
Proton-air collisions in a model of soft interactions at high energies

E. Gotsman,1 E. Levin,1,2 and U. Maor1

1Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science,
Tel Aviv University, Tel Aviv 69978, Israel
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We evaluate both the Pomeron interactions and the inelastic Gribov corrections to the Glauber-Gribov

formula, which is used to extract proton-proton cross sections from proton-air collisions at high energies.

We demonstrate that these corrections are compatible with the errors for proton-air cross sections

measured at ultrahigh energies in cosmic ray experiments. We present the results of a calculation of

these cross sections based on our model for the soft interactions at high energies, which provides a good

description of available accelerator data, including that for LHC energies.

DOI: 10.1103/PhysRevD.88.114027 PACS numbers: 13.85.�t, 13.85.Hd, 13.60.Hb, 11.55.�m

I. INTRODUCTION

The LHC data [1–4] provided two important lessons for
our understanding of soft interactions at high energy. In the
first, regrettably, none of the phenomenological models
based on the Reggeon approach [5–8] were able to predict
the data, in spite of having a number of fitting parameters.
In the second, a more encouraging one, the LHC data could
be fitted by choosing a new set of the parameters without
changes in the theoretical scheme of the models. The
natural question that arises is whether the new set of
parameters has any predictable power, or whether its life-
time is only until new measurements at higher energies
appear. In particular, we ask this question in relation to
our model and to our final set of fitting parameters
(see Ref. [9]). Our model has passed the first check: it is
able to describe the proton-proton inelastic and total cross
section at W ¼ 57 TeV that has been extracted from the
Pierre Auger Collaboration data on proton-air interactions
[10]. These data are (in parentheses we put the prediction
of our model [9])

�inel
pp ¼½92�7ðstatÞþ9

�11ðsystÞ�7ðGlauberÞmb�ð95:2mbÞ
�tot

pp ¼½133�13ðstatÞþ17
�20ðsystÞ�16ðGlauberÞmb�ð130mbÞ

(1.1)

Our goal in this paper is to compare our model directly
with the cosmic data on the proton-air interactions. We
re-visit the problem of hadron-nucleus interactions at
high energies. It is well known that the Glauber-Gribov
approach1 [11,12], where the total cross section of the
hadron-nucleus interaction is expressed through the inelastic

cross section of hadron-proton scattering, can only be
justified at rather low energies, where corrections due to
Pomeron interactions may be neglected. A more general
approach has been developed [13–16] in which the Pomeron
interactions have been taken into account in the energy
range for

gSAðbÞG3IPe
�IPY / gG3IPA

1=3e�IPY � 1;

gG3IPe
�IPY < 1; gG2

3IPe
�IPYe�IPY � 1;

(1.2)

where G3IP denotes the triple Pomeron coupling, g the
vertex of Pomeron nucleon interaction, and 1þ �IP the
Pomeron intercept. For the nuclear profile SAðbÞ we use
the general expression

SAðbÞ ¼
Z þ1

�1
dz�ðz; bÞ

Z
d2bSAðbÞ ¼ A; (1.3)

where �ðz; bÞ is the density of nucleons in a nucleus.
In this approach, to calculate the hadron-nucleus cross

sections, one needs to know the values of �IP, g, and G3IP.
In this paper we discuss the non-Glauber-type correc-

tions to the hadron-nucleus interaction. Our reanalysis of
the problem is based on two recent achievements.
First, the Auger Collaboration has published a measure-

ment of the proton-air total cross section at extremely high
energies (W ¼ 57 TeV) with sufficiently small errors
[�totðp-AirÞ ¼ 505� 22ðstatÞþ28

�36ðsystÞ mb [10]].

Second, a model for high energy hadron-hadron scatter-
ing has been proposed that successfully describes the LHC
data and that includes all the theoretical ingredients found
in QCD and N ¼ 4 supersymmetric Yang-Mills (SYM)
[5,9]. The latter allows us to calculate the non-Glauber
corrections and to estimate the influence of these correc-
tions on the value of the proton-air cross section at very
high energies.
In the next section we briefly review the main theoretical

formulas for hadron-nucleus interactions. In Sec. III we

1We add to the Glauber approach the name of Gribov, in
recognition of his interpretation of the Glauber formula in the
parton approach and the creation of a space-time picture of the
hadron-nucleus interaction, both of which are correct in QCD.
The problem of Gribov’s inelastic corrections will be discussed
below.
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calculate the proton-air cross section using our model, all
parameters of which have been determined by fits to the
proton-proton data. In this section we estimate the difference
between the Glauber-Gribov approach, and the alternative
approach that includes the Pomeron interactions. In the
conclusions we summarize our results.

II. HADRON-NUCLEUS COLLISIONS

A. Pomeron field theory: general approach,
based on N ¼ 4 SYM and QCD

Models describing soft interactions at high energy
(see for example Refs. [5–8]) use Pomeron field theory
(PFT) in slightly different forms. Our approach to PFT
acquires a simple form when written in the framework of a
functional integral:

Z½�;�þ� ¼
Z

D�D�þeS with S ¼ S0 þ SI þ SE;

(2.1)

where

S0 ¼
Z

dY�þðYÞ
�
� d

dY
þ �IP

�
�ðYÞ (2.2)

describes the free Pomeron with an intercept �IP and with
�0
IP ¼ 0. Both in QCD [17] and in N ¼ 4 SYM [18,19] we

expect that�IP should be rather large (�IP ¼ 0:2–0:3) and
�0
IP ¼ 0. These two features of the above theoretical ap-

proaches have been included in Eq. (2.2). SI characterizes
the interaction between Pomerons and takes the form

SI ¼ G3IP

Z
dYf�ðYÞ�þðYÞ�þðYÞ þ H:c:g: (2.3)

Note we only take into account the triple Pomeron inter-
action. Such a form provides a natural matching with the
perturbative QCD approach [20] and the Balitsky-Fadin-
Kuraev-Lipatov Pomeron calculus [21]. We will specify
SE, which is responsible for the interaction with the
target and projectile considering two processes: proton-
proton and proton-nucleus interactions. The PFT with
the action given by Eqs. (2.2) and (2.3) has been solved
(see Refs. [22,23]) for arbitrary SE.

B. Proton-proton interaction

1. SE for hadron-hadron collisions

We need to incorporate in our procedure a sufficiently
large Good-Walker [24] component, which is required for
describing diffraction in low masses, and which follows
from the N ¼ 4 SYM approach [19]. We develop a two
channel model that takes into account the Good-Walker
mechanism, and in which the observed physical hadronic
and diffractive states are written in the form

c h ¼ ��1 þ ��2; c D ¼ ���1 þ ��2; (2.4)

where �2 þ �2 ¼ 1. Note that Good-Walker diffraction is
presented by a single wave function c D. Wave functions
�1 and �2 diagonalize the interaction matrix, which has
the form

Ai0;k0
i;k ¼ h�i�kjTj�i0�k0 i ¼ Ai;k�i;i0�k;k0 : (2.5)

The unitarity constraints can be written

ImAi;kðs; bÞ ¼ jAi;kðs; bÞj2 þGin
i;kðs; bÞ; (2.6)

whereGin
i;kðs; bÞ is the probability for all inelastic processes

induced by the initial ði; kÞ states.
Bearing in mind Eq. (2.4) we can write SE in the form

SE ¼ �
Z

dY0d2b
X2
i¼1

f�ðY0ÞgðiÞðbÞ�ðY0 � 0Þ

þ�ðY0ÞgðiÞðbÞ�ðY � Y0Þg; (2.7)

where gðiÞ denotes the vertex of the Pomeron interaction
with the state i, which is described by the wave function
either �1 or �2. Y

0 ¼ 0 (Y0 ¼ Y) indicate, respectively,
the position of the target and projectile in rapidity, and b

the impact parameter. We parametrize gðiÞðbÞ as

gðiÞðbÞ ¼ gðiÞSðbÞ ¼ gðiÞ

4�
m3

i bK1ðmibÞ; (2.8)

where SðbÞ is the Fourier transform of the dipole formula
for the form factor 1=ð1þ q2=m2

i Þ2. K1ðzÞ is the modified
Bessel function of the second kind, the McDonald function
[see Ref. [25] formula (8.4)].

2. Small parameters and selection of the
Pomeron diagrams

Using Eqs. (2.1), (2.2), (2.3), and (2.7) we can find
expressions for all experimental observables for the
proton-proton interaction.2 However, we simplify the
problem by defining a new small parameter, viz.,

Q ¼ �2s�IP � 1; while H ¼ gðiÞG3IPs
�IP � 1 (2.9)

in the process of fitting the experimental data. In Table I we
display the values of the parameters in our model and
check that Eq. (2.9) is satisfied for any reasonable energy.
In Eq. (2.9) �2 ¼ R

G2
3IPðkT;1 ¼ 0; kT; kTÞd2kT , where kT;i

are transverse momenta of three Pomerons. The main
contributions, which are proportional to Hn, stem from
the ‘‘net’’ diagrams of Fig. 1(a). The small parameter Q
comes from the diagram of Fig. 1(b) and describes the
interaction between two Pomerons that are not attached
to the proton or the Pomeron loop diagrams [see two
examples in Fig. 1(b)].

2We need to introduce additional phenomenological parame-
ters to describe the main characteristics of the inelastic pro-
cesses, which take into account the hadronization stage, in terms
of the microscopic approach based on QCD.
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In our model we sum all diagrams proportional to Hn,
where n is the number of the triple Pomeron vertices.
We do this summation using the Mueller-Patel-Salam-
Iancu (MPSI) approximation [26], which was adapted to
our problem in Ref. [5]. We do not discuss this approxi-
mation here; Fig. 2 illustrates its main features. It shows a
typical net diagram. Integration over rapidities Y0 and Y00
leads to many contributions of this diagram, and in the
MPSI approximation we only consider that contribution
that is proportional to e3�IPY , neglecting all other terms
that have at least one factor e�IPY less. Since �IP is large
in our model, the MPSI approximation provides sufficient
accuracy for our calculations.

3. Scattering amplitudes and experimental
observables

In the model we introduce the amplitudes

Ai;kðs; bÞ ¼ i

�
1� exp

�
��i;kðs; bÞ

2

��
;

Gin
i;k ¼ 1� exp ð��i;kðs; bÞÞ;

(2.10)

which satisfy the unitarity constraints of Eq. (2.6).
Summing the net diagrams we obtain

�i;kðY;bÞ¼
Z
d2b0

gðiÞð ~b0ÞgðkÞð ~b� ~b0Þe�IPY

1þG3IPe
�IPY½gðiÞð ~b0ÞþgðkÞð ~b� ~b0Þ� :

(2.11)

We include the summation of the enhanced diagrams
(see Fig. 3) in addition to the net diagrams. These diagrams
sum contributions proportional to the small parameter Qn

and change the intercept of the soft Pomeron. We use them
to control the accuracy of our calculations.

The summation of the enhanced diagrams in the MPSI
approximation results in a new Pomeron propagator that
replaces e�IPY in Eq. (2.11).

e�IPY ! GenhðYÞ
¼ 1

�

�
1� exp

�
1

TðYÞ
�

1

TðYÞ�
�
0;

1

TðYÞ
��
: (2.12)

�ð0; xÞ is the incomplete Gamma function [see (8.350)–
(8.359) in Ref. [25]], and TðYÞ is given by

TðYÞ ¼ �e�IPY: (2.13)

Finally, the amplitudes for proton-proton scattering can be
calculated in terms of the amplitude AikðbÞ as follows:
elastic amplitude: aelðbÞ¼ ð�4A1;1þ2�2�2A1;2þ�4A2;2Þ;

(2.14)

G-W single diffraction: a2sdðbÞ
¼ 2j��f��2A1;1 þ ð�2 � �2ÞA1;2 þ �2A2;2gj2;

(2.15)

G-W double diffraction: a2ddðbÞ
¼ �4�4jA1;1 � 2A1;2 þ A2;2j2: (2.16)

4. Description of the experimental data

At the end of this section we will discuss the experi-
mental data that we are able to describe using our
model. First, we obtain a good fit of all soft cross
section data: �tot, �el, �sd, and �dd in the wide range
of energy from W ¼ 20 GeV to 7 TeV [9]. We are also

(a) (b)

FIG. 1 (color online). The set of diagrams that contribute to the scattering amplitude of proton-proton scattering in the kinematic
region given by Eq. (2.9). (a) The net diagrams that are proportional to Hn. (b) Two examples of the diagrams that are proportional to
an additional power of the small parameter Q. The figure that is proportional to an extra Q2 was neglected. The wavy lines denote the
soft Pomerons. The black circles denote gðiÞ, while the gray circles describe the triple Pomeron vertices.

TABLE I. Fitted parameters for our model. The quality of the fit is �2=d:o:f: ¼ 0:86.

�IP � �0
IP (GeV�2) g1 (GeV�1) g2 (GeV�1) m1 (GeV) m2(GeV) � G3IP (GeV�1) ~g (GeV�1)

0.23 0.46 0.028 1.89 61.99 5.045 1.71 0.0045 0.03 14.6
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able to reproduce d�el=dt for t < 0:5 GeV2, as well as
the elastic slope [9]. We found that our model reprodu-
ces experimental behavior of dN=d	 [27]. In our recent
paper we describe the multiplicity distribution at
W ¼ 7 TeV [28]. Hence, we conclude that our model
successfully describes all available accelerator data.
To satisfy the request of our referee, we have included
Fig. 4, which appeared in our paper [9], and which
displays a comparison of our predictions and the corre-
sponding experimental data.

C. Hadron-nucleus interaction

1. SE for hadron-nucleus scattering

Using Eq. (2.7) and neglecting the correlations between
nucleons in a nucleus, the SE term can be written in the
form

SE ¼ �
Z

dY0d2b
X2
i¼1

f�ðY0ÞgðiÞðbÞ�ðY � Y0Þ þ�ðY0Þ

�
Z

d2b0gðiÞð ~b� ~b0ÞSAðb0Þ�ðY0 � 0Þg: (2.17)

The last term is well known, and we refer the reader to
Refs. [21,29], which, as far as we know, are the most recent
papers where this derivation has been based on Feynman

diagrams. For heavy nuclei j ~b� ~b0j � RA and the second
term in Eq. (2.17) can be replaced by

�ðY0Þ
Z

d2b0gðiÞð ~b� ~b0ÞSAðb0Þ ���!j ~b� ~b0j�RA
�ðY0ÞgðiÞSAðbÞ:

(2.18)

However, in the case of air, the radii of nitrogen and
oxygen are not very large, and we cannot neglect the b0
dependence.3

2. Glauber-Gribov formula

When discussing the hadron-nucleus interaction we
always start with the Glauber-Gribov formula, which
sums the diagrams of Fig. 5 and takes the following form:

�hA
in ¼

Z
d2b

�
1� exp

�
�
Z

d2b0f2 Imaelðs; ~b� ~b0Þ

� jaelðs; ~b� ~b0Þj2gSAðb0Þ
��
: (2.19)

This formula can be proven just by direct summation of the
diagrams in Fig. 5(a). In the case when the wave function
of the proton diagonalizes the interaction matrix [� ¼ 1,
� ¼ 0 in Eq. (2.4)] the term in f� � �g of Eq. (2.19) gives
Ginðs; bÞ for the hadron-proton interaction. In the case of
Eq. (2.18) the Glauber-Gribov formula takes the familiar
form

�hA
in ¼

Z
d2bð1� exp ð��in

ppSAðbÞÞÞ: (2.20)

3. Gribov’s inelastic corrections

Gribov’s inelastic corrections [12] to Eq. (2.19) stem
from processes of diffraction dissociation in hadron-proton
scattering. In our approach we introduce a two channel
model to describe the Good-Walker mechanism of the low
mass diffraction. In the framework of this mechanism,
taking into account Gribov’s inelastic corrections, reduces
to the summation of the same diagrams as in Fig. 5, and has
been considered in Sec. II C 1, here the interaction with the
nucleons in the nucleus has a more complicated form. The
result is

�hA
in ¼

Z
d2b

�
1� exp

�
�
Z

d2b0f2 Imaelðs; ~b� ~b0Þ

� jaelðs; ~b� ~b0Þj2 � a2sdðs; ~b� ~b0Þ
� a2ddðs; ~b� ~b0ÞgSAðb0Þ

��
: (2.21)

Substituting Eqs. (2.14), (2.15), and (2.16) into this equa-
tion we obtain, using the unitarity constraints of Eq. (2.6),
that

f� � �g ¼ �4Gin
1;1 þ 2�2�2Gin

1;2 þ �4Gin
2;2; (2.22)

Y

Y’

Y’’

0

+ O(e    )

FIG. 2. The first net diagram in the MPSI approximation for
proton-proton scattering.

Y

Y’

0

FIG. 3 (color online). The set of enhanced diagrams for the
soft Pomeron.

3We thank our referee, who pointed out that this correction
could be rather large, especially at high energies, due to the
shrinkage of the diffraction peak.
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FIG. 4 (color online). The energy behavior of the total (a), elastic (b), single diffraction (c), double diffraction (d), and inelastic
(f) cross sections and elastic slope (e), compared with experimental data. The solid lines show the results of our present fit. The data
have been taken from Ref. [36] for energies less than the LHC energy. At the LHC energy for total and elastic cross sections we use
TOTEM data [4], and for single and double diffraction cross sections are taken from Ref. [1].

A

p

A

b’
b

b − b’

− + −  ...

(a) (b)

FIG. 5 (color online). The Glauber-Gribov formula for the hadron-nucleus interaction. (a) Blobs denote nucleon-nucleon inter-
actions, while solid lines correspond to nucleons in the nucleus. (b) The open circles represent the nucleus while the filled circles
denote the nucleons.
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which is the amplitude of the inelastic interaction for
the incoming proton [see Eq. (2.14) for comparison].
Using Eqs. (2.18) and (2.21) reduces to the Glauber-
Gribov formulawith one difference: instead of�in ¼ �tot�
�el in the formula we have �in ¼ �tot � �el � �dif , where
�dif ¼ 2�GW

sd þ �GW
dd , as was advocated in Ref. [30,31].

Note, that the low mass of both single and double diffrac-
tions enters Eq. (2.21).

We wish to emphasize that Eq. (2.21) sums all diagrams,
given by Fig. 5, which are related to Gribov’s inelastic
corrections. However, there exist other corrections that are
shown in Fig. 6. In the next section we sum these correc-
tions for the large produced masses (M, M1, and M2 in
Fig. 6), and this summation leads to Eq. (2.24). We have
neglected the contributions with small masses that corre-
spond to the Good-Walker mechanism. The reasons for this
are the following. First, the contamination of the proton
wave function by the diffractive state is small in our model
(�2 ¼ 0:21). Second, we have natural small parameters,
1
2�sd=�el and �dd=�el, where �sd, �dd, and �dd denote the

single, double diffractive, and elastic cross sections for
proton-proton collisions. For W ¼ 57 TeV the ratios are
equal to 0.17 and 0.23, respectively. We note that the ratio
of the contributions of the diagram Fig. 6(b) to the diagram
Fig. 6(a) is equal to 1

2�sd=�el. Third, the difference be-

tween Eqs. (2.19) and (2.21) turns out to be rather small
(see Figs. 10 and 11 below) for the inelastic hadron-
nucleus collisions. However, for the total cross sections
the difference is more pronounced and the neglected cor-
rections could be important. The method for calculating
them is known (see Ref. [31]), and we intend to reevaluate
our estimates for the total cross sections when the data at
high energies become available.

At this point of our presentation, we wish to emphasize
that the goal of this paper is neither to discuss the most
general formula for hadron-nucleus collision in the frame-
work of the Pomeron calculus nor to estimate the corrections
to the Pomeron calculus, but to check whether our set of
the phenomenological parameters can provide a reasonable
description of the experimental data at ultrahigh energies.

4. Inelastic corrections due to Pomeron interaction

The Glauber-Gribov formula, even with Gribov’s inelas-
tic corrections, describes the hadron-nucleus interactions
only, if we neglect the triple Pomeron interaction, i.e.,
considering SI of Eq. (2.3) equal to zero. In general, we
cannot solve the problem, but in the kinematic region of
Eq. (1.2), the hadron-nucleus scattering amplitude can be
written in an eikonal form in which the opacity � is given
by sum of the ‘‘fan’’ diagrams [13,15,16,32] [see Fig. 7(b)].
The scattering amplitude can be written in the form

AhAðY; bÞ ¼ i

�
1� exp

�
��hAðY; bÞ

2

��
; (2.23)

where � sums all h� A irreducible diagrams.
In the region of Eq. (1.2) all diagrams proportional to

ðgSAðbÞG3IPe
�IPYÞn, where n is the number of the triple

Pomeron vertices, are shown in Fig. 7(b). Their sum takes
the form (see Ref. [16] for details)

�hAðY;bÞ

¼
Z
d2b0d2b00

ghðb0Þ~gðb00ÞGenhðYÞSAð ~b� ~b0 � ~b00Þ
1þR

d2b̂ ~gð ~̂bÞG3IPGenhðYÞSAð ~b� ~b0 � ~̂bÞ
;

(2.24)

A

p

+ −  ...−

M

−

(a) (b)

M M1 2

FIG. 6. The inelastic corrections to the Glauber-Gribov formula for the hadron-nucleus interaction. Blobs denote nucleon-nucleon
interactions, while solid lines represent nucleons.

A
g2

g1

h

A

h

hA

(a)

g2

g1

(b) (c)

g2

g1

FIG. 7 (color online). The set of diagrams that contributes to the scattering amplitude of hadron-nucleus scattering in the kinematic
region given by Eq. (1.2). (b) The hadron-nucleus irreducible diagrams while the general case is shown in (a). (c) The correction to the
value of �. The vertical dashed lines indicate the hadron-nucleus states. The wavy lines denote the soft Pomerons.
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where ~gðbÞ ¼ �2gð1ÞðbÞ þ �2gð2ÞðbÞ. The integral ~g ¼R
d2b~gðbÞ is shown in Table I.
For diagrams of Fig. 7, GenhðYÞ is the Green’s function

of the Pomeron exchange, which is equal to

GenhðYÞ ¼ e�IPY: (2.25)

In Fig. 7(c) the correction to the main contribution is
plotted, in which one of ðgSAðbÞG3IPe

�IPYÞ is replaced
by ðgG3IPe

�IPYÞ. Using the MPSI approximation that has
been adapted to our model in Ref. [5], we calculate �1

[Fig. 7(c)] and �2 [Fig. 7(b)]. We obtain

�1

�2

¼ gG3IPGenhðYÞ
ð1þ gG3IPGenhðYÞSAðÞÞ2b

� 1: (2.26)

Indeed, at low energy where gG3IPGenhðYÞSAð ~bÞ< 1 this
ratio is of the order of 1=SAðbÞ< 1. For high energy it
decreases as e��IPY .

Aword of caution should be added here, since Eq. (2.26)
is derived in the kinematic region of Eq. (1.2), this equation
does not describe the contribution at very large impact
parameters b 	 RA where SAðbÞ � 1 and Eq. (1.2) cannot
be applied here. However, we believe that this region is not
responsible for the main contribution for the inelastic
hadron-nucleus collision.

From Eqs. (2.23) and (2.24), we have

�hA
tot ¼ 2

Z
d2b

�
1� exp

�
��hAðY; bÞ

2

��
;

�hA
el ¼

Z
d2b

�
1� exp

�
��hAðY; bÞ

2

��
2
;

�hA
in ¼

Z
d2bð1� exp ð��hAðY; bÞÞÞ:

(2.27)

The processes of diffractive production have been
discussed in Refs. [15,32].

5. Pomeron interaction and realistic
proton-proton interaction

In Sec. C-4 we took into account the Pomeron interac-
tion in the kinematic region of Eq. (1.2). In this section
we develop an approximation in which we treat the

proton-proton scattering using different small parameters,
as has been discussed in Sec. II. The general equation for
the opacity �hAðY;bÞ is displayed in Fig. 8, and the blob
denotes the proton-proton amplitude in our approach:
Good-Walker mechanismþ net Pomeron diagrams. The
interaction with the nucleons of the nuclei is still deter-
mined by large parameters of Eq. (1.2) and has a simple
form of the fan diagrams. Because of the simple form of
our action [see Eqs. (2.1), (2.2), (2.3), and (2.17)] we can
sum all diagrams in Fig. 8. Indeed, due to the fact that
�0
IP ¼ 0 and G3IP does not depend on the impact parame-

ter, the interaction shown in Fig. 8 does not interfere with
the structure of the diagram for proton-proton scattering
and can be written in a factorizable form. A simple calcu-
lation in this spirit has been discussed in Ref. [16] and leads
to the following expression for the opacity �hAðY;bÞ:

�hAðY; bÞ ¼
Z

d2b0AppðY; ~b� ~b0ÞSAðY; ~b0Þ; (2.28)

SAðY; ~b0Þ ¼ SAð ~b0Þ
1þ R

d2b̂ ~gð ~̂bÞG3IPGenhðYÞSAð ~b0 � ~̂bÞ
:

(2.29)

The final formula that includes both the Good-Walker
mechanism of low mass diffraction production and the
enhanced Pomeron diagrams is

�inðpþ A;YÞ ¼
Z

d2b

�
1� exp

�
�
�
2 ImaelppðY; ~b� ~b0ÞSAðY; ~b0Þ � ½�elðY; ~b� ~b0Þ þ �diffðY; ~b� ~b0Þ�S

2
AðY; ~b0Þ
SAð ~b0Þ

���
;

�elðY; ~b� ~b0Þ þ �diffðY; ~b� ~b0Þ ¼ jaelppðY; ~b� ~b0Þj2 þ jasdppðY; ~b� ~b0Þj2 þ jaddppðY; ~b� ~b0Þj2: (2.30)

6. A simple model

We consider the simplest model for proton-proton interac-
tion, in which elastic and diffraction processes are taken into
account (see Fig. 9), and which illustrates the main ingre-
dients of our approach. In this model the main contribution
stems from single Pomeron exchange. The contribution to

�in ¼ 2�tot � �el � �diff is shown in Fig. 9(a). The
Pomeron interaction [see Fig. 9(c)] is given by Eq. (2.30).

III. COMPARISON WITH THE EXPERIMENT

Before comparing with the experimental results, we
would like to draw the reader’s attention to the fact that

hA

(a) (b)

− Y’

Y

FIG. 8 (color online). The set of diagrams for � with realistic
proton-proton interaction, including the Pomeron interactions in
the kinematic region given by Eq. (1.2).Wavy lines denote the soft
Pomerons, and black circles correspond to Pomeron-nucleon ver-
tices. Blobs denote nucleon-nucleon interactions, solid lines cor-
respond to nucleons.Grey circles denote triple Pomeroncouplings.
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some of the experimental results shown might be
overestimated, due to the possibility of the air showers being
created by helium nuclei, as well as protons. The importance
of this phenomena has been investigated by Block [33] and
the Pierre Auger Collaboration [10]. We refer the reader to
these references for further details. In the paper of the Pierre
Auger Collaboration, a possible contamination of 25% of
helium was assumed, which produces an uncertainty of
about 30 mb (which is less than 10% of their final result),
and is included in their systematic error.

The results of our calculations are shown in Fig. 10. For
our calculations we used the parameters of our model,
presented in Table I. For the scattering with air we use
SAirðbÞ ¼ 0:78SNgðbÞ þ 0:22SOðbÞ where Ng and O de-

note nitrogen and oxygen, respectively. For both these
nuclei we used the harmonic oscillator parametrization,
following Ref. [34].

Two conclusions follow from the results of our calcu-
lations. First, all formulas, including the Glauber-Gribov
one, give good agreement with the experimental data. This
agreement improves (at least does not deteriorate) at ultra-
high energies beyond the accelerator region (W > 8 TeV).
Second, the inelastic Gribov corrections (in Fig. 10 the

curve with G3IP ¼ 0) decrease the value of the inelastic
p-air cross section by 7%–10%, which are within the
experimental errors. The corrections due to the Pomeron
interaction turn out to be negligibly small (see our model
curve in Fig. 10). Wewould like to stress that our model [5]
gives a smaller contribution for Pomeron interactions when
compared to other attempts to describe the LHC data [7,8].
We also calculate the total and inelastic cross sections

for proton-lead interaction at high energy, to check whether
the corrections due to Pomeron interactions are visible in
the collisions with heavy nuclei. For a heavy nucleus
such as lead we can use Eq. (2.18), and our prediction
will not depend on the details of b distribution for the

 proton - lead

W(TeV)

 Our model

 Our model with G3P = 0

G-G fornula(G3P = 0; σdif  = 0)

σin(b)

σtot(b)

1.75

2
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2.5
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3
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4
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FIG. 11 (color online). Our model predictions for proton-lead
cross sections. In this figure � is in barns while W is in TeV.

σin(p  - Air)(mb)

W(TeV)

 Our model
 Our model with G3P  = 0
G-G fornula(G3P = 0; σdif  = 0)

ARGO-YBJ

Auger
AGASA Fly′s-eye

Knurenko et al.
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FIG. 10 (color online). Comparison of the calculated energy
dependence of the total cross section for proton-air interactions
with the high energy experimental data. Data are taken from
Refs. [37–41].plab ¼ W2=ð2mÞwherem denotes the protonmass.

  = 22in

tot el sd sd dd

 = +

NA

(c)

(a)

(b)

FIG. 9. Proton-nucleus interaction (c) in the simple model of (a) and (b). The thick arrows denote the exited states.
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proton-proton scattering. We employ the Wood-Saxon
parametrization for SAðbÞ

SAðbÞ ¼
Z 1

�1
dz

�0

1þ exp

� ffiffiffiffiffiffiffiffiffiffi
z2þb2

p
�RA

h

� : (3.1)

Figure 11 shows our predictions for the total and
inelastic cross sections for the proton-lead interaction at
high energy. For heavy nuclei the difference between our
approach and the Glauber-Gribov formula is not large,
reaching about 11% for the total and 5% for the inelastic
cross sections. It is instructive to note that the inelastic
cross section for heavy nuclei is not sensitive to Pomeron
interactions, and the major difference from the Glauber-
Gribov formula stems from the Good-Walker mechanism
for low mass diffraction in proton-proton collisions.
However, all three contributions influence the value and
energy behavior of the total cross sections.

IV. CONCLUSIONS

In this paper we show that the set of parameters (see
Table I) that describes the proton-proton interaction for the

energy range W ¼ 20 GeV–8 TeV provides a good
description of the values and energy dependence of p-air
cross sections at ultrahigh energies (W > 1 TeV). This
supports our hypothesis that this set of parameters can be
useful for predicting soft observables at high energies.
We found that both Gribov’s inelastic corrections and

Pomeron interactions lead to contributions that are in the
range of present experimental errors. Our estimates show
that the measurement of the total cross section for the
interaction of a proton with heavy nuclei can be useful
in the extraction of the different contributions of the
non-Glauber type.
In the paper we did not discuss the correlation between

nucleons in the nucleus, which we neglected in the
Glauber-Gribov approach [35]. These correlations can
give a considerable contribution, but they are beyond the
scope of this paper.
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