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In the present work we investigate the three-body systems of �K �K and �0K �K, by taking the fixed center

approximation to Faddeev equations. We find a clear and stable resonance structure around 1490 MeV in

the squared �K �K scattering amplitude, which is not sensitive to the renormalization parameters.

Conversely, we get only an enhancement effect of the threshold in the �0K �K amplitude that indicates

the difficulty to bind the �0K �K system as a consequence of the �0K interaction being weaker than the �K

one. We associate the �K �K state found to the �ð1475Þ.
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I. INTRODUCTION

Understanding the nature and structure of hadronic
resonances is a main topic in high-energy physics, which
attracts the attention of both theory and experiment. With
the advent of quantum chromodynamics (QCD) and the
standard model, modern hadron physics is developing
fast. The traditional picture for the internal structure of
hadrons is that a meson is made of q �q and a baryon of
qqq, and quark models describe them well. On the other
hand, with the development of the experiments, some states
have been found experimentallywhose properties cannot be
explained by the standard way andmay be of more complex
structures, like tetraquarks and hybrids including possible
glueballs for mesons, pentaquarks and heptaquarks for
the baryons, or molecular states (see recent reviews in
Refs. [1,2]). For the low-energy region where the abnormal
states showed up, nonperturbativeQCD should be explored,
such as lattice QCD [3–6], QCD sum rule [7–10], effective
field theory [11–13], Dyson-Schwinger equations [14–16],
the chiral quark model [17,18], the chiral unitary approach
[19–23], and so on. Chiral dynamics for meson-meson
and meson-baryon interaction has played an important
role in understanding the nature and structure of
hadronic resonances, and it has shown that many known
resonances are generated dynamically as a natural conse-
quence of the hadron-hadron interaction, much as the
deuteron appears as a simple bound state of a proton
and a neutron.

Following the spirit of the approach of Refs. [19,24], in
Ref. [25] the kernel of the interaction (potential) of pseu-
doscalar mesons was evaluated starting from the chiral
Lagrangians [26–30], and then, implementing unitarity
in coupled channels, the scalar meson resonances �
[or f0ð500Þ], f0ð980Þ, a0ð980Þ were dynamically pro-
duced, with phase shifts, inelasticities, mass distributions of
given channels consistent with the experimental data (the

consistency of the results with QCD sum rules can be
seen in Refs. [31,32]). Along the same lines, the unitarity
approach with the coupled channels explains success-
fully both the experimental data for the light scalar mesons
[25,33,34] (such asa0ð980Þ,f0ð980Þ,�, and� [orK�ð800Þ])
and the light baryons [21,24,35–39], two �ð1405Þ,
�ð1670Þ, N�ð1535Þ, �ð1620Þ, etc. Extrapolation of this
dynamics to the charm sector has also produced many
meson states, as the D�

s0ð2317Þ, D�
0ð2400Þ, Xð3700Þ,

Xð3872Þ, etc. [40–44], as well as baryon states like the
�cð2595Þ [45–47]. More work on the K� interaction is
done in Refs. [48–50], where starting from the chiral
Lagrangian and taking into account unitarity, the S-wave
K� elastic scattering amplitude is evaluated and good
agreement with the experimental phase shifts is obtained.
In addition, the scalar resonance � is generated dynami-
cally, which is also seen in the final state interaction in some
reactions [51].
The three-body interaction is another subject in the had-

ron physics that is also drawing much attention for a long
time [52–56]. Combining the three-body Faddeev equations
with chiral dynamics, Ref. [57] has reported several S-wave
JP ¼ 1

2
þ resonances that qualify as two meson-one baryon

molecular states. This combination of Faddeev equations
and chiral dynamics produces results consistent with QCD
sum rules in the investigation of the DK �K system in the
work of Ref. [58]. On the other hand, by taking the fixed
center approximation (FCA) [53,59–63] to Faddeev equa-
tions, several multi-�ð770Þ states are dynamically produced
in Ref. [64], in which the resonances f2ð1270Þð2þþÞ,
�3ð1690Þð3��Þ, f4ð2050Þð4þþÞ, �5ð2350Þð5��Þ, and
f6ð2510Þð6þþÞ are theoretically found as basically mole-
cules of an increasing number of �ð770Þ particles with
parallel spins. Analogously, in Ref. [65], the resonances
K�

2ð1430Þ, K�
3ð1780Þ, K�

4ð2045Þ, K�
5ð2380Þ and a new K�

6

could be explained as molecules with the components of an
increasing number of�ð770Þ and oneK�ð892Þmeson. In the
same direction, the work of Ref. [66] predicts several
charmed resonances, D�

3, D
�
4, D

�
5 and D�
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approach, the �1
2
þð2000Þ puzzle is solved in Ref. [67] in the

study of the �� ð��Þ interaction. The FCA to Faddeev
equations is technically simple, and allows one to deal with
three-body hadron interactions that would be otherwise
rather cumbersome [68–71]. As discussed in Ref. [69], this
method is accurate when dealing with bound states, and gets
consistent results with the full Faddeev equation evaluation
without taking FCA [72], or a variational calculation with a
nonrelativistic three-body potential model [73] (more dis-
cussions can be seen in Ref. [74]). One should also know the
limits of the applicability of the FCA, and one should avoid
the case in which the states have enough energy to excite its
components in intermediate states [75], which is the case
of resonances above threshold. Recently, the results of the
FCA to Faddeev equations have been confirmed by the
variational method approach with the effective one-channel
Hamiltonian in Ref. [76], which uses the two methods to
study the DNN system and predicts a narrow quasibound
state with the mass of about 3500 MeV.

In our present work we will use the FCA to Faddeev
equations to investigate the �K �K and �0K �K systems.
When studied in S wave, provided the strength of the
interaction allows for it, these systems could give rise to
� states. There are many � excited states, the lowest ones
the �ð1295Þ, �ð1405Þ and �ð1475Þ. Since we do not want
states too far from threshold, the �ð1475Þ could be in
principle a candidate for the �K �K system. For the �0K �K
system we would have to look for an � state around
1930 MeV. There are two � states around this energy in
the Particle Data Group (PDG) [77], the �ð1760Þ and the
�ð2225Þ, both far away from the �0K �K threshold mass.
There is a peak seen at 1870 MeV in the J=c ! ��þ��

in Ref. [78], but its quantum numbers are not well deter-
mined. Similarly, there is another peak seen in the J=c !
�0�þ�� reaction that peaks around 1836 MeV [Xð1835Þ],
with a large width of about 190MeV [79]. We shall explore
the possibility that the �0K �K could be responsible for any
of such states, although we anticipate that the interaction is
too weak to lead to such strongly bound systems.
The �K �K and �0K �K systems have been investigated

before in Ref. [80], following the lines of Ref. [81], where
it was concluded that the �K �K system could be the�ð1475Þ
resonance, and the�0K �K theXð1835Þ. Yet, inRef. [75] itwas
discussed that themethod ofRef. [81] contains some element
of uncertainty which makes it most opportune to perform
calculations with a different method and contrast the predic-
tions. Certainly, there are also other options for these reso-
nances using quark models and other approaches and a
detailed discussion on it can be found in the Introduction of
Ref. [80]. In the present paper we will explore the possible
molecular structure of these three-body systems.

II. MULTIBODY INTERACTION FORMALISM

The Faddeev equations under the FCA are an effective
tool to deal with multihadron interaction [59–71]. They are
particularly suited to study systems in which a pair of
particles cluster together and the cluster is not much modi-
fied by the third particle. The FCA to Faddeev equations
assumes a pair of particles (1 and 2) forming a cluster.
Then particle 3 interacts with the components of the clus-
ter, undergoing all possible multiple scattering with those
components. This is depicted in Fig. 1. With this basic
idea of the FCA, we can write the Faddeev equations

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Diagrammatic representation of the FCA to Faddeev equations.
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easily. For this one defines two partition functions T1 and
T2, which sum all diagrams of the series of Fig. 1 that begin
with the interaction of particle 3 with particle 1 of the
cluster (T1), or with the particle 2 (T2). The equations then
read

T1 ¼ t1 þ t1G0T2; (1)

T2 ¼ t2 þ t2G0T1; (2)

T ¼ T1 þ T2; (3)

where T is the total three-body scattering amplitude that
we are looking for. The amplitudes t1 and t2 represent the
unitary scattering amplitudes with coupled channels for the
interactions of particle 3 with particle 1 and 2, respectively.
And G0 is the propagator of particle 3 between the com-
ponents of the two-body system. In our case we will take
the K �K forming a cluster of the f0ð980Þ (we shall discuss
the a0ð980Þ also), as appears in the chiral unitary approach
[25,82–85] and the � or �0 will be the particle 3.

For the unitary amplitudes corresponding to single-
scattering contribution, one must take into account the
isospin structure of the cluster and write the t1 and t2
amplitudes in terms of the isospin amplitudes of the (3,1)
and (3,2) systems. But this is trivial in the present case
since the �, �0 have I ¼ 0 and hence the �K, �0K are in
I ¼ 1=2. Besides, because of the normalization of Mandl
and Shaw [86], which has different weight factors for the
particle fields, we must take into account how these factors
appear in the single scattering and double scattering and in
the total amplitude. This is easy and is done in detail in
Refs. [65,68]. We show below the details for the present
case of a meson cluster (also particle 1 and 2) and a meson
as scattering particle (the third particle). In this case,
following the field normalization of Ref. [86] we find for
the S matrix of single scattering,

Sð1Þ1 ¼ �it1ð2�Þ4�ðkþ kR � k0 � k0RÞ �
1

V 2

1ffiffiffiffiffiffiffiffiffi
2!3

p

� 1ffiffiffiffiffiffiffiffiffi
2!0

3

q 1ffiffiffiffiffiffiffiffiffi
2!1

p 1ffiffiffiffiffiffiffiffiffi
2!0

1

p ; (4)

Sð1Þ2 ¼ �it2ð2�Þ4�ðkþ kR � k0 � k0RÞ �
1

V 2

1ffiffiffiffiffiffiffiffiffi
2!3

p

� 1ffiffiffiffiffiffiffiffiffi
2!0

3

q 1ffiffiffiffiffiffiffiffiffi
2!2

p 1ffiffiffiffiffiffiffiffiffi
2!0

2

p ; (5)

where, k, k0 ðkR; k0RÞ refer to the momentum of initial, final
scattering particle (R for the cluster), !i, !

0
i are the en-

ergies of the initial, final particles, V is the volume of the
box where the states are normalized to unity and the
subscripts 1, 2 refer to scattering with particle 1 or 2 of
the cluster.

The double scattering diagram, Fig. 1(b), is given by

Sð2Þ ¼�ið2�Þ4�ðkþkR�k0 �k0RÞ
1

V 2

1ffiffiffiffiffiffiffiffiffi
2!3

p 1ffiffiffiffiffiffiffiffiffi
2!0

3

q 1ffiffiffiffiffiffiffiffiffi
2!1

p

� 1ffiffiffiffiffiffiffiffiffi
2!0

1

p 1ffiffiffiffiffiffiffiffiffi
2!2

p 1ffiffiffiffiffiffiffiffiffi
2!0

2

p Z d3q

ð2�Þ3FRðqÞ

� 1

q0
2 � ~q2�m2

3þ i�
t1t2; (6)

where FRðqÞ is the cluster form factor that we shall discuss
below. Similarly, the full S matrix for scattering of particle
3 with the cluster will be given by

S ¼ �iTð2�Þ4�ðkþ kR � k0 � k0RÞ
� 1

V 2

1ffiffiffiffiffiffiffiffiffi
2!3

p 1ffiffiffiffiffiffiffiffiffi
2!0

3

q 1ffiffiffiffiffiffiffiffiffi
2!R

p 1ffiffiffiffiffiffiffiffiffi
2!0

R

p : (7)

In view of the different normalization of these terms by
comparing Eqs. (4)–(7), we can introduce suitable factors
in the elementary amplitudes,

~t 1 ¼ 2MR

2m1

t1; ~t2 ¼ 2MR

2m2

t2; (8)

with m1, m2, MR the masses of the particles 1, 2 and the
cluster, respectively, where we have taken the approxima-
tions, suitable for bound states, 1ffiffiffiffiffiffi

2!i

p ¼ 1ffiffiffiffiffiffi
2mi

p , and sum all

the diagrams by means of

T ¼ T1 þ T2 ¼
~t1 þ ~t2 þ 2~t1~t2G0

1� ~t1~t2G
2
0

: (9)

When ~t1 ¼ ~t2, as is the case here for the �K and � �K
interaction, it can be simplified as

T ¼ 2~t1
1� ~t1G0

: (10)

The function G0 in Eqs. (9) and (10) is given by

G0ðsÞ ¼ 1

2MR

Z d3 ~q

ð2�Þ3 FRðqÞ 1

q02 � ~q2 �m2
3 þ i�

; (11)

where FRðqÞ is the form factor of the cluster of particles 1
and 2. We must use the form factor of the cluster consis-
tently with the theory used to generate the cluster as a
dynamically generated resonance. This requires to extend
the formalism of the chiral unitary approach, developed for
scattering amplitudes, to the wave functions. This work has
been done in Refs. [87–89] for S-wave bound states,
S-wave resonant states and states with arbitrary angular
momentum, respectively. Here we only need the expres-
sions for S-wave bound states, and then the expression for
the form factors is given in Sec. 4 of Ref. [88] by
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FRðqÞ ¼ 1

N

Z
j ~pj<�0;j ~p� ~qj<�0

d3 ~p
1

2E1ð ~pÞ
1

2E2ð ~pÞ
� 1

MR � E1ð ~pÞ � E2ð ~pÞ
1

2E1ð ~p� ~qÞ
� 1

2E2ð ~p� ~qÞ
1

MR � E1ð ~p� ~qÞ � E2ð ~p� ~qÞ ;
(12)

N ¼
Z
j ~pj<�0

d3 ~p

�
1

2E1ð ~pÞ
1

2E2ð ~pÞ
� 1

MR � E1ð ~pÞ � E2ð ~pÞ
�
2
; (13)

where E1 and E2 are the energies of the particles 1, 2 and
MR the mass of the cluster. The parameter �0 is a cutoff
that regularizes the integrals of Eqs. (12) and (13). This
cutoff is the same that one needs in the regularization of the
loop function of the two particle propagators in the study
of the interaction of the two particles of the cluster [88].
As done in Refs. [65,68], we take the value of �0 the same
as the cutoff qmax used to generate the resonance in the
two-body interaction, which is the parameter to produce
the cluster of f0ð980Þ or a0ð980Þ in our present work and
will be discussed in the next section. Thus we do not
introduce any free parameters in the present procedure.

In addition, q0, the energy carried by particle 3 in the rest
frame of the three-particle system, is given by

q0ðsÞ ¼ sþm2
3 �M2

R

2
ffiffiffi
s

p : (14)

Note also that the arguments of the amplitudes TiðsÞ and
tiðsiÞ are different, where s is the total invariant mass of the
three-body system, and si are the invariant masses in the
two-body systems. The value of si is given by [65]

si ¼ m2
3 þm2

i þ
ðM2

R þm2
i �m2

j Þðs�m2
3 �M2

RÞ
2M2

R

;

ði; j ¼ 1; 2; i � jÞ; (15)

where ml (l ¼ 1, 2, 3) are the masses of the corresponding
particles in the three-body system andMR the mass of two-
body resonance or bound state (cluster).

III. K �K AND �Kð�0KÞ TWO-BODY INTERACTIONS

To evaluate the Faddeev equations under the FCA, we
need to define the two-body cluster and then let the third
particle collide with the cluster. Thus, the starting point of
our work is to look for the cluster in the two-body inter-
actions. Following the formalism of Ref. [25], by taking
into account the chiral dynamics and the unitary coupled
channels approach [21,24,25,33,35,37–39,42,48,50], we
should reproduce the resonances f0ð980Þ and a0ð980Þ as

the cluster of FCA. We briefly summarize the method of
Ref. [25] here.
To calculate the scattering amplitudes with the coupled

channels unitary approach, the Bethe-Salpeter equation in
coupled channels, with the factorized on-shell potentials
[21,25] is used,

t ¼ ½1� VG��1V; (16)

where the kernel V is a matrix of the interaction potentials
between the channels, given by [25]

VI¼0
11 ðsÞ ¼ � 1

2f2�
ð2s�m2

�Þ;

VI¼0
12 ðsÞ ¼ �

ffiffiffi
3

p
4f2�

s;

VI¼0
22 ðsÞ ¼ � 3

4f2�
s;

(17)

VI¼1
11 ðsÞ ¼ � 1

3f2�
m2

�;

VI¼1
12 ðsÞ ¼

ffiffiffi
6

p
36f2�

ð9s� 8m2
K �m2

� � 3m2
�Þ;

VI¼1
22 ðsÞ ¼ � 1

4f2�
s;

(18)

with f� the pion decay constant. Note that in isospin I ¼ 0,
there are two coupled channels, 1 is �� and 2 is K �K; for
I ¼ 1, channel 1 denotes �0� and 2 as K �K.
In Eq. (16)G is a diagonal matrix of the loop function of

two mesons in the i channel, given by

GiðsÞ¼ i
Z d4q

ð2�Þ4
1

ðP�qÞ2�m2
1þ i"

1

q2�m2
2þ i"

; (19)

wherem1,m2 are the masses of the mesons in the i channel,
q is the four-momentum of one meson, and P is the total
four-momentum of the system, thus, s ¼ P2. Note that the
integral of Eq. (19) is logarithmically divergent. Then,
using a cutoff momentum to regularize it, we have

GiðsÞ¼
Z qmax

0

d3 ~q

ð2�Þ3
!1þ!2

2!1!2

1

P02�ð!1þ!2Þ2þ i"
; (20)

where!i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

i

q
, (i ¼ 1, 2), and qmax is the cutoff of

the three-momentum, the free parameter. Also the analytic
formula of Eq. (20) can be seen in Refs. [33,50]. On the
other hand, the analytic expression of the dimensional
regularization for Eq. (19) can be seen in Ref. [21] (more
discussions about Gi are also seen in Refs. [90–92]) with a
scale � fixed a priori and the subtraction constant að�Þ as
free parameter.

Taking � ¼ 1:03 GeV and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2max þm2

K

q
as done

in Ref. [25], we get qmax ¼ 903 MeV. Our results are
shown in Fig. 2. In Fig. 2, we produce the resonances of

WEIHONG LIANG, C.W. XIAO, AND E. OSET PHYSICAL REVIEW D 88, 114024 (2013)

114024-4



f0ð980Þ and a0ð980Þ, which are consistent with Ref. [25]
and form the clusters of the �K �K and �0K �K three-body
interactions in our present work.

As discussed in the former section, to perform the evalu-
ation of Faddeev equations under the FCA, we need the
calculation of the two-body interaction amplitudes (~t1 and
~t2) of�K and� �K for the�K �K system (�0K and�0 �K for the
�0K �K system), which are investigated in Refs. [48–50] as
mentioned before. The former input is needed to construct
the form factor of the cluster entering Eq. (11).

Next we address the �K, � �K and �0K, �0 �K interaction.
Since we are involving the �0, it is convenient to take the
three coupled channels �K, �K and �0K, labeled by chan-
nel 1, 2 and 3, respectively. Thus, the potentials are [50]

VI¼1=2
11 ðsÞ ¼ � 1

4f2�
ð4sþ 3t� 4m2

� � 4m2
KÞ; (21)

VI¼1=2
12 ðsÞ ¼ �

ffiffiffi
2

p
6f2�

ð�3tþ 2m2
K þm2

�Þ; (22)

VI¼1=2
13 ðsÞ ¼ 1

12f2�
ð�3tþ 3m2

� þ 8m2
K þm2

�0 Þ; (23)

VI¼1=2
22 ðsÞ ¼ � 2

9f2�
ð3t�m2

K � 2m2
�Þ; (24)

VI¼1=2
23 ðsÞ ¼

ffiffiffi
2

p
18f2�

ð3t� 3m2
� þ 2m2

K �m2
� �m2

�0 Þ; (25)

VI¼1=2
33 ðsÞ ¼ � 1

36f2�
ð3t� 6m2

� þ 32m2
K � 2m2

�0 Þ; (26)

where there is a minus sign difference with Refs. [48,80] in
some nondiagonal matrix elements resulting from taking
different phase conventions.1 As done in Ref. [50], we take

� ¼ mK; að�Þ ¼ �1:383; (27)

in the loop function for all channels, andwe obtain the same
results as in Ref. [50], seen in Fig. 3, which agree fairly well
with the data except at the higher energies.
With these parameters, we also find the pole of �

[or K�ð800Þ], ð743:72� i275:36Þ MeV, which is consis-
tent with the result of Ref. [50], ð0:742� i0:273Þ GeV.
Then, using these parameters, we can get the �K and �0K
scattering amplitudes. Because of charge conjugation sym-
metry, the amplitude for � �K (�0 �K) is the same as that for
�K (�0K).

IV. �K �K AND �0K �K THREE-BODY INTERACTIONS

As discussed in the former section, we calculate the �K
and � �K (�0K and �0 �K) amplitudes using the same parame-
ters, and then we use Eq. (10) to evaluate the three-body
amplitude of the �K �K (�0K �K) system. Also, as discussed
in the former section, the �0 of Eq. (12) can be taken as
qmax ¼ 903 MeV for the cluster of f0ð980Þ or a0ð980Þ.
In Fig. 4 (left), we can see a clear resonance structure in

the modulus squared of the �K �K scattering amplitude,
which is around 1490 MeV, with the width of about
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FIG. 2 (color online). Modulus squared of the scattering amplitudes. Left: jtI¼0
12 j2=103, f0ð980Þ; Right: jtI¼1

22 j2=103, a0ð980Þ.

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 700  800  900  1000  1100  1200  1300

δ 
(d

eg
re

es
)

s [MeV]

δK π

Bingham

Mercer

Estabrooks

FIG. 3. The S-wave K� phase shifts in isospin I ¼ 1=2. The
experimental data are taken from Mercer [93], Bingham [94],
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1The final scattering amplitudes are the same, as pointed out
by J. A. Oller.
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100 MeV, and about 38 MeV below the threshold of
�f0ð980Þ. This result is consistent with the one found in
Ref. [80]. From the PDG [77], this resonance may be the
�ð1475Þ of I ¼ 0, with mass 1476� 4 MeV and width
85� 9 MeV. Comparing our results with the PDG, both
the mass and the width are consistent with the experimental
values if we assume 10–15 MeV uncertainties in our cal-
culated results.

Since the masses of the K �K bound states f0ð980Þ and
a0ð980Þ are the same and only their isospins are different,
the three-body amplitudes of �K �K and �0K �K in our for-
malism are degenerated in isospin I ¼ 0 and I ¼ 1. This
means that if we predict a bound state for the �f0ð980Þ
system, we also have the same for �a0ð980Þ. This is so,
assuming that the f0ð980Þ and a0ð980Þ resonances are
predominantly K �K molecules. But, as we have discussed,
in the construction of the f0ð980Þ resonance we need the
�� and K �K channels, and the �� is marginal in the
structure of the resonance; it simply provides a decay
mode. However, this is not the case for the a0ð980Þ where
the �� channel already plays an important role in the
buildup of the resonance. Then a more elaborate, and
technically complex, study of the �, �0 interacting with
this system, would have much contribution from ��,
which only comes from coupled channels and is very
weak, and �� which is also weak. The signal that we get
in Fig. 4 would be much diluted and we do not expect an
I ¼ 1 state.

We also see an obvious peak in Fig. 4 (right) for the
�0K �K interaction. But the mass position of the peak is
about 1940 MeV, which is very close to threshold,
1942 MeV. Therefore, this peak should be an enhancement
effect of the threshold, a cusp effect, and we will check it
further in the next section.

V. FURTHER DISCUSSIONS

We showed the results of our investigation of the �K �K
and �0K �K systems in the former section. For the �K �K
scattering, we find one resonance structure in the modulus

squared of amplitude. But, for the other one, the clear
peak of the �K �K amplitude turns into an enhancement
effect at the threshold in the �0K �K amplitude, a cusp effect
reflecting the cusp of the ~t1 amplitude, used in Eq. (10), at
threshold. In all these results we did not take into account
the width of f0ð980Þ as done in Ref. [66]. In the PDG, the
width of the f0ð980Þ is 40 to 100 MeV, which is not small
compared to the binding energy found.
Following Ref. [66], we can take into account the width

of the f0ð980Þ in the three-body scattering amplitudes, just

by replacing MR in Eqs. (12) and (13) by MR � i �R

2 . The

new results are given in Fig. 5, where we just take the width
as 60 MeV. For the �K �K amplitude we can see in Fig. 5
(left), comparing with Fig. 4 (left), that the strength of the
amplitude is reduced and the peak position is still not
changed, but the width becomes a little larger (around
120 MeV), which is in line with the finding in Ref. [66].
For the �0K �K amplitude, shown in Fig. 5 (right), by
comparing to Fig. 4 (right), we can see that the strength
at the peak is a bit increased and the shape changes a bit
when considering the contribution of the width f0ð980Þ.
The important thing, however, is that the shape of the
�0K �K amplitude continues to be that of a cusp effect. In
summary, as discussed in Ref. [66], we can conclude that
the effects of the contribution of the cluster’s width are
small and do not change the relevant features found before.
Next, we want to check the uncertainties in Eq. (10)

when we make a small change in the parameters in the
evaluation of ~t1. Following Ref. [50], we can only change
að�Þ. This parameter was chosen in Ref. [50] to fit the
experimental data of the K� phase shifts. Then, we change
50% up and down the parameter að�Þ of Eq. (27), to a
point where theK� phase shifts are not too good, as shown
in Fig. 6 (left). From Fig. 6 (right), we can see that the
resonance structure in �K �K scattering is not changed so
much even with these extreme changes in the input, and
both the peak position and the width have practically not
changed. This gives us confidence that the results that we
get are rather solid and do not change with small variations
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of the parameters. The same changes only affect in a minor
way the �0K �K amplitude, and the cusp effect at threshold
is the only relevant feature of the amplitude.

At this point one must comment on the results of
Ref. [80]. In that work the interaction of the � with the
K �K cluster is done as here, although the formalism seems
rather different. There the primary amplitude for the �
interaction with the components of the cluster is evaluated
and then the � and the cluster propagate similarly to the
propagation of the meson components in the G function.
The caveat is that while the regularization parameters are
fitted to data on meson scattering, here one does not have
this information for the scattering of� and f0ð980Þ and one
must make assumptions on how this new loop is regular-
ized. As a consequence, there is an element of uncertainty
and usually what one assumes is that the interaction gives
rise to a certain resonance to fix the parameters, although
they are kept within a natural range; there is, hence, not a
genuine prediction. In that work, the �f0ð980Þ gives rise
to the �ð1475Þ as we have also claimed here. But the

�0f0ð980Þ is claimed to produce the Xð1835Þ resonance,
something that our approach does not give.
The difference between the �K �K and �0K �K systems

could be qualitatively understood by recalling that the �K,
together with the �K system, generate the broad � reso-
nance, but the �0K amplitude has no structure around the
�0K energies (up to the unavoidable cusp at threshold) and
is small and smooth around these energies. In order to see
how far we are from creating a resonance structure in the
�0K �K system, we artificially multiply V33 of Eq. (26) by a
factor and look at the �0K �K amplitude. We must multiply
by a factor of 4 the V33 potential to see the peak move a bit
(by about 6 MeV) below the threshold. Since the uncer-
tainties of the model are by no means that large (we can
accept about 20% uncertainty in the potentials), the former
exercise tells us that the cusp character of the �0K �K
amplitude is quite a stable result and we cannot associate
a physical � state to it.
We should comment on the paper [96], where using the

Faddeev approach in the version of Ref. [57], one peak in
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jTj2 for �K �K is found around 1400 MeV, which is
associated to the �ð1300Þ. It is mentioned there that the
�K �K system is also investigated and no clear signal is
seen. The coupled channels approach used there contains
�K and �K but not �0K. We have checked that removing
the �0K channel does not change qualitatively the �K �K
amplitude, although the distribution of jTj2 in energy has a
broader shape. Consideration of the�0K channel makes the
energy distribution a little sharper. The fact that no clear
peak for the �K �K amplitude appears is somewhat unex-
pected, since one usually gets qualitative agreement be-
tween the FCA and the Faddeev calculations for bound
states. For instance, the three-body �KNK scattering ampli-
tude was calculated using the FCA to the Faddeev equa-
tions in Ref. [67], and the results of that work are in good
agreement with the other theoretical works [72,73] eval-
uated using variational and Faddeev approaches, respec-
tively. The same can be said when one studies the �KNN
system in the FCA [71] or in Faddeev calculations [97], or
variational calculations [98]. The DNN system is another
case of agreement between the FCA and variational calcu-
lation [76]. We state the present situation and call for
further calculations of the �K �K system using different
approaches in order to clarify the situation.

VI. CONCLUSIONS

In our work, we study the three-body systems of �K �K
and �0K �K, by using the fixed center approximation to the
Faddeev equations. The clusters of f0ð980Þ for the fixed
center approximation are successfully reproduced by the

chiral unitary approach. With this approach, the experi-
mental S-wave K� phase shifts of isospin I ¼ 1=2 are also
well fitted. For the three-body scattering we find a resonant
structure in the �K �K scattering amplitude, which may
correspond to the �ð1475Þ state for I ¼ 0. This finding is
consistent with the result of Ref. [80]. We also make an
estimation of our theory uncertainties for this state by
taking into account the contribution of the cluster’s width
and reasonable changes in the free parameters, and we get
stable results. As for the �0K �K scattering, we only get an
enhancement effect at the threshold in the modulus squared
of the interaction amplitude, and we cannot claim that this
can be associated to any resonance.
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