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In this paper, chiral symmetry breaking and its restoration are investigated in the mean field

approximation of Nambu–Jona-Lasinio model. A first-order phase transition exists at low temperature,

but is smeared out at high temperature. We discuss the rationality of using susceptibilities as the criteria to

determine the crossover region as well as the critical point. Based on our results, it is found that to define a

critical band instead of an exclusive line in this region might be a more suitable choice.
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I. INTRODUCTION

Quantum chromodynamics (QCD) [1,2] is often viewed
as the basic theory of strong interaction. In the process of
large momentum transfer, the coupling constant is small
(which is the so-called asymptotic freedom phenomenon
[3]), so that the scattering process can be treated perturba-
tively with much success. However, in the process of small
momentum transfer, the coupling constant becomes large
so that problems have to be treated with various nonper-
turbative methods.

The Nambu–Jona-Lasinio model (NJL) [4,5] is an ef-
fective model of QCD which was proposed in 1961. In this
model, interaction terms are treated as four-body interac-
tions, meanwhile, the Lagrangian is constructed such that
the basic symmetries of QCD that are observed in nature
are part and parcel of it. In particular, the NJL model
exhibits the feature of dynamical chiral symmetry breaking
[6,7], which is responsible for the dynamical mass genera-
tion from bare quarks. Nevertheless, there are also two
shortcomings of the NJL model; namely, it is neither
confining nor renormalizable. As for the former one, the
NJL model is expected to work well in the region of
intermediate length between the asymptotic freedom and
confinement regions and applied to the properties for
which confinement is expected not to be essential. For
the latter shortcoming, a momentum cutoff is often intro-
duced to avoid the ultraviolet divergence.

At high temperature and/or high density, the features of
confinement and chiral symmetry breaking are expected
to be destroyed. The effective quark mass and the pion
mass may change discontinuously at certain point of tem-
perature and density, which corresponds to the chiral phase
transition. In the chiral limit, the quark condensate can be
regarded as an order parameter of this phase transition,
however, how to define the quark condensate beyond the

chiral limit from first principles of QCD is still an open
problem [8], and so there is no rigorous order parameter
right now. Instead, the effective quark massM (or the quark
condensate beyond chiral limit, although it has no rigorous
definition) and various susceptibilities are often used as
the criteria to determine the critical point of chiral phase
transition [9–13]. In this work, we try to study the critical
point of phase transition in the case of finite temperature
and finite chemical potential by means of several suscep-
tibilities in the NJL model.
The rest of this paper is organized as follows. In Sec. II

the NJL model is briefly reviewed, and we will treat prob-
lems in the mean field approximation of this model. In
Sec. III we present the results of Asakawa and Yazaki [9]
on the chiral phase transition, and question the rationality
of their criterion for the critical point in the crossover
region. In Sec. IV, several susceptibilities, which are ex-
pected to be the criteria for the critical point, are calcu-
lated. Finally, in Sec. V we will summarize our results and
give the conclusions.

II. THE NAMBU–JONA-LASINIO MODEL

As an important effective theory, NJL model is widely
used in many fields, for example, Refs. [14–21] are some
recent representative applications. The Lagrangian of the
NJL model [9] is (in this paper, we take the number of
flavors Nf ¼ 2, and the number of colors Nc ¼ 3.)

LNJL ¼ �c ði6@�mÞc þ g½ð �c c Þ2 þ ð �c i�5�c Þ2�; (1)

where m is the current quark mass for two flavors, g is a
coupling constant with the dimension of mass�2, and the
flavor and color indices are suppressed.
The thermal expectation value of an operator � is de-

noted as

hh�ii ¼ Tr� e��ðH��N Þ
Tr e��ðH��N Þ : (2)
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Then, we apply the mean field approximation [22,23] to
�c c , �c�0c in the original and Fierz-transformed interac-
tion terms, while other terms vanish. Hence the mean field
interaction terms can be written as

LMFint ¼ 4Nc þ 1

2Nc

ghh �c c ii �c c þ g

Nc

hh �c�0c ii �c�0c

� 4Nc þ 1

4Nc

ghh �c c ii2 þ g

2Nc

hh �c�0c ii2; (3)

and the Hamiltonian density is

H ¼ �i �c� � rc þm �c c �LMFint

¼ �i �c� � rc þM �c c þ g

Nc

�2N þG�2
1 �

g

2Nc

�2
2;

(4)

where G ¼ 4Ncþ1
4Nc

g is the renormalized coupling constant,

N ¼ �c�0c ¼ c yc is the operator for the quark number
density and M is the effective quark mass

M ¼ m� 2G�1; (5)

�1 and �2 are defined, respectively, as follows:

�1 ¼ hh �c c ii; (6)

�2 ¼ hhc yc ii; (7)

where �1 is the quark condensate which is often viewed as
the order parameter for chiral phase transition in the chiral
limit.

The Hamiltonian density in (4) describes a system of
free quarks with mass M and chemical potential �r

given by

�r ¼ �� g

Nc

�2; (8)

where � is the bare chemical potential.
Now we use the formalism of the thermal Green func-

tion in the real time [24] to determine �1 and �2 self-
consistently at finite temperature and chemical potential.
The thermal Green function of a free fermion at tempera-
ture T and chemical potential � written in momentum
space is as follows:

Gðp;T;�Þ ¼ ð6pþMÞ
�

1

p2 �M2 þ i"
þ 2�i�ðp2 �M2Þ

� f�ðp0Þnðp; �Þ þ �ð�p0Þmðp; �Þg
�
; (9)

with

nðp; �Þ ¼ 1

1þ exp ½�ðE��Þ� ; (10)

mðp; �Þ ¼ 1

1þ exp ½�ðEþ�Þ� ; (11)

Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
and � ¼ 1=T. Using this propagator, �1

and �2 can be calculated out [9]. The results are written as

�1 ¼ �M
NcNF

�2

Z �

0

p2

E
f1� nðp; �rÞ �mðp; �rÞgdp

(12)

�2 ¼ NcNF

�2

Z �

0
p2fnðp; �rÞ �mðp; �rÞgdp; (13)

where � is a momentum cutoff, which is introduced to
avoid the ultraviolet divergence mentioned above. For
convenience we will use the noncovariant three-
momentum cutoff scheme [25].
Now Eqs. (5), (8), (12), and (13) form a set of self-

consistent equations. By solving these equations self-
consistently, one can obtain the effective quark mass for
each temperature and chemical potential. In this paper, we
will employ the widely accepted parameter set according
to Hatsuda and Kunihiro [26]: m ¼ 5:5 MeV, � ¼
631 MeV, g ¼ 5:074� 10�6 MeV�2, which yields pion
mass M� ¼ 138 MeV, pion decay constant f�¼
93:1MeV, and quark condensate hh �c c ii1=3 ¼ �331 MeV.

III. CHIRAL RESTORATION AND THE
PHASE DIAGRAM

In the case of zero temperature and finite chemical
potential, the effective quark massM obtained numerically
using the iterative method is shown in Fig. 1.
As can be seen from Fig. 1, there is a discontinuity ofM

at some certain chemical potential, the behavior of the
quark condensate �1 is the same as that of M [see
Eq. (5)], we can conclude that if M can serve as an order
parameter in this case, a first-order phase transition occurs
at a coexistence chemical potential and zero temperature.
One defect, although it does not affect our subsequent
discussions on the crossover property and the quantitative
results in the first order transition, should be pointed out.
As many literatures, e.g., [27,28] show, the gap equation
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FIG. 1 (color online). The effective quark mass M at T ¼ 0.
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has more than one solution including an unstable solution
and a metastable solution in the vicinity of the coexistence
chemical potential in the first-order phase transition region.
In order to select the solutions corresponding to stable
points, it is wiser to find the smaller minima of the effective
thermodynamical potential. The phase transition line can
be located at the chemical potential where the effective
thermodynamical potential has two degenerate minima.
Then, with the increase of temperature, the two degenerate
minima of the effective thermodynamical potential will get
closer, i.e., the discontinuity of M becomes small, and at
last the discontinuity of M comes to disappear at a critical
temperature Tc, which means the first-order phase transi-
tion is smeared out. It is worthwhile to mention that the
equations which the critical temperature Tc should satisfy
can be obtained by other techniques such as Landau’s
expansion or the method presented by Contrera et al.
[29]. Avancini et al. also provide other alternative to de-
termine the first order line, the critical endpoint as well as
the crossover region [30].

At supercritical temperature T > Tc, there is no evident
critical line which can be defined in the T-� plane.
However, the thermodynamical properties change rather
sharply across a band in the plane, thus it is necessary to
draw the phase diagram neglecting the smearing. Asakawa
and Yazaki [9] pointed out that there is a region where the
effective quark massM changes very rapidly with tempera-
ture and chemical potential, and when the first-order phase
transition is observed (T < Tc),M jumps from a value larger
than or around 1

2M0 to a value smaller than or around 1
2M0,

where M0 is denoted as the effective quark mass at T ¼ 0
and� ¼ 0. At T ¼ Tc,M changes most rapidly at the point
whereM ’ 1

2M0. Considering that the critical line should be

continuous at T ¼ Tc, they artificially define the critical
points as the points where the effective quark mass takes
the same value as that at T ¼ Tc, i.e.,

1
2M0. According to

this criterion, the phase transition diagram is plotted in
Fig. 2, where the ‘‘þ’’ lines stand for the first-order phase
transition lines and the ‘‘*’’ lines stand for the smooth
transition regions as defined above.

Considering that the artificially defined critical point is
aimed to describe the rapid change of thermodynamical
properties, more convincing criteria for the critical point
are the extremum of susceptibilities, such as the chiral
susceptibility and the quark number susceptibility
[10,12]. We will move on to discuss these in the next
section of this paper.

IV. VARIOUS SUSCEPTIBILITIES AND THE
CROSSOVER REGION

Now let us introduce the definitions of four kinds of
susceptibilities: the chiral susceptibility �s, the quark num-
ber susceptibility �q, the vector-scalar susceptibility �vs,

and another auxiliary susceptibility �m. For mathematical
convenience we first introduce these susceptibilities in the
free quark gas case (the interaction terms in the Lagrangian
is zero, i.e.,Lint ¼ 0) [31], whereM and�r are reduced to
m and�, which are independent quantities. Denoting them

with the superscript ð0Þ, their definitions and expressions
are as follows:

�ð0Þ
s � �@hh �c c iif

@m

¼ NcNf

�2

Z �

0

�
m2p2�

E2
gð�Þ þ p4

E3
fð�Þ

�
dp; (14)

�ð0Þ
q � @hhc yc iif

@�
¼ NcNf

�2

Z �

0
p2�gð�Þdp; (15)

�ð0Þ
vs � @hh �c c iif

@�
¼ NcNf

�2

Z �

0

mp2�

E
hð�Þdp; (16)

�ð0Þ
m � �@hhc yc iif

@m
¼ �ð0Þ

vs ; (17)

where gð�Þ þ hð�Þ ¼ 2nð�Þð1� nð�ÞÞ, gð�Þ � hð�Þ ¼
2mð�Þð1�mð�ÞÞ, fð�Þ ¼ 1� nð�Þ �mð�Þ, the sub-
script f represents the free quark gas systems. It should

be noted that �ð0Þ
m and �ð0Þ

vs have the same analytical ex-
pression, which is reasonable from the viewpoint of statis-
tical mechanics:

�ð0Þ
m ¼ �ð0Þ

vs ¼ T

V

@2

@m@�
lnZf; (18)

where Zf is the QCD partition function in the free quark

gas case.
In the interacting case, M and �r are no longer inde-

pendent. These susceptibilities are coupled with each other
as follows:

�s � �@hh �c c ii
@m

¼ �ð0Þ
s ð�rÞð1þ 2G�sÞ � g

Nc

�ð0Þ
vs ð�rÞ�m;

(19)
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FIG. 2 (color online). Phase transition line in the T-� plane.
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�q � @hhc yc ii
@�

¼ 2G�ð0Þ
vs ð�rÞ�vs þ �ð0Þ

q ð�rÞ
�
1� g

Nc

�q

�
; (20)

�vs � @hh �c c ii
@�

¼ 2G�ð0Þ
s ð�rÞ�vs þ �ð0Þ

vs ð�rÞ
�
1� g

Nc

�q

�
;

(21)

�m � �@hhc yc ii
@m

¼ �ð0Þ
m ð�rÞð1þ 2G�sÞ � g

Nc

�ð0Þ
q ð�rÞ�m: (22)

Using the iterative method, we can obtain the numerical
results of these susceptibilities. For example, the vector-
scalar susceptibility is the response of the effective quark
mass (M ¼ m� 2Ghh �c c ii) to the chemical potential �,
and its result is shown in Fig. 3. It can be seen that, when T
is smaller than the critical value Tc ¼ 35 MeV, there al-
ways exists a convergent discontinuity of �vs, correspond-
ing to a first-order phase transition; when T ¼ Tc, �vs

displays a sharp and narrow divergent peak, which implies

a second-order phase transition, or in other words, here is a
critical endpoint; when T > Tc, the discontinuity disap-
pears and a rather broad peak of finite height is shown,
corresponding to the crossover region. We pick the peak of
the susceptibility as the artificial critical point to draw the
phase diagram, which would produce little change on
Fig. 2.
Comparing these with the results of chiral susceptibility

�s and quark number susceptibility �q, shown in Figs. 4

and 5, respectively, we can conclude that at low tempera-
ture, the first-order phase transition occurs at almost the
same chemical potential, while in the crossover region, the
artificially defined critical point tends to occur at different
chemical potentials as the temperature increases.
The calculated results of �vs, �s, and �q in the crossover

region are shown in Figs. 6–8, respectively. �vs and �m

give the same numerical results for the reason mentioned
above. We can find that they exhibit different behaviors:
the chiral susceptibility�s exhibits an obvious band, so it is
convincing to define the peak of �s as the artificial critical
point; in the high T and/or low � region, the vector-scalar
susceptibility �vs tends to vanish; while the global shape
of the quark number susceptibility �q is just similar to

the ones of �s and �vs, but it is nonvanishing in the high T
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FIG. 3 (color online). �vs at different � and T.
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FIG. 5 (color online). �q at different � and T.
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and/or high � region whose behavior is closely linked to
the quark number density. This result is consistent with K.
Fukushima’s result obtained using the PNJL model [32].
Therefore, �q cannot describe the crossover property well

in the high T and/or high � region.
It is very interesting and meaningful to compare the

results of these susceptibilities with that of the thermal
susceptibility �T ¼ @hh �c c ii=@T which is widely used in
many recent literatures, e.g., [33,34]. For mathematical
convenience, we define �n ¼ @hhc yc ii=@T. By the same
process employed above, we obtain a set of coupled equa-
tions for �T and �n as follows:

�T � @hh �c c ii
@T

¼ @hh �c c ii
@M

@M

@T
þ @hh �c c ii

@�r

@�r

@T
þ

�
@hh �c c ii

@T

�
M;�r

¼ 2G�ð0Þ
s ð�rÞ�T � g

Nc

�ð0Þ
vs ð�rÞ�n

þM��ð0Þ
q ð�rÞ ��r��

ð0Þ
m ð�rÞ; (23)

�n � @hhc yc ii
@T

¼ @hhc yc ii
@M

@M

@T
þ @hhc yc ii

@�r

@�r

@T
þ

�
@hhc yc ii

@T

�
M;�r

¼ 2G�ð0Þ
m ð�rÞ�T � g

Nc

�ð0Þ
q ð�rÞ�n ��r��

ð0Þ
q ð�rÞ

þ NcNf

�2

Z �

0
p2E�2hð�Þdp: (24)

The behavior of �T in the crossover region is shown in
Fig. 9, which is very similar to that of �s. The comparison
between them will be shown in the phase diagram.
The phase diagram is given in Fig. 10 according to

different criteria for the critical point in the crossover
region as follows: the peaks of �vs, �T , and �s. We
compare our results with that of M. Asakawa and K.
Yazaki. The line given by the peak of �vs is almost the
same as that of M. Asakawa and K. Yazaki, while the lines
given by the peaks of �T and �s both display a shift as
compared with that of M. Asakawa and K. Yazaki. In the
� ¼ 0 case, the peak of �vs appears at T ¼ 196 MeV,
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FIG. 7 (color online). Chiral susceptibility �s in the crossover
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0
100

200
300 100 150 200 250

0

1

2

3

4

5

6

7

x 10
5

T [MeV]
µ [MeV]

χ T [M
eV

]2

FIG. 9 (color online). Thermal susceptibility �T in the cross-
over region.

0 50 100 150 200 250 300
100

150
200

250

0

0.5

1

1.5

2

2.5

x 10
5

T [MeV]
µ [MeV]

χ q [M
eV

]2

FIG. 8 (color online). Quark number susceptibility �q in the
crossover region.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

µ [MeV]

T
 [M

eV
]

First−order transition
CEP
M=1/2M

0

Peak of χ
vs

Peak of χ
s

Peak of χ
T

FIG. 10 (color online). Phase diagram obtained according to
different criteria.

DISCUSSIONS ON THE CROSSOVER PROPERTY WITHIN . . . PHYSICAL REVIEW D 88, 114019 (2013)

114019-5



while the peaks of �T and �s appear at T ¼ 198 MeV and
T ¼ 211 MeV, respectively. Here we do not give the re-
sults of �q due to the reason mentioned above. So, it is hard

to define the critical line in the crossover region, and a
critical band might be a more suitable choice.

V. SUMMARYAND CONCLUSION

In this paper we study the chiral phase transition at finite
temperature and chemical potential and calculate several
susceptibilities in the mean field approximation using the
Nambu–Jona-Lasinio model.

We discuss the rationality of using susceptibilities as the
criteria to determine the crossover region as well as the
critical point. In the low temperature region, the first-order
phase transition is found to be at almost the same chemical
potential for different susceptibilities, which is due to the

fact that these susceptibilities are coupled with each other
in their mathematical form; at sufficiently high tempera-
ture, the first-order phase transition is smeared out, and the
results of different susceptibilities imply the uncertainty in
the position of the artificially defined critical point in the
T-� plane. Therefore, it is more suitable to define a critical
band rather than an exclusive line in the crossover region.
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