m|H i) \/_\/2|k|\/2Ep< \/2E iu(Diys s1)7v

X (pﬁz’ s2)5am.ai5]:ﬁ’_<ﬁﬁ] i) (B18)

and
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/d3xe’k~ " o |J”(x = )|a >
/— f mp/»
\/ 2|k

(B19)
and the summation over intermediate states reduces to a
photon polarization sum as |a,,) = |a;) and k; = —(pjs +
ﬁﬁ’z) due to the delta functions in (B18). The energies of the
states are E;=¢;, E,=¢,+ |k,,| +E; +E; =
et 1Pl + Py and E;=e;+E5 +Ej =e;+p
so that the energy denominator is

(f|H |m) =

E, —E = p}+|7l. (B20)
which gives us
Z<f|HI|m><m|HI|i>
Em _Ei

e,,*
(pf+|pf!2|pf| /2E,;_ /2E ( g )

< B )7 0 (P s2) / e ¥y 4Rt = 0)as).
(B21)

which is almost the same with (B16) except the energy
denominator and the complex conjugation of the polariza-
tion sum.

The polarization sums, 3 ,e5"¢l” and 3.ei’el”,
should be replaced by a relativistic tensor,

*
E e,, ey E eﬂ €u = Nuw»

(B22)

in a fully relativistic quantization of the gauge field, which
can be justified for example in the Gupta-Bleuler quantiza-
tion that involves unphysical ghost states in a subtle way.
We will here simply take it as a working recipe.

After this replacement, (B16) and (B21) differ only by
the energy denominator, and the addition of the two finally
gives

PHYSICAL REVIEW D 88, 114029 (2013)

H;im)(m|\H;|i
Z<f| |m) (m|H,|i)

Em_Ei

i ee

(P, $1)r"v(Pi,.
Vo /2Eﬁ, /2E " "

X /d3xeiﬁf'f<0{f~|1;,()?, 1 =0)|a;),

52)

(B23)

where p7 = —(p9)* 4 |py|* is precisely the relativistic
denominator of the photon propagator in the Feynman
diagram. Therefore, the sum of the two cases A and B
reproduces the relativistic result.

Taking the square of (B23) and performing the same
manipulations for T, that we do for the case of the
photon emission in the previous section noting that

E;—E; = &7 — & + p}, we arrive at
1 e2e% 1 | B N
Tinp= V(pz)2 2Ei zEﬁ_ [@(pi,. s1)7"v(Pi,. 52)]
x [ (pnl,sl)y v(Pi,» $2)1°Gru(py)
1 1 _ B}
( )2 2Ep,, 2F 2 ( l)[u(p sl)yﬂv(pﬁzv S2>]
x [0(Pi,» s2)7 u(Pi,» 51)1Gu(py) (B24)

using  the fact that  [a(py,,s1)r"v(pg,.$2)]" =

—[0(Ps,. s2)r*u(pi,.s1)]. The number of momentum
pairs (P, p») within the phase space volume d°p,d’p,
is Vz/(Zﬂ)6d3p1d3p2, so that the total transition rate
into such states is the product of 7,., and V2
(27)8d3 p,d® p,, and therefore the transition rate per unit
volume and per unit phase space d°p,d°p, for a pair of
lepton and antilepton is finally given by

drsi52 1%
d3pld3p2 2r
1 ezelz 1 1

- (1)

27)° (p})* 25, 2Ep,

51)7”0(52’52)][77(132’Sz)i’””

sU]G(pr),

after taking the infinite volume limit, which is our desired
formula (B1).

(B25)

114029-13



KIMINAD A. MAMO AND HO-UNG YEE

[1] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A797, 67
(2007).
[2] D.E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.
Phys. A803, 227 (2008).
[3] K. Fukushima, D. E. Kharzeev, and H.J. Warringa, Phys.
Rev. D 78, 074033 (2008).
[4] D.T. Son and A.R. Zhitnitsky, Phys. Rev. D 70, 074018
(2004).
[51 M. A. Metlitski and A.R. Zhitnitsky, Phys. Rev. D 72,
045011 (2005).
[6] D.E. Kharzeev and H. J. Warringa, Phys. Rev. D 80, 034028
(2009).
[7] D. Kharzeev, A. Krasnitz, and R. Venugopalan, Phys. Lett.
B 545, 298 (2002).
[8] T. Lappi and L. McLerran, Nucl. Phys. A772, 200
(2000).
[9] S. A. Voloshin, Phys. Rev. C 70, 057901 (2004).
[10] B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett.
103, 251601 (2009).
[11] I Selyuzhenkov (ALICE Collaboration), Prog. Theor. Phys.
Suppl. 193, 153 (2012).
[12] M. Asakawa, A. Majumder, and B. Muller, Phys. Rev. C 81,
064912 (2010).
[13] A. Bzdak, V. Koch, and J. Liao, Phys. Rev. C 81, 031901
(2010).
[14] F. Wang, Phys. Rev. C 81, 064902 (2010).
[15] S. Pratt, S. Schlichting, and S. Gavin, Phys. Rev. C 84,
024909 (2011).
[16] D.E. Kharzeev and H.-U. Yee, Phys. Rev. D 83, 085007
(2011).
[17] G.M. Newman, J. High Energy Phys. 01 (2006) 158.
[18] E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Phys.
Rev. D 83, 085003 (2011).
[19] Y. Bumnier, D. E. Kharzeev, J. Liao, and H.-U. Yee, Phys.
Rev. Lett. 107, 052303 (2011).
[20] Y. Burnier, D.E. Kharzeev, J. Liao, and H.-U. Yee,
arXiv:1208.2537.
[21] G. Wang (STAR Collaboration), Nucl. Phys. A904-A905,
248c (2013).
[22] H. Ke (STAR Collaboration), J. Phys. Conf. Ser. 389,
012035 (2012).

PHYSICAL REVIEW D 88, 114029 (2013)

[23] J. C. Dunlop, M. A. Lisa, and P. Sorensen, Phys. Rev. C 84,
044914 (2011).

[24] A. Bzdak and P. Bozek, Phys. Lett. B 726, 239 (2013).

[25] M. Stephanov and H.-U. Yee, Phys. Rev. C 88, 014908
(2013).

[26] W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907
(2012).

[27] X. -G. Huang and J. Liao, Phys. Rev. Lett. 110, 232302
(2013).

[28] R. Loganayagam, J. High Energy Phys. 11 (2013) 205.

[29] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett.
109, 122302 (2012).

[30] D. Lohner (ALICE Collaboration), J. Phys. Conf. Ser. 446,
012028 (2013).

[31] K. Tuchin, Phys. Rev. C 87, 024912 (2013).

[32] G. Basar, D. Kharzeev, and V. Skokov, Phys. Rev. Lett. 109,
202303 (2012).

[33] K. Fukushima and K. Mameda, Phys. Rev. D 86, 071501
(2012).

[34] A. Bzdak and V. Skokov, Phys. Rev. Lett. 110, 192301
(2013).

[35] K. A. Mamo, J. High Energy Phys. 08 (2013) 083.

[36] Y. Bu, Phys. Rev. D 87, 026005 (2013).

[37] H. -U. Yee, Phys. Rev. D 88, 026001 (2013).

[38] S.-Y. Wu and D.-L. Yang, J. High Energy Phys. 08 (2013)
032.

[39] B. Muller, S.-Y. Wu, and D.-L. Yang, arXiv:1308.6568.

[40] S. Lin and H.-U. Yee, Phys. Rev. D 88, 025030 (2013).

[41] Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111,
052002 (2013).

[42] H.-U. Yee, J. High Energy Phys. 11 (2009) 085.

[43] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843
(2005).

[44] G. Mandal and T. Morita, J. High Energy Phys. 09 (2011)
073.

[45] D.T. Son and N. Yamamoto, Phys. Rev. Lett. 109, 181602
(2012).

[46] M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001
(2012).

[47] J.-W. Chen, S. Pu, Q. Wang, and X.-N. Wang, Phys. Rev.
Lett. 110, 262301 (2013).

114029-14


http://dx.doi.org/10.1016/j.nuclphysa.2007.10.001
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.001
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.70.074018
http://dx.doi.org/10.1103/PhysRevD.70.074018
http://dx.doi.org/10.1103/PhysRevD.72.045011
http://dx.doi.org/10.1103/PhysRevD.72.045011
http://dx.doi.org/10.1103/PhysRevD.80.034028
http://dx.doi.org/10.1103/PhysRevD.80.034028
http://dx.doi.org/10.1016/S0370-2693(02)02630-8
http://dx.doi.org/10.1016/S0370-2693(02)02630-8
http://dx.doi.org/10.1016/j.nuclphysa.2006.04.001
http://dx.doi.org/10.1016/j.nuclphysa.2006.04.001
http://dx.doi.org/10.1103/PhysRevC.70.057901
http://dx.doi.org/10.1103/PhysRevLett.103.251601
http://dx.doi.org/10.1103/PhysRevLett.103.251601
http://dx.doi.org/10.1143/PTPS.193.153
http://dx.doi.org/10.1143/PTPS.193.153
http://dx.doi.org/10.1103/PhysRevC.81.064912
http://dx.doi.org/10.1103/PhysRevC.81.064912
http://dx.doi.org/10.1103/PhysRevC.81.031901
http://dx.doi.org/10.1103/PhysRevC.81.031901
http://dx.doi.org/10.1103/PhysRevC.81.064902
http://dx.doi.org/10.1103/PhysRevC.84.024909
http://dx.doi.org/10.1103/PhysRevC.84.024909
http://dx.doi.org/10.1103/PhysRevD.83.085007
http://dx.doi.org/10.1103/PhysRevD.83.085007
http://dx.doi.org/10.1088/1126-6708/2006/01/158
http://dx.doi.org/10.1103/PhysRevD.83.085003
http://dx.doi.org/10.1103/PhysRevD.83.085003
http://dx.doi.org/10.1103/PhysRevLett.107.052303
http://dx.doi.org/10.1103/PhysRevLett.107.052303
http://arXiv.org/abs/1208.2537
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.069
http://dx.doi.org/10.1016/j.nuclphysa.2013.01.069
http://dx.doi.org/10.1088/1742-6596/389/1/012035
http://dx.doi.org/10.1088/1742-6596/389/1/012035
http://dx.doi.org/10.1103/PhysRevC.84.044914
http://dx.doi.org/10.1103/PhysRevC.84.044914
http://dx.doi.org/10.1016/j.physletb.2013.08.003
http://dx.doi.org/10.1103/PhysRevC.88.014908
http://dx.doi.org/10.1103/PhysRevC.88.014908
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevLett.110.232302
http://dx.doi.org/10.1103/PhysRevLett.110.232302
http://dx.doi.org/10.1007/JHEP11(2013)205
http://dx.doi.org/10.1103/PhysRevLett.109.122302
http://dx.doi.org/10.1103/PhysRevLett.109.122302
http://dx.doi.org/10.1088/1742-6596/446/1/012028
http://dx.doi.org/10.1088/1742-6596/446/1/012028
http://dx.doi.org/10.1103/PhysRevC.87.024912
http://dx.doi.org/10.1103/PhysRevLett.109.202303
http://dx.doi.org/10.1103/PhysRevLett.109.202303
http://dx.doi.org/10.1103/PhysRevD.86.071501
http://dx.doi.org/10.1103/PhysRevD.86.071501
http://dx.doi.org/10.1103/PhysRevLett.110.192301
http://dx.doi.org/10.1103/PhysRevLett.110.192301
http://dx.doi.org/10.1007/JHEP08(2013)083
http://dx.doi.org/10.1103/PhysRevD.87.026005
http://dx.doi.org/10.1103/PhysRevD.88.026001
http://dx.doi.org/10.1007/JHEP08(2013)032
http://dx.doi.org/10.1007/JHEP08(2013)032
http://arXiv.org/abs/1308.6568
http://dx.doi.org/10.1103/PhysRevD.88.025030
http://dx.doi.org/10.1103/PhysRevLett.111.052002
http://dx.doi.org/10.1103/PhysRevLett.111.052002
http://dx.doi.org/10.1088/1126-6708/2009/11/085
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1143/PTP.113.843
http://dx.doi.org/10.1007/JHEP09(2011)073
http://dx.doi.org/10.1007/JHEP09(2011)073
http://dx.doi.org/10.1103/PhysRevLett.109.181602
http://dx.doi.org/10.1103/PhysRevLett.109.181602
http://dx.doi.org/10.1103/PhysRevLett.109.162001
http://dx.doi.org/10.1103/PhysRevLett.109.162001
http://dx.doi.org/10.1103/PhysRevLett.110.262301
http://dx.doi.org/10.1103/PhysRevLett.110.262301

