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Axial charge in a QCD plasma is P- and CP-odd. We propose and study P- and CP-odd observables
in photon and dilepton emissions from an axially charged QCD plasma, which may provide possible ex-
perimental evidences of axial charge fluctuation and triangle anomaly in the plasma created in heavy-ion
collisions. Our observables measure spin alignments of the emitted photons and dileptons, and are shown
to be related to the imaginary part of chiral magnetic conductivity at finite frequency-momentum,
which ultimately arises from the underlying triangle anomaly of the QCD plasma with a finite axial charge
density. We present an exemplar computation of these observables in a strongly coupled regime using
AdS/CFT correspondence.
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I. INTRODUCTION

Triangle anomaly (or chiral anomaly) of the axial
symmetry in QCD with (nearly) massless quarks is a result
of an interesting quantum mechanical interplay between
spins, helicities and charges of the fundamental fermionic
constituents of the matter we observe in the Universe. It
dictates that the axial current conservation, which naively
holds true in the classical limit, is violated quantum
mechanically by1,

∂μJ
μ
A ¼ e2

2π2
E⃗ · B⃗; (1.1)

in the presence of a P- and CP-odd environment provided
by a nonzero E⃗ · B⃗. Its physics consequences are rich, in
both low and high temperature/density phases of QCD
matter, and quite recently a lot of interests have been at-
tracted to some of its effects in a high temperature
quark-gluon plasma created in heavy-ion collisions and
their possible experimental observations, which could be
one of the direct experimental tests of the fundamental sym-
metries of QCD.
One such phenomenon is the chiral magnetic effect

(CME) [1–5] which dictates the existence of an electromag-
netic current in the presence of a background magnetic
field,

J⃗EM ¼ e2μA
2π2

B⃗; (1.2)

where μA is the axial chemical potential. It should be
emphasized that the above result is valid in the zero

momentum limit, ðω; kÞ → 0, and one can introduce fre-
quency dependent chiral magnetic conductivity at finite
ω [6]. In off-central heavy-ion collisions, the ultrarelativis-
tic heavy-ion projectiles can create a huge magnetic field
which provides an ideal setup for CME [2], and the
axial charges may be created event-by-event either by
the glasma color fields in the early stage of collisions or
by thermal sphaleron transitions in a later stage [2,7,8].
The induced event-by-event charge separation from the
CME may lead to some experimental signatures [9] that
indeed seem to be consistent with the observations in
RHIC [10] and LHC [11]. However, as the proposed signal
is roughly the square of the charge separations in order to
avoid event-averaging to zero, the signal is in fact P-even
and may get additional contributions from other back-
ground effects unrelated to triangle anomaly [12–15],
which makes it hard to draw definite conclusions on the
CME in heavy-ion collisions.
Another related phenomenon is the chiral magnetic wave

(CMW) [16,17] which is a gapless soundlike propagation
of chiral (that is, left-handed or right-handed) charges along
the direction of the magnetic field. The CMWmay lead to a
nonzero electric quadrupole moment in the plasma fireball
[18–20] that can explain the experimentally observed
[21,22] charge-dependent elliptic flows of pions at RHIC
[19,20]. Although this is quite suggestive to the existence
of the phenomenon, similarly to CME the observable is
sensitive to other background effects not originating from
triangle anomaly [23–27].
It is desirable to have some observables which are direct

consequences of triangle anomaly, yet without having
contributions from other backgrounds that have nothing
to do with triangle anomaly. A promising direction is to
use discrete symmetries, that is, parity (P) and charge
conjugation (C) transformations, to identify such observ-
ables, since the axial charge and the triangle anomaly is
P- and CP-odd which is a unique characterization of
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its physics effects. As these discrete symmetries are exact in
QCD, any P- andCP-odd observable would be a direct con-
sequence of axial charge fluctuations and the triangle
anomaly.
As a first step in this direction, we study possible P- and

CP-odd observables in the photon and dilepton emission
rates from a quark-gluon plasma. Since QCD as a theory
is P- and CP-even, these observables are necessarily based
on event-by-event P- and CP-odd fluctuations of axial
charges. However, photons and dileptons are relatively
cleaner observables than the hadrons, so our observables
may have some potential to be experimentally measurable
event-by-event.
Our P- and CP-odd observables for photons and dilep-

tons from an axially charged plasma are essentially spin
alignments along the momentum direction which measure
the net helicity of the photons and dileptons. Since the axial
charge is nothing but the helicity asymmetry of the fer-
mionic quasiparticles of the plasma2, our observables
measure how such fermionic helicity is reflected to
the helicities of the emitted photons and dileptons. We
will see that our observables are proportional to the imagi-
nary part of the chiral magnetic conductivity σχðω; kÞ at
finite frequency-momentum, defined by a P- and CP-
odd part of the retarded current-current correlation
functions [6]

GR;−
ij ¼ iσχðω; kÞϵijkkk; i; j; k ¼ 1; 2; 3; (1.3)

which is well known to be a consequence of triangle
anomaly. Note that σχðω; kÞ is the coefficient of the
CME at finite frequency-momentum,

J⃗EM ¼ e2σχðω; kÞB⃗ðω; kÞ; (1.4)

treating the magnetic field as a linear perturbation with a
finite frequency-momentum. Hence, our observables are
the direct tests of the existence of triangle anomaly in QCD.
We emphasize that our observables are not based on the

presence of external electromagnetic fields such as the
magnetic field in CME/CMW, nor on the geometric flows
and anisotropies, and only assume the existence of axial
charge fluctuations3. Since the typical relaxation time scale
of axial charges in the RHIC plasma is about ∼1–10 fm
depending on αs, (and larger for LHC with a smaller αs)
[40], the sign of the net axial charge in a fireball can be
coherent event-by-event, and our observables may well
be nonzero event-by-event.

An interesting observation on the effect of triangle
anomaly to the photons interacting with the plasma was
previously made in Ref. [41], showing that the photon field
with a particular polarization is unstable and seems to grow.
The physics is based on the same P- and CP-odd part of
the retarded correlation functions (1.3), now entering the
dispersion relation of a photon field interacting with the
plasma medium. Although this is quite interesting, for this
instability to be realized, the time scale should be long
enough to allow multiple interactions between photons
and the plasma. Due to a smallness of electromagnetic cou-
pling αEM ≪ 1, this required time scale is parametrically
long (proportional to α−1EM), and based on this, it has been
typically assumed that the photons in heavy-ion collisions
once emitted from the plasma do not interact with the
plasma again before they leave out the fireball, and the
well-known photon emission rate is based on this premise.
In this case, the more plausible phenomenon happening in
real heavy-ion collisions seems to be a simple asymmetry
in the emission rates for different spins we discuss.

II. P- AND CP-ODD OBSERVABLES

The axial charge in the QCD plasma is a P- and CP-
odd quantity, and the experimental signatures from the
axially charged plasma should naturally feature some of
P- and CP-odd observables. In this section, we identify
such observables in photon and dilepton emissions, whose
experimental measurements may serve as definitive eviden-
ces of the existence of axial charges in the plasma created in
heavy-ion collisions. Since these observables naturally
involve P- and CP-odd part of the charge current correla-
tion functions which is one of the consequences of the
underlying axial-vector-vector triangle anomaly, their
observation would also be a direct evidence of triangle
anomaly in QCD.

A. Photons

Recall that we are considering a homogeneous, isotropic
QCD plasma without any external electromagnetic field
present. Our only assumption is that the plasma is axially
charged, while the vector charge may or may not be
present. The axial charge may come from the longitudinal
color fields in the early glasma phase, or from thermal spha-
leron fluctuations in a later thermalized stage. Since QCD
is P- and CP-even (with θQCD ¼ 0), these axial charge fluc-
tuations can only be nonzero event-by-event. Therefore,
our P- and CP-odd observables that we discuss in this work
should also be taken as event-by-event observables.
We are interested in P- and CP-odd observables in pho-

ton emissions from an axially charged isotropic plasma.
Since the plasma is isotropic, let us choose without loss
of generality the direction of momentum of the emitted
photon to be along x3: k⃗ ¼ kx̂3. What remains is the choice
of the polarization of the photon, and it is easy to think of a

2See Ref. [28] for an interesting exact relation between
fermionic helicity and the axial chemical potential.

3The possible effects of the magnetic field to the photon
emission rate, explaining the measured elliptic flow [29,30], have
been discussed in Refs. [31–39].
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P-odd quantity associated with photon polarization, which
is the circular polarization of the photon. This is equivalent
to the helicity that is whether the unit spin angular momen-
tum of the photon is along or opposite to the direction of the
momentum. The corresponding polarization vectors for our
choice of momentum vector are

ϵμ� ¼ ðϵ0; ϵ1; ϵ2; ϵ3Þ ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; (2.1)

where � is the helicity of the photon state. In the presence
of axial charge which is P- and CP-odd, the natural and
simple observable signal of the axial charge is the differ-
ence in the photon emission rates between þ and − circu-
larly polarized states, and we define “ circular polarization
asymmetry,”

A�γ ≡
dΓ
d3k⃗

ðϵþÞ − dΓ
d3k⃗

ðϵ−Þ
dΓ
d3k⃗

ðϵþÞ þ dΓ
d3k⃗

ðϵ−Þ
; (2.2)

where dΓ=d3k⃗ðϵμÞ is the photon emission rate per unit
volume and per unit phase space with a polarization ϵμ.
Since photons are C eigenstates, it is easy to see that
A�γ is P- and CP-odd. In Sec. III, we provide an exemplar
model computation of A�γ in strongly coupled regime,
showing that A�γ is nonzero if and only if an axial charge
is present.
To see how A�γ probes the P- and CP-odd property

of QCD plasma which ultimately comes from the underly-
ing triangle anomaly, let us relate A�γ with the charge cur-
rent correlation functions by a well-known formula for the
photon emission rate,

dΓ
d3k⃗

ðϵμÞ ¼ e2

ð2πÞ32jk⃗j
ϵμðϵνÞ�G<

μνðkÞ
��
k0¼jk⃗j; (2.3)

with

G<
μνðkÞ≡

Z
d4xe−ikxhJμð0ÞJνðxÞi; (2.4)

where Jμ is the electromagnetic charge current, and
our metric convention is η ¼ ð−;þ;þ;þÞ. In the
Appendix A, we present a quantum mechanics derivation
of (2.3) as a pedagogic exercise, which also clarifies how
the polarization vector ϵμ enters the formula. Relating (2.3)
with the retarded correlation functions needs some caution
because our polarization vector is complex-valued.
Following the steps in Sec. 2 of Ref. [37], we show that
the result is

dΓ
d3k⃗

ðϵμÞ ¼ e2

ð2πÞ32jk⃗j
−2

eβjk⃗j − 1
Im½ϵμðϵνÞ�GR

νμðkÞ�
��
k0¼jk⃗j;

(2.5)

with the retarded correlation functions

GR
μνðkÞ≡−i

Z
d4xe−ikxθðx0Þh½JμðxÞ; Jνð0Þ�i: (2.6)

Note that the polarization vectors are contracted with the
retarded correlation functions first before taking the imagi-
nary values. Using the expression (2.1), the polarization-
contracted retarded correlation function takes a form with
our choice of the momentum k⃗ ¼ kx̂3 as

ϵμ�ðϵν�Þ�GR
νμ ¼

1

2
ðGR

11 þGR
22 � iGR

12∓iGR
21Þ; (2.7)

for the � polarized states, respectively. Since we have a
rotational symmetry in the ðx1; x2Þ-plane, the correlation
functions along ðx1; x2Þ must take a form

GR
ij ¼ Aδij þ Bϵij; i; j ¼ 1; 2; (2.8)

which dictates that

GR
11 ¼ GR

22; GR
12 ¼ −GR

21: (2.9)

Then, (2.7) simplifies to

ϵμ�ðϵν�Þ�GR
νμ ¼ ðGR

11 � iGR
12Þ≡ GR

�; (2.10)

in terms of which the circular polarization asymmetry is
written as

A�γ ¼
ImGRþ − ImGR−
ImGRþ þ ImGR−

����
k0¼jk⃗j

¼ ReGR
12

ImGR
11

����
k0¼jk⃗j

¼ 2ReGR
12

ImTrGR

����
k0¼jk⃗j

¼ Imσχðk0Þ
Reσ11ðk0Þ

; (2.11)

where we used GR
12 ∼ ik0σχðk0Þ and GR

11 ∼ −ik0σ11ðk0Þ
to get the last line. We will find the first expression most
useful in practical computations later, while the other
expressions show that A�γ probes a nonvanishing GR

12

or a nonvanishing imaginary part of the chiral magnetic
conductivity σχðk0Þ.
Since in the zero frequency limit, the chiral magnetic

conductivity σχðk0Þ is given by

lim
k0→0

σχðk0Þ ¼
μA
2π2

; (2.12)

which is real, we expect the imaginary part of the chiral
magnetic conductivity hence the circular polarization
asymmetry A�γ to vanish in the zero frequency limit of
our numerical computation. We also expect the circular
polarization asymmetry A�γ to be proportional to the axial
chemical potential μA.
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The nonvanishingGR
12 when the momentum is k⃗ ¼ kx̂3 is

indeed the P- and CP-odd part of the current correlation
functions. The only 3D rotationally invariant expression
that contributes to GR

12 is

GR
ij ∼ iσχðkÞϵijkkk; i; j; k ¼ 1; 2; 3; (2.13)

which is P- and CP-odd. The coefficient σχðkÞ, called the
chiral magnetic conductivity [6], which is in general a func-
tion of kμ, is responsible for the chiral magnetic effect at
finite frequency and momentum, and it is one of the trans-
port phenomena originating from triangle anomaly. In
Refs. [6,42], σχ has been computed in weak and strong cou-
pling regimes in the limit k⃗ → 0 while k0 is kept finite. Our
formula shows that A�γ measures the imaginary part of the
chiral magnetic conductivity in the kinematic domain of
k0 ¼ jk⃗j which hasn’t been computed in literature before.

B. Dileptons

Let us continue our idea of identifying P- and CP-odd
observables in the preceding subsection to the dilepton
emissions from an isotropic axially charged QCD plasma.
We first derive that it is impossible to have P- and CP-

odd observables in the dilepton emission rates if the lepton
is strictly massless. Let us recall how P and C transforma-
tions act on the leptons and antileptons arising from quan-
tizing a single massless Dirac field of the lepton species.
For notational familiarity, we will denote leptons as e−
and antileptons eþ. A single massless Dirac field divides
into a left-handed Weyl field ψL and a right-handed
Weyl field ψR. Upon quantization, ψL produces left-handed
leptons e−L and right-handed antileptons eþR , while ψR
field produces right-handed leptons e−R and left-handed
antileptons eþL . The P transformation interchanges handed-
ness without affecting the charges (that is �), and the C
transformation interchanges the charges without affecting
handedness,

P∶ e−L↔e−R; eþR↔eþL
C∶ e−L↔eþL ; e−R↔eþR (2.14)

The crucial point in the argument is that a dilepton pair
is created from a virtual photon whose interaction vertex
with the lepton field does not mix ψL and ψR, that is,
the interaction Hamiltonian takes a form

HI ¼ ie
Z

d3xAμðψ̄Lγ
μψL þ ψ̄Rγ

μψRÞ: (2.15)

This implies that a created dilepton pair is either ðe−L; eþR Þ
or ðe−R; eþL Þ, and other combinations are forbidden. Now
imagine acting P and C transformations on the created
dilepton pair. From (2.14), we have

P∶ ðe−L; eþR Þ↔ðe−R; eþL Þ
C∶ ðe−L; eþR Þ↔ðeþL ; e−RÞ (2.16)

which shows that P and C transformations on our restricted
set of allowed dilepton pairs are identical to each other. It is
straightforward to conclude that it is impossible to have
something which is P- and CP-odd (which requires to have
C-even while P-odd). In our argument, we assumed that the
interchange of the momenta of the final lepton and antilep-
ton pair has no effect in the emission rate, which is true in
an isotropic plasma when the magnitudes of the two
momenta are the same and the rate depends only on the
relative angle of the two momenta. More sophisticated sit-
uations with different magnitudes of momenta of the lepton
and antilepton might allow some P- and CP-odd observ-
ables, but we have not explored this possibility, leaving
it as an open question.
The above discussion brings us to consider a massive

lepton species. We emphasize that this applies to all known
leptons in nature including electrons, but we will see that
our proposal for P- and CP-odd observable in dilepton
emission rates is in fact proportional to the mass square
of the lepton species, so that it vanishes for a massless spe-
cies in line with the above discussion. This implies that the
signal we propose should be more prominent for heavier
lepton species.
Let us define our P- and CP-odd observable in dilepton

emission rates. We focus on the case where the two
momenta of the lepton and antilepton have the same mag-
nitude, and form an angle 2θ. Calling the two momenta p⃗1

and p⃗2, respectively, we conveniently choose them to be

p⃗1 ¼ pð− sin θ; 0; cos θÞ; p⃗2 ¼ pðsin θ; 0; cos θÞ;
p ¼ jp⃗1j ¼ jp⃗2j; (2.17)

which is schematically depicted in Fig. 1. The total center
of mass four-momentum that is carried by the virtual
photon is then

x 1 x 2

x 3

p1

p2

FIG. 1 (color online). A schematic illustration of the lepton (p⃗1)
and antilepton (p⃗2) momenta in the dilepton emission from an
isotropic axially charged plasma.
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pμ
f ¼ ð2E; 0; 0; 2p cos θÞ; E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
; (2.18)

where m is the mass of the lepton species. The emitted
lepton and antilepton carry 1=2 spin degrees of freedom.
For our purpose of discussing parity transformation, it is
convenient to choose the helicity basis such that the
þ1=2 state is defined to be a state whose spin along the
direction of the momentum is þ1=2, and similarly for
−1=2 state. Each massive lepton and antilepton can have
the two possible spin states, and under parity P transforma-
tion, the helicity changes its sign. Let us denote the emis-
sion rate per unit volume and per unit phase spaces of
lepton and antilepton with the spin states given by s1
and s2, respectively, by Γs1;s2,

Γs1;s2 ≡ dΓs1;s2

d3p1d3p2

; (2.19)

and for a given pair of momentum ðp⃗1; p⃗2Þ, there are four
possible rates Γ�1

2
;�1

2. Because of the rotational symmetry of
the plasma, the rates with a fixed spin polarization depend
only on the relative angle 2θ of the two momenta ðp⃗1; p⃗2Þ.
Under charge conjugation C, the lepton transforms to the
antilepton without changing helicity, so that the actions of P
and C on the spin-polarized emission rates are given by

P∶ Γþ1
2
;þ1

2↔Γ−1
2
;−1

2; Γþ1
2
;−1

2↔Γ−1
2
;þ1

2

C∶ Γ�1
2
;�1

2↔Γ�1
2
;�1

2; Γþ1
2
;−1

2↔Γ−1
2
;þ1

2: (2.20)

We see that in the subsector of ðΓþ1=2;−1=2;Γ−1=2;þ1=2Þ (i.e.
the opposite spin polarizations for lepton and antilepton),
the P and C transformations are identical to each other,
hence it is impossible to have P and CP-odd observable
from that sector. It is however possible to construct a simple
P- and CP-odd observable from Γ�1=2;�1=2 sector which is

A�ll̄ ≡− Γþ1
2
;þ1

2 − Γ−1
2
;−1

2

Γþ1
2
;þ1

2 þ Γ−1
2
;−1

2

: (2.21)

Note that the total dilepton rate

Γll̄ ¼ Γþ1
2
;þ1

2 þ Γþ1
2
;−1

2 þ Γ−1
2
;þ1

2 þ Γ−1
2
;−1

2; (2.22)

is what used to be computed in literature, and does not
depend on the choice of the spin basis.
Let us discuss in detail how A�ll̄ probes the P- and CP-

odd properties of the QCD plasma. In Appendix B, we give
a mundane quantum mechanics derivation of the dilepton
emission rate with a specified spin polarization ðs1; s2Þ
given by

Γs1;s2 ¼ dΓs1;s2

d3p1d3p2

¼ e2e2l
ð2πÞ6

�
1

p2
f

�
2 1

2Ep⃗1

1

2Ep⃗2

G<
μνðpfÞð−1Þ

× ½v̄ðp⃗2; s2Þγμuðp⃗1; s1Þ�½ūðp⃗1; s1Þγνvðp⃗2; s2Þ�;
(2.23)

where Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
, pμ

f ¼ pμ
1 þ pμ

2, the Wightman
function G<

μν is defined in (2.4) before, and u, v are
Dirac spinors of lepton and antilepton, respectively. Our
convention for the Dirac matrices is

fγμ; γνg ¼ 2ημν; η ¼ ð−1;þ1;þ1;þ1Þ; (2.24)

so that γ0 is anti-Hermitian while γi (i ¼ 1, 2, 3) are
Hermitian. Wewill use the following explicit representation
of them

γ0 ¼
�

0 i12×2
i12×2 0

�
; γi ¼

�
0 iσi

−iσi 0

�
;

i ¼ 1; 2; 3; (2.25)

upon which the spin matrix corresponding to a spatial
rotation of angle θ along an axis n̂ is given simply by

Sðn̂; θÞ ¼ eiθS⃗·n̂; Si ≡ 1

2

�
σi 0

0 σi

�
: (2.26)

Recall that the above acts on the lepton wave functions,
both positive and negative energy states. For the antileptons
which are holes of the lepton wave functions with negative
energy, the actual spin matrix is in fact a negative of the
above. Note also that our definition for ψ̄ is ψ̄ ≡
−iψ†γ0, and the Dirac equation is ðγμ∂μ −mÞψ ¼ 0.
With the above conventions, the Dirac spinors are given by

uðp⃗; sÞ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − p⃗ · σ⃗
p

ξsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p⃗ · σ⃗

p
ξs

!
;

vðp⃗; sÞ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − p⃗ · σ⃗
p

ηs

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p⃗ · σ⃗

p
ηs

!
; (2.27)

where

ðp⃗ · σ⃗Þξs ¼ ð2sÞjp⃗jξs; ðp⃗ · σ⃗Þηs ¼ −ð2sÞjp⃗jηs;
s ¼ � 1

2
: (2.28)

With our choice of the momenta p⃗1 and p⃗2 as in Fig. 1, the
Dirac spinors are explicitly found to be
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uðp⃗1;þ1=2Þ ¼

0
BBBBB@

þ ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
cosðθ=2Þ

− ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
sinðθ=2Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
cosðθ=2Þ

− ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
sinðθ=2Þ

1
CCCCCA; uðp⃗1;−1=2Þ ¼

0
BBBBB@

þ ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
sinðθ=2Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
cosðθ=2Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
sinðθ=2Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
cosðθ=2Þ

1
CCCCCA; (2.29)

and

vðp⃗2;þ1=2Þ ¼

0
BBBBB@

− ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
sinðθ=2Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
cosðθ=2Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
sinðθ=2Þ

− ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
cosðθ=2Þ

1
CCCCCA; vðp⃗2;−1=2Þ ¼

0
BBBBB@

þ ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
cosðθ=2Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffi
E − p

p
sinðθ=2Þ

− ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
cosðθ=2Þ

− ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ p

p
sinðθ=2Þ

1
CCCCCA: (2.30)

With the above expressions, let us then compute the spin-polarization contracted Wightman function that the emission
rate (2.23) is proportional to

Gs1;s2 ≡ ð−1ÞG<
μνðpfÞ½v̄ðp⃗2; s2Þγμuðp⃗1; s1Þ�½ūðp⃗1; s1Þγνvðp⃗2; s2Þ�

¼ 2

eβp
0
f − 1

Im½GR
μνðpfÞ½v̄ðp⃗2; s2Þγμuðp⃗1; s1Þ�½ūðp⃗1; s1Þγνvðp⃗2; s2Þ��; (2.31)

where the second line is obtained from the standard manipulation with Lehmann representation, using the fact that what
multiplies toG<

μν from Dirac spinors is Hermitian with respect to μν indices (see Sec. 2 in Ref. [37]). After some algebra, we
find

G�1
2
;�1

2 ¼ 4m2ðð1þ cos2θÞG<
11∓2i cos θG<

12Þ
¼ 2m2ðð1∓ cos θÞ2ðG<

11 þ iG<
12Þ þ ð1� cos θÞ2ðG<

11 − iG<
12ÞÞ

¼ −4m2

eβp
0
f − 1

ðð1∓ cos θÞ2ImðGR
11 þ iGR

12Þ þ ð1� cos θÞ2ImðGR
11 − iGR

12ÞÞ

¼ −4m2

eβp
0
f − 1

ðð1∓ cos θÞ2ImGRþ þ ð1� cos θÞ2ImGR−Þ; (2.32)

where we have used GR
11 ¼ GR

22 and GR
12 ¼ −GR

21 from the
rotational symmetry as in (2.9), and GR

� ≡ ðGR
11 � iGR

12Þ as
defined before. It is possible to computeG�1=2;∓1=2 too, but
the results are not of interest to us. They are given by

Gþ1
2
;−1

2 ¼ G−1
2
;þ1

2

¼ 4ðp2cos2θ − E2ÞðG<
00 −G<

33Þ þ 4E2sin2θG<
11;

(2.33)

after using the Ward identity

EG<
00 þ p cos θG<

30 ¼ 0; EG<
03 þ p cos θG<

33 ¼ 0:

(2.34)

We confirm that G�1=2;�1=2 are proportional to the mass
square of the lepton species, so that our P- and CP-odd
observable A�ll̄ constructed from them is well defined
for a massive species only.
Using the above results, our final expression for P- and

CP-odd observable A�ll̄ in the dilepton emission rate in
terms of retarded correlation functions is

A�ll̄ ¼
�

2 cos θ
1þ cos2θ

�
·
ImGRþ − ImGR−
ImGRþ þ ImGR−

�����
pμ¼pμ

f¼pμ
1
þpμ

2

;

(2.35)

which is similar to the expression (2.12) for A�γ, except an
additional angular factor and a different kinematic domain
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probed. We see that A�ll̄ is also a consequence of the under-
lying triangle anomaly, and it measures the chiral magnetic
conductivity in a different kinematic domain.
In the next section, we give an exemplar computation

of ImGR
� in strongly coupled regime, using AdS/CFT

correspondence, and present some numerical results for
our P- and CP-odd observables A�γ and A�ll̄ that may
be relevant in realistic heavy-ion experiments.

III. STRONG COUPLING COMPUTATION

The purpose of this section is to present one exemplar
model computation of our P- and CP-odd observables
A�γ and A�ll̄ in strongly coupled regime using AdS/CFT
correspondence. Since the chiral symmetry, especially
the triangle anomaly represented by 5 dimensional
Chern-Simons terms, is an important ingredient in our
observables, the holographic model to be used should
describe the right chiral symmetry in the real QCD.
Instead of using a bottom-up approach, we choose to work
in the Sakai-Sugimoto model [43] which is the only
top-down holographic model whose chiral symmetry is
identical to the one in QCD 4.
For our purposes, it is enough to start from the following

description of the model in its finite temperature deconfined
phase. Our presentation is oriented only for its practical
usage skipping details of its derivations (For a more com-
plete description, see for example Sec. 5 of Ref. [42] and
Sec. 3 of Ref. [37].) We consider the case of having a single
massless Dirac quark species whose electric charge is e.
The model lives in a 5 dimensional space-time, ðxμ; UÞ
where U is an extra holographic dimension. There are
two 5 dimensional U(1) gauge fields, AV and Aa, corre-
sponding to the vector and axial symmetry of the massless
quark species in the QCD side, whose 5 dimensional
dynamics describes the chiral dynamics of the massless
quark holographically. Especially, there are 5 dimensional
Chern-Simons terms that are the holographic manifestation
of the triangle anomaly in the QCD side

SCS ¼
Nc

96π2

Z
d4xdUϵMNPQR½−ðALÞMðFLÞNPðFLÞQR

þ ðARÞMðFRÞNPðFRÞQR�; (3.1)

where we introduce chiral gauge fields defined by

AL ¼ AV − Aa; AR ¼ AV þ Aa: (3.2)

The QCD plasma with a finite axial charge is described in
the model by a nonzero background configuration of the
axial gauge field Aa which is 5

ðFaÞð0ÞtU ¼ − αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U5 þ α2

p ; (3.3)

where the parameter α is related to the axial chemical
potential μA by the relation

μA ¼
Z

∞

UT

dU
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U5 þ α2
p ¼ 2α

3U
3
2

T

2F1

�
3

10
;
1

2
;
13

10
;− α2

U5
T

�
:

(3.4)

The parameter UT in the above in turn is determined by the
temperature T by

UT ¼ R3

�
4πT
3

�
2

; (3.5)

with a numerical value R3 ¼ 1.44 in units of GeV. The UT
is in fact the location of the black-hole horizon at U ¼ UT
in the background holographic space-time describing a
finite temperature plasma, and the holographic coordinate
U has a range UT < U < ∞ where U ¼ ∞ is the region
corresponding to the UV regime of the QCD side.
Our main interest is to compute retarded (vector) current

correlation functions in the axially charged plasma
described above. To do this in holography, one first solves
the linearized equations of motion for the vector gauge field
AV fluctuations from the background solution given by
(3.3) [42]

∂UðAðUÞFtUÞ − BðUÞð∂iFUiÞ ¼ 0;

AðUÞð∂tFtUÞ þ BðUÞð∂iFtiÞ þ CðUÞð∂iFUiÞ ¼ 0;

BðUÞð∂tFUiÞ þ ∂UðBðUÞFti þ CðUÞFUiÞ
þDðUÞ∂jFji − Nc

8π2C
ðFaÞð0ÞtU ϵ

ijkFjk ¼ 0; (3.6)

where i; j; k ¼ 1; 2; 3, C ¼ 0.0211 in units of GeV, and the
functions AðUÞ, BðUÞ, CðUÞ, DðUÞ are given by

AðUÞ ¼ U−5ðU5 þ α2Þ32;

BðUÞ ¼
�
R
U

�3
2ðU5 þ α2Þ12;

CðUÞ ¼ fðUÞðU5 þ α2Þ12;

DðUÞ ¼
�
R
U

�
3

U5ðU5 þ α2Þ−1
2; (3.7)

4We should bear in mind that the background holographic
space-time from the D4 branes in the deconfined phase of the
model has a problem with center symmetry, which prevents us
from relating it to the true gluonic sector of the real QCD
[44]. However, this problem is absent for the chiral symmetry
dynamics described by the probe D8 branes that our analysis
is focused on.

5We put 2πl2s ¼ 1 in the formulas from Ref. [42] for conven-
ience, since its value does not appear in the final QCD observ-
ables.
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with

fðUÞ ¼ 1 −
�
UT

U

�
3

: (3.8)

Note that the last term in the third equation in (3.6) is
from the 5 dimensional Chern-Simons term which is a
consequence of triangle anomaly. The solution has a near
U → ∞ behavior given by

Aμ ¼ Að0Þ
μ þ Að1Þ

μ

U
1
2

þ Að2Þ
μ

U
þ

~Aμ

U
3
2

þ � � � ; (3.9)

with

Að1Þ
t ¼ 0; Að1Þ

i ¼ 2R
3
2Fð0Þ

ti ;

Að2Þ
t ¼ −2R3∂jF

ð0Þ
tj ; Að2Þ

i ¼ −2R3∂jF
ð0Þ
ij ; (3.10)

where Að0Þ
μ is a free parameter (the UV boundary condition)

acting as a source for the QCD vector current Jμ, while the
~Aμ is a dynamically determined quantity which encodes
the expectation value of the current in the presence of
the source Að0Þ

μ by [37]

hJti ¼ 3C

�
~At þ

8

3
R

9
2∂t∂jF

ð0Þ
tj

�
;

hJii ¼ 3C

�
~Ai þ 4R

9
2

�
∂t∂jF

ð0Þ
ij þ 2

3
∂2
t F

ð0Þ
ti − 1

3
∂i∂jF

ð0Þ
tj

��
:

(3.11)

The solution with a given source Að0Þ
μ and the incoming

boundary condition at the horizon U ¼ UT is unique
and it is proportional to Að0Þ

μ , and hence the current expect-
ation value (3.11) is a linear function of Að0Þ

μ from which we
finally obtain our desired retarded correlation functions as

hJμi ¼ −GR ν
μ Að0Þ

ν : (3.12)

Since we are interested in computing only the transverse
part of the correlation functions, we can consistently turn
on A1;2 components only, after taking the frequency-
momentum ðω; k⃗ ¼ kx̂3Þ, so that ∂t ¼ −iω, ∂i ¼ ikδi3.
The relevant equation of motion is the third equation in
(3.6),

− iωBðUÞ∂UAi þ ∂Uð−iωBðUÞAi þ CðUÞ∂UAiÞ

− k2DðUÞAi þ ik
Nc

8π2C
ðFaÞð0ÞtU ϵ

ijAj ¼ 0; (3.13)

with i; j ¼ 1; 2 and ϵ12 ¼ −ϵ21 ¼ þ1. From the structure
of the above equation, it is natural to work with a helicity
basis

A� ¼ 1ffiffiffi
2

p ðA1∓iA2Þ; (3.14)

in terms of which the equation of motion diagonalizes as

− iωBðUÞ∂UA� þ ∂Uð−iωBðUÞA� þ CðUÞ∂UA�Þ
− k2DðUÞA�∓k

Nc

8π2C
ðFaÞð0ÞtU A� ¼ 0: (3.15)

Once we find the solution of A�, we can read off the source
Að0Þ
� ¼ 1=

ffiffiffi
2

p ðAð0Þ
1 ∓Að0Þ

2 Þ and the expectation value via
(3.11)

hJ�i ¼ 1ffiffiffi
2

p ðJ1∓iJ2Þ

¼ 3C

�
~A� þ 4R

9
2ð−iωÞ

�
k2 − 2

3
ω2

�
Að0Þ
�

�
: (3.16)

From the relation hJii ¼ −GRijAð0Þ
j , and the rotational sym-

metry GR
11 ¼ GR

22 and G
R
12 ¼ −GR

21, it is straight forward to
see that

hJ�i ¼ −ðGR
11 � iGR

12ÞAð0Þ
� ¼ −GR

�A
ð0Þ
� ; (3.17)

so that we can naturally obtain our desiredGR
�, entering our

expressions (2.12) and (2.35) for A�γ and A�ll̄, from the
solutions of A�.
Numerically, what we do is to solve Eq. (3.15) from the

horizon U ¼ UT up to a UV maximum Umax and then
compare its value and derivative at Umax with the UV
expansion (3.9),

A�ðUmaxÞ¼Að0Þ
� þ2R

3
2ð−iωÞ
U

1
2
max

Að0Þ
� þ−2R3k2

Umax
Að0Þ
� þ

~A�

U
3
2
max

;

∂UA�ðUmaxÞ¼−
1

2

2R
3
2ð−iωÞ
U

3
2
max

Að0Þ
� þ2R3k2

U2
max

Að0Þ
� −3

2

~A�

U
5
2
max

;

(3.18)

to obtain Að0Þ
� and ~A�. We then compute hJ�i from (3.16),

and finally get GR
� from

GR
� ¼ − hJ�i

Að0Þ
�

: (3.19)

Figure 2 shows our numerical results of photon circular
polarization asymmetry A�γ as a function of frequency,
where T ¼ 300 MeV with μA ¼ 100 MeV (solid) and
μA ¼ 50 MeV (dashed). Since the model is trustable only
up to a few GeV’s, we compute A�γ only for ω < 2 GeV.
We observe that the asymmetry is about a percent level with
a peak around ω ¼ 1 GeV. It is easy to check that the result
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is absent without the Chern-Simons term (triangle
anomaly) and the effect is roughly proportional to the axial
chemical potential.
Figure 3 shows our numerical results for the dilepton

spin polarization asymmetry A�ll̄ in the case of a dimuon
pair with a relative angle 2θ ¼ π

2
as a function of the muon

momentum p ¼ jp⃗j (see Fig. 1). Note that the pμ
f which

probes the plasma is

p0
f ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

μ

q
; mμ ¼ 100 MeV;

jp⃗fj ¼ 2p cos θ: (3.20)

We observe again that the effect is about a percent level.

IV. DISCUSSION

In this work, we identify P- and CP-odd observables in
the photons and dilepton emission rates from an axially

charged isotropic QCD plasma, whose experimental obser-
vation can be a direct confirmation of the triangle anomaly in
QCD. Although at present, experimentally measuring polari-
zation of photons and dileptons seems hard with the current
detectors, it may be an interesting future direction to pursue.
One possible channel is the spin dependent weak muon and
antimuon decays since the weak interaction is chiral: only
muons with left-handed spin (the “-” spin in our notation)
would decay to e− þ ν̄e þ νμ and only antimuons with
right-handed spin (“+” spin) decay into eþ þ νe þ ν̄μ, so
that a positive A�ll̄ would result in an excess of eþ þ νe þ
ν̄μ production compared to e− þ ν̄e þ νμ.
We show that these observables are proportional to the

imaginary part of the chiral magnetic conductivity at a
finite frequency-momentum region, which is originating
from the underlying triangle anomaly. With an ideal set
of parameters of the temperature and the axial chemical
potential, our exemplar model computation in AdS/CFT
correspondence shows that our observables are of a percent
level. Clearly, a more realistic estimate of the net effect is
desirable, including various real time fireball dynamics and
the axial charge fluctuation dynamics in both early glasma
phase and the later quark-gluon plasma stage. Another
direction is to compute our observables in different models
such as weak coupling chiral kinetic theory that has been
recently developed in Refs. [45–47].
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APPENDIX A: PHOTON EMISSION FORMULA
FROM QUANTUM MECHANICS

We derive the photon emission rate formula (2.3) in
terms of the Wightman function G<

μν,

dΓ
d3k⃗

ðϵμÞ ¼ e2

ð2πÞ32jk⃗j
ϵμðϵνÞ�G<

μνðkÞ
��
k0¼jk⃗j; (A1)

in the framework of quantum mechanics perturbation
theory. The Hilbert space of our interest is a tensor product
of the QCD plasma Hilbert space and the Hilbert space of
photons,

H ¼ HQCD ⊗ Hγ: (A2)

The photon emission process from a QCD plasma is a
quantum mechanical transition from an initial state

jii ¼ jαii ⊗ j0i; (A3)

to a final state containing one photon quantum with a
momentum k⃗ and a polarization ϵμ,

0.5 1.0 1.5 2.0
in GeV

0.005

0.010

0.015

A

FIG. 2 (color online). The photon circular polarization asym-
metry A�γ from an axially charged plasma as a function of fre-
quency ω, where T ¼ 300 MeV with μA ¼ 100 MeV (solid) and
μA ¼ 50 MeV (dashed).

0.2 0.4 0.6 0.8 1.0
p in GeV

0.002

0.004

0.006

0.008

0.010

0.012

A l l

FIG. 3 (color online). The dilepton spin polarization asymmetry
A�ll̄ from an axially charged plasma as a function of one lepton
momentum p ¼ jp⃗j for the case of muon, where T ¼ 300 MeV
with μA ¼ 100 MeV (solid) and μA ¼ 50 MeV (dashed). The
relative angle between muon and antimuon pair is taken to be
2θ ¼ π

2
.
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jfi ¼ jαfi ⊗ jk⃗; ϵμi; (A4)

where jαi;fi are QCD states describing the plasma. We will
perform a thermal ensemble average for the initial QCD
state jαii, while summing over all possible final QCD states
jαfi to get a final emission rate for a fixed photon
state jk⃗; ϵμi.
The transition from our initial state to the final state with

one photon arises due to an interaction Hamiltonian

HI ¼ e
Z

d3xAμðx⃗; t ¼ 0ÞJμðx⃗; t ¼ 0Þ; (A5)

where Aμ is the photon field operator and Jμ is the electro-
magnetic current operator in the QCD sector. Note that Aμ

acts only on Hγ, and Jμ on HQCD only. Since it is easy to
see that the matrix element of HI between our initial and
final states is nonzero, the transition process is described by
a first order perturbation theory where the transition rate is
given by Fermi’s golden rule

Ti→f ¼ ð2πÞjhfjHIjiij2δðEf − EiÞ; (A6)

where Ei;f are the energies of the initial and final states. In
this expression, it is important to have the right normaliza-
tion for the states, hijii ¼ hfjfi ¼ 1. To keep track of nor-
malization of the states properly, we work in a finite volume
case throughout our derivation until we take an infinite
volume limit at the end. A spatial momentum in a finite
volume V is discrete and labeled by a triple of integers
n⃗, so that we denote it as k⃗n⃗. The number of such momen-
tum states in a phase space volume d3k is well known to
be V d3k

ð2πÞ3.
The photon field operator Aμðx⃗; tÞ in a finite volume V

has a standard expansion in terms of creation and annihi-
lation operators of individual photon states with momenta
k⃗n⃗ and polarization ϵðsÞμ as

Aμðx⃗; tÞ ¼
1

V

X
n⃗;s

1ffiffiffiffiffiffiffiffiffiffi
2jk⃗n⃗j

q ðϵðsÞμ aðsÞ
k⃗n⃗
e−ijk⃗n⃗jtþik⃗n⃗·x⃗ þ h:cÞ;

(A7)

where the creation/annihilation operators satisfy

h
aðsÞ
k⃗n⃗
; aðs

0Þ†
k⃗n⃗0

i
¼ Vδn⃗;n⃗0δs;s

0
: (A8)

In the above, we are careful about how the volume factors
enter to have a right normalization of the field commutation
relations. With this, the properly normalized one photon
state in the Hilbert space Hγ is

jk⃗n⃗; si ¼
1ffiffiffiffi
V

p aðsÞ†
k⃗n⃗

j0i: (A9)

It is then straightforward to compute the matrix element
hfjHIjii for our initial and final states (A3) and (A4). Using

hk⃗n⃗; sjAμðx⃗; t ¼ 0Þj0i ¼ 1ffiffiffiffi
V

p 1ffiffiffiffiffiffiffiffiffiffi
2jk⃗n⃗j

q ϵðsÞ�μ e−ik⃗n⃗·x⃗; (A10)

we have

hfjHIjii ¼
1ffiffiffiffi
V

p effiffiffiffiffiffiffiffiffiffi
2jk⃗n⃗j

q ϵðsÞ�μ

×
Z

d3xhαfjJμðx⃗; t ¼ 0Þjαiie−ik⃗n⃗·x⃗: (A11)

Denoting the energies of the QCD states jαi;fi by εi;f,
the initial and final state energies are Ei ¼ εi and
Ef ¼ εf þ jk⃗n⃗j, so that the transition rate by (A6) becomes

Ti→f ¼
ð2πÞ
V

e2

2jk⃗n⃗j
ϵðsÞ�μ ϵðsÞν δðεf − εi þ jk⃗n⃗jÞ

×
Z

d3x
Z

d3yeik⃗n⃗·ðy⃗−x⃗ÞhαijJνðy⃗; t ¼ 0Þjαfi

× hαfjJμðx⃗; t ¼ 0Þjαii: (A12)

We now do the following manipulation on the above. We
first replace δðεf − εi þ jk⃗n⃗jÞ by

δðεf − εi þ jk⃗n⃗jÞ ¼
1

2π

Z
dteitðεf−εiþjk⃗n⃗jÞ; (A13)

and combine the factor eitðεf−εiÞ from the above with
hαfjJμðx⃗; t ¼ 0Þjαii to have

eitðεf−εiÞhαfjJμðx⃗; t ¼ 0Þjαii ¼ hαfjJμðx⃗; tÞjαii; (A14)

using the fact that Jμðx⃗; tÞ ¼ eiHtJμðx⃗; t ¼ 0Þe−iHt. The
result is

Ti→f ¼
1

V
e2

2jk⃗n⃗j
ϵðsÞ�μ ϵðsÞν

Z
d3x

Z
d3y

×
Z

dteijk⃗n⃗jtþik⃗n⃗·ðy⃗−x⃗ÞhαijJνðy⃗; t ¼ 0Þjαfi

× hαfjJμðx⃗; tÞjαii: (A15)

We then sum over the final QCD states jαfi to removeP
fjαfihαfj ¼ 1 in the middle, and perform a thermal

ensemble average over αi,
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hJνðy⃗; t ¼ 0ÞJμðx⃗; tÞi

≡ 1

Z

X
i

e−βεihαijJνðy⃗; t ¼ 0ÞJμðx⃗; tÞjαii; (A16)

to have

Ti→f ¼
1

V
e2

2jk⃗n⃗j
ϵðsÞ�μ ϵðsÞν

Z
d3x

Z
d3y

×
Z

dteijk⃗n⃗jtþik⃗n⃗·ðy⃗−x⃗ÞhJνðy⃗; t ¼ 0ÞJμðx⃗; tÞi: (A17)

Exploring the translational symmetry of the plasma
such that hJνðy⃗; t ¼ 0ÞJμðx⃗; tÞi depends only on the relative
displacement x⃗ − y⃗, one can simply replace x⃗ − y⃗ with x⃗ in
the integrand while getting additional volume factorR
d3y ¼ V, to have

Ti→f ¼
e2

2jk⃗n⃗j
ϵðsÞ�μ ϵðsÞν

Z
d3x

×
Z

dteijk⃗n⃗jt−ik⃗n⃗·x⃗hJνð0⃗; t ¼ 0ÞJμðx⃗; tÞi

¼ e2

2jk⃗n⃗j
ϵðsÞμ�ϵðsÞνG<

νμðk0 ¼ jk⃗n⃗j; k⃗n⃗Þ; (A18)

where the Wightman function is defined as before

G<
μνðkÞ ¼

Z
d4xe−ikxhJμð0ÞJνðxÞi: (A19)

Recalling that the number of momentum states within a
phase space volume d3k is V d3k

ð2πÞ3, the total transition rate
to the states having one photon within a phase space
volume d3k is obtained by multiplying the above Ti→f
by V d3k

ð2πÞ3. Then, the photon emission rate per unit volume
and per unit phase space volume is

dΓ
d3k

¼ 1

ð2πÞ3 Ti→f

¼ e2

ð2πÞ32jk⃗n⃗j
ϵðsÞμ�ϵðsÞνG<

νμðk0 ¼ jk⃗n⃗j; k⃗n⃗Þ; (A20)

which is our desired formula (A1) after taking an infinite
volume limit to replace discrete k⃗n⃗ with a continuum k⃗.

APPENDIX B: DILEPTON EMISSION FORMULA
FROM QUANTUM MECHANICS

We would like to give a quantum mechanics derivation
of the dilepton emission formula (2.23),

dΓs1;s2

d3p1d3p2

¼ e2e2l
ð2πÞ6

�
1

p2
f

�
2 1

2Ep⃗1

1

2Ep⃗2

G<
μνðpfÞ

× ð−1Þ½v̄ðp⃗2; s2Þγμuðp⃗1; s1Þ�½ūðp⃗1; s1Þγνv
× ðp⃗2; s2Þ�; (B1)

where pf ¼ p1 þ p2 is the total dilepton energy-
momentum and el is the electric charge of the lepton spe-
cies. The Hilbert space of our interests consists of three
parts, the QCD sector HQCD, the photon sector Hγ, and
the lepton sectorHl∶H ¼ HQCD ⊗ Hγ ⊗ Hl. The dilepton
emission process is a transition from the initial state

jii ¼ jαii ⊗ j0i ⊗ j0i; (B2)

to a final state containing the lepton and antilepton pair with
momenta p⃗1;2 and spin polarizations s1;2, respectively,

jfi ¼ jαfi ⊗ j0i ⊗ jp⃗1; s1; p⃗2; s2i: (B3)

The interaction Hamiltonian responsible for the transition is
given by

HI ¼ e
Z

d3xAμðx⃗; t ¼ 0ÞJμðx⃗; t ¼ 0Þ þ iel

×
Z

d3xAμðx⃗; t ¼ 0Þψ̄γμψðx⃗; t ¼ 0Þ; (B4)

where ψ is the lepton field operator. Noting that Jμ acts on
HQCD only, and similarly Aμ acts onHγ , and ψ̄γμψ onHl, it
is easy to see that the matrix element of HI between our
initial and final states (B2), (B3) vanishes

hfjHIjii ¼ 0; (B5)

so that there is no first order transition. This brings us to
consider a second order perturbation theory where the ini-
tial state first makes a transition to an intermediate state jmi
and the intermediate state makes a transition to our final
state. Inspecting HI , it is clear that the intermediate state
jmi should contain one photon quantum to have a net non-
vanishing transition byHI. For the situation like ours where
the transition is allowed only at the second order perturba-
tion theory, we have to use the corresponding Fermi’s
golden rule at the second order perturbation theory,

Ti→f ¼ ð2πÞ
����Xm

hfjHIjmihmjHIjii
Em − Ei

����2δðEf − EiÞ: (B6)

From the structure of HI , we find that there are two classes
of possible intermediate states
Case A: The intermediate state involves one photon state

only

jmi ¼ jαmi ⊗ jk⃗; ϵðsÞμ i ⊗ j0i; (B7)

SPIN POLARIZED PHOTONS AND DILEPTONS FROM … PHYSICAL REVIEW D 88, 114029 (2013)

114029-11



and this intermediate photon decays to the final
dilepton pair.
Case B: The intermediate state consists of one photon

and the dilepton pair,

jmi ¼ jαmi ⊗ jk⃗; ϵðsÞμ i ⊗ jp⃗1; s1; p⃗2; s2i; (B8)

and the intermediate photon is subsequently absorbed by
the QCD plasma to leave the dilepton pair in the final state.
Case A is more intuitive from the picture of the relativ-

istic Feynman diagram of having a virtual photon line
between the QCD current and the final dilepton pair.
Case B in fact arises from the same Feynman diagram with
a reversed time ordering where the QCD current operator
appears later than the photon-lepton interaction vertex.
Only after summing the two cases A and B in our mundane
quantum mechanics treatment can we reproduce the rela-
tivistic result from a single Feynman diagram with a rela-
tivistic photon propagator. We will be able to check this
shortly.
The quantization of the photon field Aμ in a finite volume

V is explained in (A7) in the Appendix A, and we have a
similar quantization of the lepton field ψ as

ψðx⃗; tÞ ¼ 1

V

X
n⃗;s

1ffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗

p ðuðp⃗n⃗; sÞe−iEp⃗n⃗
tþip⃗n⃗·x⃗aðsÞp⃗n⃗

þvðp⃗n⃗; sÞeþiEp⃗n⃗
t−ip⃗n⃗·x⃗bðsÞ†p⃗n⃗

Þ; (B9)

where ðaðsÞp⃗n⃗
; bðsÞp⃗n⃗

Þ are annihilation operators of lepton and
antilepton, respectively, which satisfy the anticommutation
relations

faðsÞp⃗n⃗
; aðs

0Þ†
p⃗n⃗0

g ¼ fbðsÞp⃗n⃗
; bðs

0Þ†
p⃗n⃗0

g ¼ Vδn⃗;n⃗0δs;s
0
: (B10)

Our conventions for the Dirac spinors u and v are explained
in (2.27) in Sec. IIB. The properly normalized dilepton state
in a finite volume is

jp⃗n⃗1 ; s1; p⃗n⃗2 ; s2i ¼
1

V
aðs1Þ†p⃗n⃗1

bðs2Þ†p⃗n⃗2
j0i: (B11)

We are now ready to compute the matrix elements of HI .
Case A: Taking the intermediate state

jmi ¼ jαmi ⊗ jk⃗n⃗; ϵðsÞμ i ⊗ j0i, we have

hmjHIjii ¼
1ffiffiffiffi
V

p effiffiffiffiffiffiffiffiffiffi
2jk⃗n⃗j

q ϵðsÞ�μ

×
Z

d3xe−ik⃗n⃗·x⃗hαmjJμðx⃗; t ¼ 0Þjαii; (B12)

and after some algebra,

hfjHIjmi ¼ iffiffiffiffi
V

p elffiffiffiffiffiffiffiffiffiffi
2jk⃗n⃗j

q 1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗1

q 1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗2

q ϵðsÞν ūðp⃗n⃗1 ; s1Þγνv

× ðp⃗n⃗2 ; s2Þδαf;αmδk⃗n⃗;p⃗n⃗1
þp⃗n⃗2

: (B13)

Since the energies of the states are Ei ¼ εi,
Em ¼ εm þ jk⃗n⃗j, and Ef ¼ εf þ Ep⃗n⃗1

þ Ep⃗n⃗2
, we have

Em − Ei ¼ εm − εi þ jk⃗n⃗j ¼ εf − εi þ jk⃗n⃗j
¼ −ðEp⃗n⃗1

þ Ep⃗n⃗2
Þ þ jp⃗n⃗1 þ p⃗n⃗2 j; (B14)

where we have used εm ¼ εf from δαf;αm in (B13), and
the δðEf − EiÞ factor in Fermi’s golden rule gives us the
equality

εf − εi ¼ −ðEp⃗n⃗1
þ Ep⃗n⃗2

Þ; (B15)

and finally we replace k⃗n⃗ with p⃗n⃗1 þ p⃗n⃗2 due to the
δk⃗n⃗;p⃗n⃗1

þp⃗n⃗2
term in (B13). Note that the sum over the

intermediate states reduces to a sum over the intermediate
photon polarizations only, since jαmi ¼ jαfi and k⃗n⃗ ¼
p⃗n⃗1 þ p⃗n⃗2 . Collecting things together, we have

X
m

hfjHIjmihmjHIjii
Em − Ei

�����
AÞ

¼ i
V

eel
ð−p0

f þ jp⃗fjÞ
1

2jp⃗fj
1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗1

q 1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗2

q
×
�X

s

ϵðsÞ�μ ϵðsÞν

�
ūðp⃗n⃗1 ; s1Þγνvðp⃗n⃗2 ; s2Þ

×
Z

d3xe−ip⃗f ·x⃗hαfjJμðx⃗; t ¼ 0Þjαii; (B16)

where

pμ
f ¼ ðEp⃗n⃗1

þ Ep⃗n⃗2
; p⃗n⃗1 þ p⃗n⃗2Þ; (B17)

is the total energy-momentum of the di-lepton pair.
Case B: With another class of the intermediate states

jmi ¼ jαmi ⊗ jk⃗n⃗; ϵðsÞμ i ⊗ jp⃗n⃗1 ; s1; p⃗n⃗2 ; s2i, a similar
computation gives

hmjHIjii ¼
iffiffiffiffi
V

p elffiffiffiffiffiffiffiffiffiffi
2jk⃗n⃗j

q 1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗1

q 1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗2

q ϵðsÞ�ν ūðp⃗n⃗1 ; s1Þγνv

× ðp⃗n⃗2 ; s2Þδαm;αiδk⃗n⃗;−ðp⃗n⃗1
þp⃗n⃗2

Þ; (B18)

and
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hfjHIjmi¼ 1ffiffiffiffi
V

p effiffiffiffiffiffiffiffiffiffi
2jk⃗n⃗j

q ϵðsÞμ

Z
d3xeik⃗n⃗·x⃗hαfjJμðx⃗;t¼0Þjαmi;

(B19)

and the summation over intermediate states reduces to a
photon polarization sum as jαmi ¼ jαii and k⃗n⃗ ¼ −ðp⃗n⃗1 þ
p⃗n⃗2Þ due to the delta functions in (B18). The energies of the
states are Ei ¼ εi, Em ¼ εm þ jk⃗n⃗j þ Ep⃗n⃗1

þ Ep⃗n⃗2
¼

εi þ jp⃗fj þ p0
f, and Ef ¼ εf þ Ep⃗n⃗1

þ Ep⃗n⃗2
¼ εf þ p0

f,
so that the energy denominator is

Em − Ei ¼ p0
f þ jp⃗fj; (B20)

which gives us

X
m

hfjHIjmihmjHIjii
Em−Ei

�����
BÞ

¼ i
V

eel
ðp0

f þjp⃗fjÞ
1

2jp⃗fj
1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗1

q 1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗2

q �X
s

ϵðsÞμ ϵðsÞ�ν

�

× ūðp⃗n⃗1 ; s1Þγνvðp⃗n⃗2 ; s2Þ
Z

d3xe−ip⃗f ·x⃗hαfjJμðx⃗; t¼ 0Þjαii;
(B21)

which is almost the same with (B16) except the energy
denominator and the complex conjugation of the polariza-
tion sum.
The polarization sums,

P
sϵ

ðsÞ�
μ ϵðsÞν and

P
sϵ

ðsÞ
μ ϵðsÞ�ν ,

should be replaced by a relativistic tensor,

X
s

ϵðsÞ�μ ϵðsÞν ¼
X
s

ϵðsÞμ ϵðsÞ�ν → ημν; (B22)

in a fully relativistic quantization of the gauge field, which
can be justified for example in the Gupta-Bleuler quantiza-
tion that involves unphysical ghost states in a subtle way.
We will here simply take it as a working recipe.
After this replacement, (B16) and (B21) differ only by

the energy denominator, and the addition of the two finally
gives

X
m

hfjHIjmihmjHIjii
Em − Ei

¼ i
V
eel
p2
f

1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗1

q 1ffiffiffiffiffiffiffiffiffiffiffi
2Ep⃗n⃗2

q ūðp⃗n⃗1 ; s1Þγμvðp⃗n⃗2 ; s2Þ

×
Z

d3xe−ip⃗f ·x⃗hαfjJμðx⃗; t ¼ 0Þjαii; (B23)

where p2
f ¼ −ðp0

fÞ2 þ jp⃗fj2 is precisely the relativistic
denominator of the photon propagator in the Feynman
diagram. Therefore, the sum of the two cases A and B
reproduces the relativistic result.
Taking the square of (B23) and performing the same

manipulations for Ti→f that we do for the case of the
photon emission in the previous section noting that
Ef − Ei ¼ εf − εi þ p0

f, we arrive at

Ti→f ¼
1

V
e2e2l
ðp2

fÞ2
1

2Ep⃗n⃗1

1

2Ep⃗n⃗2

½ūðp⃗n⃗1 ; s1Þγμvðp⃗n⃗2 ; s2Þ�

× ½ūðp⃗n⃗1 ; s1Þγνvðp⃗n⃗2 ; s2Þ��G<
νμðpfÞ

¼ 1

V
e2e2l
ðp2

fÞ2
1

2Ep⃗n⃗1

1

2Ep⃗n⃗2

ð−1Þ½ūðp⃗n⃗1 ; s1Þγμvðp⃗n⃗2 ; s2Þ�

× ½v̄ðp⃗n⃗2 ; s2Þγνuðp⃗n⃗1 ; s1Þ�G<
νμðpfÞ; (B24)

using the fact that ½ūðp⃗n⃗1 ; s1Þγνvðp⃗n⃗2 ; s2Þ�� ¼−½v̄ðp⃗n⃗2 ; s2Þγνuðp⃗n⃗1 ; s1Þ�. The number of momentum
pairs ðp⃗1; p⃗2Þ within the phase space volume d3p1d3p2

is V2=ð2πÞ6d3p1d3p2, so that the total transition rate
into such states is the product of Ti→f and V2=
ð2πÞ6d3p1d3p2, and therefore the transition rate per unit
volume and per unit phase space d3p1d3p2 for a pair of
lepton and antilepton is finally given by

dΓs1;s2

d3p1d3p2

¼ V
ð2πÞ6 Ti→f

¼ 1

ð2πÞ6
e2e2l
ðp2

fÞ2
1

2Ep⃗1

1

2Ep⃗2

ð−1Þ
× ½ūðp⃗1; s1Þγμvðp⃗2; s2Þ�½v̄ðp⃗2; s2Þγνu
× ðp⃗1; s1Þ�G<

νμðpfÞ; (B25)

after taking the infinite volume limit, which is our desired
formula (B1).
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