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Wecompute the dimuon-excess invariantmass distribution at theρ-mesonpeak in the context of relativistic
heavy-ion collisions at Super Proton Synchrotron energies. The parameters describing the ρ meson that
depend on the temperature, T, and chemical potential, μ—its width, mass and leptonic decay constant—
are determined from finite-energy QCD sum rules. Results show that the ρ-meson width increases whereas
its mass and leptonic decay constant decrease near the (chemical potential-dependent) critical temperature
TcðμÞ for chiral symmetry restoration/quark-gluon deconfinement. As a consequence, starting from TcðμÞ,
for a short-lived cooling the main effect is a broadening of the dimuon distribution. However, when the evo-
lution brings the system to a lower freeze-out temperature, with the ρ-meson parameters approaching their
vacuum values, the dimuon distribution shows a broad peak centered at the vacuum ρ-meson mass. For even
lower freeze-out temperatures the peak becomes less prominent since the thermal phase-space factor sup-
presses the distribution for larger values of the invariant dimuon mass, given that the average temperature is
smaller. The dimuon distribution exhibits a nontrivial behavior with μ. For small μ values the distribution
broadenswith increasingμbecoming abit steeper at low invariantmasses for larger values ofμ.Our results are
in very good agreement with data from the NA60 Collaboration.
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Electromagnetic probes reveal the entire thermal evolu-
tion of a heavy-ion collision, as they are emitted continu-
ously from the early quark-gluon plasma phase, through
to the late hadronic phase up to freeze-out. After being
produced, these probes escape from the medium without
further interaction, as their mean free path is larger than
the size of the fireball. Low-mass dileptons are one of these
probes and their invariant mass spectrum is a direct meas-
urement of the in-medium hadronic spectral function in
the vector channel. For invariant masses below 1 GeV, the
spectrum is dominated by the ρmeson whose short lifetime
and large coupling to pions and muons make it an ideal test
particle to sample in-medium changes of the parameters
describing it, such as its mass, its width and its leptonic
decay constant. The temperature and density dependence
of these parameters provides information on the phase tran-
sitions to quark-gluon deconfinement and chiral symmetry
restoration.
In the past few years, high-quality data provided by the

CERNNA60 Collaboration [1,2] has settled a long-standing
controversy regarding the origin of the dilepton excess [3]
below the ρ-meson peak at Super Proton Synchrotron (SPS)
energies. This excess was originally attributed either to a
mass decrease or to an increase in the width of the ρ meson
with increasing temperature. The NA60 data shows that
when the known sources are subtracted from the spectral
function, a clear peak at the vacuum ρ mass is observed
at all centralities. The peak broadens for the most central
collisions but remains centered at its vacuum mass value.

The total dimuon yield also increases with centrality.
This result is in line with current ideas about the nature
of the deconfinement/chiral symmetry restoration transition.
Since the mass is only related to the position of the real part
of the hadron propagator in the complex squared energy
plane, its temperature behavior provides no relevant infor-
mation on deconfinement. The relevant quantity is, instead,
the hadronic width related to the imaginary part of the
propagator. Awidth which increases with increasing T does
indicate deconfinement, as the spectral function eventually
becomes smooth and is accounted for by perturbative QCD.
The leading theoretical descriptions of the ρ-meson

broadening at SPS energies are based on hadronic many-
body or transport calculations, invoking the idea that the
ρ meson scatters and thus melts not only at finite temper-
ature, but also in a baryon-rich environment [4–8] (see also
Ref. [9]). These rather successful descriptions have allowed
for the interpretation of a wealth of fixed target data. In
principle, this approach could also be expected to describe
data at the Relativistic Heavy Ion Collider and LHC, where
the net density remains comparable to SPS energies alth-
ough the baryon density is smaller. In this context, the
PHENIX collaboration has found a large enhancement in
central Auþ Au at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [10] which cannot
be described by the in-medium hadronic effects invoked
at SPS energies, albeit this description works well for lower
centralities and lower energies. This enhancement is not
reported by STAR [11]. Recently, PHENIX has reported
new measurements with a better signal-to-background ratio
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performed with their Hadron Blind Detector which come
closer to STAR results [12].
In this paper we make use of recent results from QCD

sum rules (QCDSR) at finite T in the vector channel [13],
and extend them to finite μ. This method provides informa-
tion on the thermal and density behavior of the ρ-meson
parameters, i.e. its width, coupling, and mass, which are
needed to compute the dimuon production rate in heavy-
ion collisions around the ρ peak.
The starting point is the light-quark vector current cor-

relator, which at T ¼ 0 can be written as

Πμν ¼ i
Z

d4xeiqxh0jT ½VμðxÞV†
νð0Þ�j0i

¼ ð−gμνq2 þ qμqνÞΠðq2Þ; (1)

whereVμ¼ð1=2Þ½∶ūðxÞγμuðxÞ−d̄ðxÞγμdðxÞ∶�isthe(electric-
charge neutral) conserved vector current in the chiral limit,
and qμ ¼ ðω;qÞ is the four-momentum carried by the
current. The function Πðq2Þ in perturbative QCD (pQCD)
is normalized as ImΠðq2Þ ¼ 1=ð8πÞ½1þOðαsðq2ÞÞ�.
Finite-energy QCDSR (FESR) rests on two pillars [14]:
(i) the operator product expansion (OPE) of current correla-
tors at short distances beyond perturbation theory, and
(ii) Cauchy’s theorem in the complex squared energy s plane,
which relates the (hadronic) discontinuity across the cut on
the real positive semiaxis with the integral around a contour
of radius js0j where the OPE is expected to be valid. The
latter is usually referred to as quark-hadron duality. This leads
to the FESR

ð−1ÞN−1C2NhO2Ni ¼ 8π2
�Z

s0

0

dssN−1 1

π
ImΠHADðsÞ

−
Z

s0

0

dssN−1 1

π
ImΠpQCDðsÞ

�
; (2)

where N ¼ 1; 2;…, and the leading-order vacuum conden-
sates in the chiral limit are the dimension d ¼ 4 gluon con-
densate C4hO4i ¼ ðπ=3ÞhαsG2i, and the dimension d ¼ 6
four-quark condensate, C6hO6i. The extension of the
QCDSR to finite temperature was proposed in Ref. [15]
and was justified in quantum field theory models in
Ref. [16]. The hadronic spectral function is well approxi-
mated by the Breit-Wigner form,

1

π
ImΠHAD

0 ðsÞ ¼ 1

π

1

f2ρ

M3
ρΓρ

ðs −M2
ρÞ2 þM2

ρΓ2
ρ
; (3)

where fρ, Mρ and Γρ are the ρ-meson leptonic decay con-
stant, mass and width, respectively. At finite T all hadronic
parameters become T dependent, and so do the conden-
sates. In the thermal perturbative QCD sector, only the
leading one-loop contributions can be taken into account,
since the problem of the appearance of two scales, i.e. the

short-distance QCD scale and the critical temperature Tc,
remains unsolved (QCDSR evolve from T ¼ 0 up to Tc,
i.e. a region where ordinary thermal perturbation theory is
not valid). At finite T and μ ¼ 0 the results of Ref. [13]
for the ρ-meson width and mass are

ΓρðTÞ ¼ Γρð0Þ½1 − ðT=TcÞ3�−1;
MρðTÞ ¼ Mρð0Þ½1 − ðT=T�

MÞ10�; (4)

withΓρð0Þ ¼ 0.145 GeV andMρð0Þ ¼ 0.776 GeV.The sol-
utions can be written as functions of the scaled
temperature T=Tc. Here we chose Tc ¼ 0.197 GeV. Also,
T�
M¼0.222GeV. The other quantities are C6hO6i¼C6hO6i

ð0Þ½1−ðT=T�
qÞ8�, s0ðTÞ ¼ s0ð0Þ½1 − 0.5667ðT=TcÞ11:38−

4.347ðT=TcÞ68:41�, C4hO4iðTÞ ¼ C4hO4ið0Þ½1 − 1.65
ðT=TcÞ8.73 þ 0.04967ðT=TcÞ0.72�, fρðTÞ ¼ fρð0Þ½1−
0.3901ðT=TcÞ10:75 þ 0.04155ðT=TcÞ1.27�, with s0ð0Þ ¼
1.7298GeV2, C4hO4ið0Þ ¼ 0.412561 GeV4, C6hO6ið0Þ ¼
−0.951667 GeV6, T�

q ¼ 0.187 GeV and fρð0Þ ¼ 5.
In order to extend this analysis to finite chemical poten-

tial we first incorporate the μ dependence into the second
term on the right-hand side of Eq. (2), which involves a
quark loop. This modifies the corresponding Fermi-Dirac
distribution, splitting it into particle-antiparticle contribu-
tions. Next, we incorporate the μ dependence of the critical
temperature Tc. For this, we resort to the findings in
Ref. [17] that provide, using a Schwinger-Dyson approach,
a parametrization for the crossover transition line between
chiral-symmetry-restored and -broken phases, valid for
small values of μ,

TcðμÞ ¼ Tcðμ ¼ 0Þ − 0.218μ − 0.139μ2: (5)

In order to solve the FESR we follow the procedure of
Ref. [13] and use as inputs the parameters s0ðT; μÞ,
fρðT; μÞ andC4hO4iðT; μÞ, together with Eq. (5), and obtain
MρðT; μÞ, ΓρðT; μÞ and C6hO6iðT; μÞ. For μ ¼ 0.03 GeV,
we find MρðT; μÞ ¼ Mρð0Þ½1 − 0.5597ðT=TcÞ12:18�,
ΓρðT; μÞ ¼ Γρð0Þ½1 − 1.0717ðT=TcÞ2.763�−1, fρðT; μÞ ¼
fρð0Þ½1 − 0.3901ðT=TcðμÞÞ10:75 þ 0.04155ÞðT=TcðμÞ1.27�.
Figure 1 showsMρðT; μÞ, ΓρðT; μÞ and fρðT; μÞ as func-

tions of T=Tc normalized to their values at T ¼ μ ¼ 0 for
μ ¼ 0 and μ ¼ 0.03 GeV (corresponding to a baryon
chemical potential μB ¼ 3μ ¼ 0.09 GeV).
With these solutions we proceed to compute the dimuon

thermal rate in the hadronic phase originating from ρ
decays. We consider processes where pions annihilate into
ρ’s which in turn decay into dimuons by means of vector
dominance. The rate is given by

dN
d4xd4K

¼ α2

48π4

�
1þ 2m2

M2

��
1 −

4m2
π

M2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

M2

r
E

× e−K0=TRðK; TÞ ImΠres
0 ðM2Þ; (6)
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where N is the number of muon pairs per unit of infini-
tesimal space-time and energy-momentum volume, with
xμ ¼ ðt;xÞ the space-time coordinate and Kμ ¼ ðK0;KÞ
(K ¼ jKj) the four-momentum of the muon pairs, α is
the electromagnetic coupling, m is the muon mass, mπ

is the pion mass, M is the dimuon invariant mass,
ImΠres

0 ðM2Þ is given by Eq. (3) and

R ¼ T=K

1 − e−K0=T

× ln

��
e−Emax=T − 1

e−Emin=T − 1

��
eEmin=T − e−K0=T

eEmax=T − e−K0=T

��
; (7)

with

Emax ¼
1

2
½K0 þ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=M2

q
�;

Emin ¼
1

2
½K0 − K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=M2

q
�: (8)

In order to integrate Eq. (6) we use

d4K ¼ 1

2
dM2d2K⊥dy; d4x ¼ τdτdηd2x⊥; (9)

where y and η are the momentum-space and coordinate-
space rapidities, respectively, and τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
. To relate

the temperature change to the time evolution of the system,
we neglect a possible small transverse expansion, assume
that it is entirely longitudinal, and use the cooling law

T ¼ T0

�
τ0
τ

�
v2s
; (10)

where v2s ¼ 1=3 is the square of the sound velocity for an
ideal hadron gas. The starting initial proper time is taken as
τ0 ¼ 5 fm with changes in this value amounting to a rescal-
ing of the distribution but not affecting its shape. The evo-
lution is taken down to a freeze-out temperature Tf. From
Eq. (10), a change in τ0 allows one to change the chosen
value of T0, or equivalently the value of Tc, and the shape
of the distribution is maintained provided the ratio Tf=T0 is

preserved. Also, we consider a perfect correlation between
η and y (η ¼ y). The invariant mass distribution becomes

dN
dMdy

¼ΔyM
Z

τf

τ0

τdτ
Z

d2K⊥
Z

d2x⊥
dN

d4xd4K
: (11)

Figure 2 shows examples of the invariant mass dimuon dis-
tribution dN=dMdy, normalized to the NA60 data around
the ρ peak. Figure 2(a) shows the invariant mass distribution
for μ ¼ 0, an initial temperature T0 ¼Tc ¼ 0.197GeV and
three freeze-out temperatures, Tf ¼ 0.05, 0.1, 0.15 GeV.
Notice that for a larger Tf the dominant effect is the broad-
ening of the ρ peak which can be traced back to the broad-
ening of Γ for temperatures closer to Tc. For a smaller
freeze-out temperature, and therefore a larger evolution
time, the ρ peak is more clearly visible since the cooler
the system, the more vacuum-like the ρ parameters become.
When the freeze-out temperature becomes even smaller, the
ρ peak becomes less prominent since the dominant effect
is the thermal phase-space factor which suppresses the
distribution for larger values of M, given that the average
temperature is smaller. In this sense, the distribution is also
sensitive to the value of vs and therefore, more generally, to
the equation of state. Figure 2(b) shows the invariant mass
distribution for Tf ¼ 0.1 GeV, μ ¼ 0 and three initial tem-
peratures T0 ¼ Tc, 0.9Tc, 0.8Tc. Notice that the smaller the
initial temperature, the flatter the distribution. This can once
again be understood as an effect due to the smaller average
temperature that suppresses the distribution for larger values
of M. Figure 2(c) shows the invariant mass distribution for
Tf ¼ 0.1 GeV, T0 ¼ Tc and three values of μ ¼ 0, 0.03,
0.07 GeV. Notice that the distribution shows a nontrivial
behavior with μ. For small μ the distribution is enhanced
at small values of M at the expense of being suppressed
for large values of M. However with increasing μ the dis-
tribution becomes a bit steeper at small M. This behavior
could be an interesting clue when applying these ideas to
describing the dimuon excess radiation at collider energies
where the baryon density is smaller.
Figure 3 shows the results for dN=dM compared to the

NA60 data around the ρ peak for T0 ¼ Tc ¼ 0.197 GeV,
Tf ¼ 0.1 GeV and for three values μ ¼ 0, 0.03, 0.07 GeV.
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FIG. 1 (color online). Temperature behavior of the ρ parameters for μ ¼ 0, 0.03 GeV: (a) Mρ, (b) Γρ and (c) fρ.
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The given values of μ are to be regarded here as average
values during the evolution of the collision. The theoretical
results provide a very a good description of the data around
the ρ peak.
The parameters used in the calculation are not unique;

however, we emphasize that an important quantity for the
shape of the distribution is the ratio T0=Tf, which in our
case is about a factor of 2. The shape of the distribution can
be preserved even if the above ratio changes by changing vs
which in turn implies a sensitivity to the equation of state.
We notice the threshold from twice the pion mass which is
due to the fact that the only process we are considering is
the pion annihilation channel into ρ’s that later decay into

dimuons. When the dimuon pair has an invariant mass
lower than twice the pion mass, this process cannot happen.
This indicates that for the description of the data at lower
and higher invariant masses, additional processes need to
be accounted for [5]. For instance, for lower invariant
masses, one needs to consider the scattering of pions
and ρ mesons. This process does not have a threshold.
Moreover if the scattering happens with off-shell ρ’s in
the initial state, then the temperature and density evolution
of the ρ parameters also becomes relevant. For higher
invariant masses other vector resonances as well as the
quark-gluon plasma contributions to the excess radiation
need to be considered. In addition, and at the ρ peak itself,
freeze-out and primordial ρ mesons, and a transverse
expansion could contribute to further shape the peak.
In conclusion, we have shown that the QCD FESR are a

powerful tool to compute the ρ-meson parameters at finite
temperature and chemical potential, thus providing a
complementary approach to many-body descriptions of
in-medium hadron properties. We have used these para-
meters to compute the dimuon-excess invariant mass dis-
tribution for temperatures and densities relevant to SPS
energies. The description is in very good agreement with
NA60 data in the region of the ρ peak. Further studies
including the effects of transverse expansion as well as
other contributions to the dimuon radiation near the ρ peak
are being prepared and will be reported elsewhere.
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FIG. 2 (color online). Invariant dimuon mass distribution for
different values of (a) Tf, (b) T0 and (c) μ.
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