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We calculate the invariant and helicity amplitudes for the nonleptonic decay �b ! �þ J=c , c ð2SÞ in
the covariant confined quark model. We discuss joint angular decay distributions in the cascade decay

�b ! �ð! p��Þ þ J=c , c ð2SÞð! ‘þ‘�Þ and calculate some of the asymmetry parameters that char-

acterize the joint angular decay distribution. We confirm expectations from the naive quark model that the

transitions into the �� ¼ 1=2 helicity states of the daughter baryon � are strongly suppressed leading to a

near maximal negative polarization of the �. For the same reason the azimuthal correlation between the

two decay planes spanned by (p��) and (‘þ‘�) is negligibly small. We provide form factor results for the

whole accessible q2 range. Our results are close to lattice results at minimum recoil and light-cone sum rule

results at maximum recoil. A new feature of our analysis is that we include lepton mass effects in the

calculation, which allows us to also describe the cascade decay �b ! �ð! p��Þ þ c ð2SÞð! �þ��Þ.
DOI: 10.1103/PhysRevD.88.114018 PACS numbers: 12.39.Ki, 13.30.Eg, 14.20.Jn, 14.20.Mr

I. INTRODUCTION

Recently the LHCb Collaboration has performed an
angular analysis of the decay �b ! �þ J=c where the
�b’s are produced in pp collisions at

ffiffiffi
s

p ¼ 7 TeV at the
LHC (CERN) [1]. They reported on the measurement of
the relative magnitude of the helicity amplitudes in
the decay �b ! �þ J=c by a fit to several asymmetry
parameters in the cascade decay distribution �b!
�ð!p��ÞþJ=c ð!‘þ‘�Þ. In the fit they were also
able to measure the transverse polarization of the �b rela-
tive to the production plane. From a theoretical point of
view the nonleptonic decay�b ! �þ J=c is quite attrac-
tive in as much as the factorizable tree diagram is the only
contribution to the decay; i.e. there are no W-exchange
contributions [color compensation (C), exchange (E) and
bow-tie (B) in the terminology of [2]] as e.g. in �b !
�þ �0. There have been a number of theoretical quark
model calculations for the decay �b ! �þ J=c that are
based on the factorization hypothesis [3–10]. The results of
some of these calculations have been compared to the new
experimental results by the LHCb Collaboration. We men-
tion that the LHCb Collaboration has not given a result on
the branching fraction Bð�b ! �þ J=c Þ for which the
PDG quotes an average value of ð5:8� 0:8Þ � 10�4 [11].
The latter was deduced from the measurements by the CDF
[12] and D0 Collaborations [13].

In this paper we present a detailed analysis of the decay
process �b ! �þ J=c in the framework of the covariant
quark model proposed and developed in Refs. [14–25] for

the study of mesons and baryons that are treated as bound
states of their constituent quarks. Particle transitions are
calculated from multiloop Feynman diagrams in which
freely propagating constituent quark fields connect the
different nonlocal particle-quark vertices. We mention
that the covariant quark model has recently been also
applied to exotic tetraquark states [26,27] and their
decays. Quark confinement has been incorporated into
the covariant quark model in an effective way [28–32]
through an infrared regularization of the relevant quark-
loop diagrams that removes quark thresholds in the loop
diagrams (see details in Refs. [28–32]).
Our paper is structured as follows. In Sec. II, we review

the phenomenological aspects of the decay �b ! �þ V
where V ¼ J=c or c ð2SÞ. This includes a discussion of
kinematics, matrix elements, and invariant and helicity
amplitudes. In Sec. III we write down joint angular decay
distributions for the cascade decay �b ! �ð! p��Þ þ
Vð! ‘þ‘�Þ where V ¼ J=c or c ð2SÞ. We also define
some pertinent decay asymmetry parameters that charac-
terize the angular decay distributions. In Sec. IV we review
the salient features of the covariant confined quark model
and present our form factor results, which we compare with
the results of other model calculations. In Sec. V we care-
fully discuss the heavy quark limit (HQL) of our �b ! �
form factor expressions. In Sec. VI we present our numeri-
cal results on helicity amplitudes, on the rate and on the
asymmetry parameters in the decay processes �b ! �þ
J=c and �b ! �þ c ð2SÞ. We have included the
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latter decay since it allows us to discuss nonzero lepton
mass effects in the kinematically allowed decay �b !
�þ c ð2SÞð! �þ��Þ. Finally, in Sec. VII, we summarize
our results.

II. �b ! � þ J=c DECAY: MATRIX ELEMENT
AND OBSERVABLES

The effective Lagrangian [33] for the b ! sc �c transition
is given by

Leff ¼ GFffiffiffi
2

p VcbV
�
cs

X6
i¼1

CiQi; (1)

where the Qi are the set of effective four-quark flavor-
changing b ! s operators

Q1 ¼ ð �ca1O�ba2Þð�sa2O�c
a1Þ;

Q4 ¼ ð �sa1O�ba2Þð �ca2O�c
a1Þ;

Q2 ¼ ð �ca1O�ba1Þð�sa2O�c
a2Þ;

Q5 ¼ ð �sa1O�ba1Þð �ca2 ~O�c
a2Þ;

Q3 ¼ ð �sa1O�ba1Þð �ca2O�c
a2Þ;

Q6 ¼ ð �sa1O�ba2Þð �ca2 ~O�c
a1Þ;

(2)

and where Vcb ¼ 0:0406 and V�
cs ¼ 0:974642 are

Cabibbo-Kabayashi-Maskawa (CKM) matrix elements;

O� ¼ ��ð1� �5Þ and ~O� ¼ ��ð1þ �5Þ. The Ci are the
set of Wilson coefficients [33]

C1 ¼ �0:257; C2 ¼ 1:009; C3 ¼ �0:005;

C4 ¼ �0:078; C5 ’ 0; C6 ¼ 0:001:
(3)

The quark-level matrix element contributing to the
�b ! �þ J=c decay is given by

Mðb ! sc �cÞ ¼ GFffiffiffi
2

p CeffVcbV
�
csð�sO� bÞð �c��cÞ; (4)

where

Ceff ¼ C1 þ C3 þ C5 þ �ðC2 þ C4 þ C6Þ: (5)

The color factor � ¼ 1=Nc will be set to zero such that we
keep only the leading term in the 1=Nc expansion. The
corresponding matrix elements of the exclusive transition
�b ! �þ V is defined by

Mð�b ! �þ VÞ
¼ GFffiffiffi

2
p VcbV

�
csCefffVMVh�j�sO�bj�bi�y�ð�VÞ; (6)

whereMV and fV are the mass and leptonic decay constant
of J=c or c ð2SÞ. Note that the effective current (�sO�b)

appearing in the set of operators in Eq. (2) is left chiral. In
the naive quark model where the spin of the �b and the �
are carried by the b and s quarks, respectively, one would
conclude that the � is left chiral and therefore emerges
with a dominant helicity of �� ¼ �1=2. The dominance of

the �� ¼ �1=2 helicity configuration predicted in the
naive quark model is borne out by our exact calculation.
The hadronic matrix element h�j�sO�bj�bi in (6) is

expanded in terms of dimensionless invariant form factors
fJi (i ¼ 1, 2, 3 and J ¼ V, A), viz.

hB2j�s��bjB1i ¼ �u2ðp2Þ½fV1 ðq2Þ�� � fV2 ðq2Þi	�q=M1

þ fV3 ðq2Þq�=M1�u1ðp1Þ;
hB2j�s���5bjB1i ¼ �u2ðp2Þ½fA1 ðq2Þ�� � fA2 ðq2Þi	�q=M1

þ fA3 ðq2Þq�=M1��5u1ðp1Þ; (7)

where q ¼ p1 � p2. We have kept the scalar form factors
fV3 and fA3 in the form factor expansion Eq. (7) although

they do not contribute to the decay �b ! �þ J=c since
q��

�
V ¼ 0. The reason is that we want to compare our

results on the scalar form factor with the results of other
model calculations. The scalar form factors would e.g.
contribute to the rare decays �b ! �þ ‘þ‘� and the
decays �b ! �þ 
c and �b ! pþ ��. The relevant
form factors have been calculated before by us in the
covariant confined quark model [32]. We shall use the
results of [32], but we will add a few explanatory remarks
concerning the cascade decay process�b ! �ð! p��Þþ
Vð! ‘þ‘�Þ. We shall also present a detailed discussion of
the HQL of our form factor expressions, which was not
included in [32].
As is well known it is convenient to analyze the decay in

terms of helicity amplitudes H�2�V
that are linearly related

to the invariant form factors fVi and fAi (see details in
Refs. [24,25,32,34]). Here we shall employ a generic
notation such that the parent and daughter baryons are
denoted by B1 and B2. The helicities of the daughter
baryon B2 and the vector charmonium state V are denoted
by �2 and �V . The pertinent relation is

H�2�V
¼ h�ð�2Þj�sO�bj�bð�1Þi�y�ð�VÞ
¼ HV

�2�V
�HA

�2�V
: (8)

The helicity amplitudes have been split into their vector
(HV

�2�V
) and axial-vector (HA

�2�V
) parts. We shall work in

the rest frame of the parent baryon B1 with the daughter
baryon B2 moving in the negative z direction such
that p�

1 ¼ ðM1; 0Þ, p�
2 ¼ ðE2; 0; 0;�jp2jÞ and q� ¼

ðq0; 0; 0; jp2jÞ. Further q0 ¼ ðMþM� þ q2Þ=ð2M1Þ,
jp2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QþQ�

p
=2M1 and E2 ¼ M1 � q0 ¼ ðM2

1 þM2
2 �

q2Þ=ð2M1Þ, where q2 ¼ M2
V for the on-mass shell

J=c ðc ð2SÞÞ meson. We have introduced the notation
M� ¼ M1 �M2, Q� ¼ M2� � q2. Angular momentum
conservation fixes the helicity �1 of the parent baryon
such that �1 ¼ ��2 þ �V . The relations between the

helicity amplitudes HV;A
�2�V

and the invariant amplitudes

are given by [32]
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HV
�1

2�1
¼ ffiffiffiffiffiffiffiffiffiffi

2Q�
p �

fV1 þMþ
M1

fV2

�
;

HA
�1

2�1
¼ � ffiffiffiffiffiffiffiffiffiffi

2Qþ
p �

fA1 �M�
M1

fA2

�
;

HV
�1

20
¼

ffiffiffiffiffiffiffiffi
Q�
q2

s �
MþfV1 þ q2

M1

fV2

�
;

HA
�1

20
¼ �

ffiffiffiffiffiffiffiffi
Qþ
q2

s �
M�fA1 � q2

M1

fA2

�
:

(9)

As in Ref. [32] we introduce the following combinations of
helicity amplitudes:

HU ¼ jH1
21
j2 þ jH�1

2�1j2 transverse unpolarized;

HL ¼ jH1
20
j2 þ jH�1

20
j2 longitudinal unpolarized:

(10)

The partial helicity width corresponding to the two specific
combinations of helicity amplitudes in (10) is defined by
(" ¼ m2

l =M
2
V ; v

2 ¼ 1� 4")

�Ið�b ! �þ VÞ

¼ G2
F

32�

jp2j
M2

1

jVcbV
�
csj2C2

efff
2
VM

2
Vvð1þ 2"ÞHI

I ¼ U;L: (11)

For the �b ! �þ V decay width one finds

�ð�b ! �þ VÞ ¼ �U þ �L: (12)

III. JOINT ANGULAR DECAY DISTRIBUTIONS
IN THE CASCADE DECAY

�b ! �ð! p��Þ þ Vð! ‘þ‘�Þ
As in the case of the rare meson decays B ! Kð�Þ þ

‘þ‘� (‘ ¼ e, �, �) treated in [21] one can exploit
the cascade nature of the decay �bð"Þ ! �ð! p��Þ þ
Vð! ‘þ‘�Þ of polarized �bð"Þ decays to write down a
fivefold angular decay distribution involving the polar
angles �1, �2 and �, and the two azimuthal angles �1

and �2. V stands for J=c or c ð2SÞ. Since the decay
c ð2SÞ ! �þ�� is kinematically allowed, we include lep-
ton mass effects in our decay formulas. The angular decay
distribution involves the helicity amplitudes hV�‘þ�‘� for the

decay V ! ‘þ‘�, H���V
for the decay �b ! �þ V and

hB�p0
for the decay � ! pþ ��.

We do not write out the full fivefold angular decay
distribution that can be found in [35], or that can
be adapted from the corresponding fivefold decay distri-
butions for the semileptonic baryon decays �0 ! �þ þ
‘� �
‘ and �c ! �þ ‘þ
‘ written down in [34,36],
respectively. Instead we discuss a threefold polar angle

distribution for polarized �b decay and a threefold joint
decay distribution for unpolarized �b decay. These can be
obtained from the full fivefold decay distributions written
down in [34–36] by the appropriate angular integrations or
by setting the polarization of the �b to zero.

A. Polar angle distribution in polarized �b decay

Let us first consider the polar angle distribution
Wð�; �1; �2Þ for polarized �b decays, which has been
discussed before in [1,37] in the zero lepton mass approxi-
mation (see Fig. 1).
The angular decay distribution can be derived from the

master formula

Wð�; �1; �2Þ / 1

2

X
helicities

jhV�‘þ�‘� j2½d1�V;�‘þ��‘� ð�2Þ�2

� ���b
;��b

ð�Þ���b
;�V���

jH���V
j2

� ½d1=2���p
ð�1Þ�2jhB�p0

j2; (13)

where the summation extends over all possible helicities
�‘þ , �‘� , ��b

, ��, �p ¼ � 1
2 and �V ¼ 0, �1. For the

diagonal terms of the density matrix ���b
;��b

ð�Þ appearing
in Eq. (13) one has

�ð�Þ ¼ 1

2
diagð1� Pb cos�; 1þ Pb cos �Þ: (14)

The vector current lepton helicity amplitudes are given by
(see [32])

flip: hV�1
2�1

2

¼ hVþ1
2þ1

2

¼ 2ml;

nonflip: hV�1
2þ1

2

¼ hVþ1
2�1

2

¼
ffiffiffiffiffiffiffiffi
2q2

q
:

(15)

Finally, factorizing out the combination jhBþ1
20
j2þjhB�1

20
j2/

Brð�!p�Þ and introducing the asymmetry parameter

�� ¼
jhBþ1

20
j2 � jhB�1

20
j2

jhBþ1
20
j2 þ jhB�1

20
j2 ; (16)

one obtains the angular decay distribution

FIG. 1 (color online). Definition of the three polar angles in
the cascade decay �bð"Þ ! �ð! p��Þ þ J=c ð! ‘þ‘�Þ of a
polarized �b baryon.
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Wð�;�1; �2Þ / 1

2
jHþ1

21
j2½q2ð1þ cos 2�2Þ þ 4m2

l sin
2�2�ð1�P cos�Þð1þ�� cos�1Þ þ 1

2
jH�1

2�1j2½q2ð1þ cos 2�2Þ
þ 4m2

l sin
2�2�ð1þP cos�Þð1��� cos�1Þ þ jHþ1

20
j2½q2sin 2�2 þ 4m2

l cos
2�2�ð1þPcos�Þð1þ�� cos�1Þ

þ jH�1
20
j2ðq2sin 2�2 þ 4m2

l cos
2�2Þð1�Pcos�Þð1��� cos�1Þ: (17)

Following Ref. [1] we introduce linear combinations of normalized squared helicity amplitudes jĤ��b
�V
j2 by writing

�b ¼ jĤþ1
20
j2 � jĤ�1

20
j2 þ jĤ�1

2�1j2 � jĤþ1
2þ1j2; r0 ¼ jĤþ1

20
j2 þ jĤ�1

20
j2; r1 ¼ jĤþ1

20
j2 � jĤ�1

20
j2; (18)

where jĤ��b
�V
j2 ¼ jH��b

�V
j2=N and where the normalization factor N is given by N � jHþ1

20
j2 þ jH�1

20
j2 þ jH�1

2�1j2 þ
jHþ1

2þ1j2. Similar to [1] the angular decay distribution can be rearranged into the form

~Wð�; �1; �2Þ ¼
X7
i¼0

fið�b; r0; r1ÞgiðPb; ��Þhiðcos�; cos �1; cos �2Þ ‘ið"Þ

¼ vð1þ 2"Þ þX7
i¼1

fið�b; r0; r1ÞgiðPb; ��Þ hiðcos �; cos �1; cos�2Þ ‘ið"Þ; (19)

such that the angular factors hiðcos �; cos �1; cos �2Þ
ði ¼ 1; . . . ; 7Þ in the second row of Eq. (19) integrate to
zero after polar integration. The functions fi, gi, hi and
‘i ði ¼ 0; . . . ; 7Þ that describe the normalized angular

distribution (19) are listed in Table I. Setting " ¼
m2

‘=M
2
V to zero and the velocity parameter v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4"
p

to 1 as is appropriate in the zero lepton mass
approximation one recovers Table 2 of Ref. [1]. It is
clear that one can determine the four parameters (Pb, �b,
r0 and r1) from a global fit to the polar angle distribution
as has been done in [1].

Let us briefly dwell on the powers of the velocity factor
v in Table I. The common factor v in the fifth column
of Table I has its origin in the phase space factor v in
the decay V ! ‘þ‘�. The remaining v dependence
results from a dominant S-wave contribution in the factor
(1þ 2") and a dominant S�D-interference contribution
in the factor v2 ¼ ð1� 4"Þ, respectively, as can be seen
by performing an LS analysis of the decay V ! ‘þ‘�. The
LS amplitudes MLS are given by M01 ¼

ffiffiffiffiffiffiffiffi
2=3

p ðhVþ1
2þ1

2

þffiffiffi
2

p
hVþ1

2�1
2

Þ and M21 ¼
ffiffiffiffiffiffiffiffi
2=3

p ð� ffiffiffi
2

p
hVþ1

2þ1
2

þ hVþ1
2�1

2

Þ. One

then finds

1þ 2" ¼ 1

4q2
ðM2

01 þM2
21Þ;

v2 ¼ 1� 4" ¼ 1

4q2
M21ð2

ffiffiffi
2

p
M01 �M21Þ:

(20)

By integrating over two respective angles of the three
polar angles one obtains the single angle distributions
Wð�Þ, Wð�1Þ and Wð�2Þ. In their normalized forms they
read

Ŵð�Þ ¼ 1

2
ð1þ �bPb cos�Þ; (21)

Ŵð�1Þ ¼ 1

2
ð1þ 2ð2r1 � �bÞ�� cos�1Þ; (22)

TABLE I. Decay functions appearing in the threefold polar
angle distribution in the decay of a polarized �b. The velocity
is defined as v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4"
p

. In our numerical analysis we use
�� ¼ 0:642 [11].

i fið�b; r0; r1Þ giðPb; ��Þ hiðcos �; cos �1; cos �2Þ ‘ið"Þ
0 1 1 1 v � ð1þ 2"Þ
1 �b Pb cos � v � ð1þ 2"Þ
2 2r1 � �b �� cos �1 v � ð1þ 2"Þ
3 2r0 � 1 Pb�� cos � cos �1 v � ð1þ 2"Þ
4 1

2 ð1� 3r0Þ 1 1
2 ð3cos 2�2 � 1Þ v � v2

5 1
2 ð�b � 3r1Þ Pb

1
2 ð3cos 2�2 � 1Þ cos � v � v2

6 � 1
2 ð�b þ r1Þ ��

1
2 ð3cos 2�2 � 1Þ cos �1 v � v2

7 � 1
2 ð1þ r0Þ Pb��

1
2 ð3cos 2�2 � 1Þ cos � cos �1 v � v2

TABLE II. Numerical values of the velocity v and the velocity factors ‘ið"Þ.
J=c ! �þ�� c ð2SÞ ! �þ�� c ð2SÞ ! �þ��

v 0.998 0.998 0.266

vð1þ 2"Þ ði ¼ 0; . . . ; 3Þ 1.000 1.000 0.389

v3 ði ¼ 4; . . . ; 7Þ 0.993 0.995 0.019
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Ŵð�2Þ¼ 1

2ð1þ2"Þ
�
�
ð1þ2"Þþ1

4
ð1�4"Þð1�3r0Þð3cos2�2�1Þ

�
;

(23)

where the factor

ð2r1 � �bÞ ¼ jĤþ1
20
j2 þ jĤþ1

21
j2 � jĤ�1

20
j2 � jĤ�1

2�1j2
¼ P‘

� (24)

defines the longitudinal polarization of the daughter baryon
� and the factor

ð1� 3r0Þ ¼ �2ðjĤþ1
20
j2 þ jĤ�1

20
j2Þ þ jĤþ1

21
j2 þ jĤ�1

2�1j2
(25)

is a measure of the longitudinal/transverse polarization
composition of the vector charmonium state. Since the
decay V ! ‘þ‘� is electromagnetic and therefore parity
conserving, the decay is not sensitive to the difference of
the transverse-plus and transverse-minus helicity contribu-

tions jĤþ1
2þ1j2 � jĤ�1

2�1j2. For the same reason there is no

linear cos �2 contribution in Eq. (23).

The distributions Ŵð�Þ and Ŵð�1Þ are asymmetric in
cos � and cos�1 such that they can be characterized by the
forward-backward (FB) asymmetries

AFBj� ¼ 1

2
�bPb; (26)

AFBj�1 ¼ ð2r1 � �bÞ��: (27)

The distribution Ŵð�2Þ is symmetric in cos �2 with its
convexity parameter cf given by

cf ¼ d2Ŵðcos �2Þ
dðcos�2Þ2

¼ 3

4

ð1� 4"Þ
ð1þ 2"Þ ð1� 3r0Þ: (28)

In Table II we have listed the numerical values of the
two velocity factors vð1þ 2"Þ and v3 for the cases

involving the muon and the tau lepton. It is quite apparent
that the zero lepton mass approximation is quite good
for J=c ! �þ�� and c ð2SÞ ! �þ��. For the case
c ð2SÞ ! �þ�� the factor vð1þ 2"Þ provides a reduction
of about 60% relative to the eþe� and �þ�� cases while
the factor v3 becomes negligibly small. This means that for
c ð2SÞ ! �þ�� one loses the analyzing power of the
lepton-side decay, i.e. of the last four rows of Table I.
For the same reason, one will have an almost flat decay

distribution Ŵðcos �2Þ for c ð2SÞ ! �þ�� because of the
factor v2 ¼ 1� 4" in the expression Eq. (28) for the
convexity parameter.

B. Azimuthal angle distribution

Consider the angular decay distribution of an unpolar-
ized �b that is characterized by the two polar angles (�1)
and (�2), and an azimuthal angle � defined by the azimuth
of the two decay planes defined by the decays V ! ‘þ‘�
and � ! p�� (see Fig. 2). The angular decay distribution
can then be calculated from the master formula

Wð�1;�2;�Þ/
X

helicities

jhV�1�2
j2eið�V��0

V Þ�d1�V;�1��2
ð�2Þd1�0

V ;�1��2
ð�2Þ��V���;�

0
V��0

�
H���V

Hy
�0
�
�0
V
d1=2���p

ð�1Þd1=2�0
�
�p
ð�1ÞjhB�p0

j2:

(29)

Let us first present a qualitative argument that the
azimuthal correlation between the two decay planes
is small. Azimuthal correlations result from the configura-
tions �V � �0

V ¼ �1. This implies that �� ¼ ��0
� follow-

ing from the �-function condition �V � �� ¼ �0
V � �0

�,
which again follows from the fact that �b is treated as
unpolarized. The azimuthal correlations are therefore
determined by bilinear forms such as H1

2�V
Hy

�1
2�

0
V

with

�V � �0
V . We shall see in Sec. VI that in general jH1

2�V
j �

jH�1
2�

0
V
j (as also expected from the naive quark model) such

that one concludes that the azimuthal correlations between
the two decay planes are quite small.

Let us cast this reasoning into a more quantitative form.

The threefold angular decay distribution resulting from

Eq. (29) reads

FIG. 2 (color online). Definition of two polar angles �1, �2 and
one azimuthal angle � in the cascade decay�b ! �ð! p��Þ þ
J=c ð! ‘þ‘�Þ of an unpolarized �b.
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Wð�1; �2; �Þ ¼ 3

8
ð1þ cos 2�2ÞðjH1

21
j2ð1þ �� cos�1Þ þ jH�1

2�1j2ð1� �� cos�1ÞÞ

þ 3

4
sin 2�2ðjH1

20
j2ð1þ �� cos �1Þ þ jH�1

20
j2ð1� �� cos �1ÞÞ

þ 4m2
‘

q2

�
3

8
sin 2�2ðjH1

21
j2ð1þ �� cos �1Þ þ jH�1

2�1j2ð1� �� cos �1ÞÞ

þ 3

4
cos 2�2ðjH1

20
j2ð1þ �� cos�1Þ þ jH�1

20
j2ð1� �� cos �1ÞÞ

�

þ
�
1� 4m2

‘

q2

�
3

4
ffiffiffi
2

p �� sin 2�2 sin �1ðcos�Re½H1
21
Hy

�1
20
�H�1

2�1H
y
1
20
�

� sin� Im½H1
21
Hy

�1
20
þH�1

2�1H
y
1
20
�Þ: (30)

Integrating over the hadron-side polar angle �1 one obtains

Wð�2; �Þ ¼ 3

8
ð1þ cos 2�2Þ � 2ðjH1

21
j2 þ jH�1

2�1j2Þ þ
3

4
sin 2�2 � 2ðjH1

20
j2 þ jH�1

20
j2Þ

þ 4m2
‘

q2

�
3

8
sin 2�2 � 2ðjH1

21
j2 þ jH�1

2�1j2Þ þ
3

4
cos 2�2 � 2ðjH1

20
j2 þ jH�1

20
j2Þ

�

þ
�
1� 4m2

‘

q2

�
3

4
ffiffiffi
2

p �

2
�� sin 2�2ðcos�ReðH1

21
Hy

�1
20
�H�1

2�1H
y
1
20
Þ � sin� ImðH1

21
Hy

�1
20
þH�1

2�1H
y
1
20
ÞÞ: (31)

If one wants to define a measure of the azimuthal
correlation, one cannot integrate Eq. (31) over the
whole range of the lepton-side polar angle �2 becauseR
1
�1 d cos�2 sin 2�2 ¼ 0. However, one can recover a

nonzero azimuthal correlation measure by defining a FB
asymmetry with respect to the lepton-side polar angle �2
by writing

AFBð�Þ ¼ F� B

Fþ B
: (32)

On reintroducing the normalized helicity amplitudes one
obtains

AFBð�Þ¼ð1�4"Þ
ð1þ2"Þ

�

8
ffiffiffi
2

p ��ðcos�Re½Ĥ1
21
Ĥy

�1
20
�Ĥ�1

2�1Ĥ
y
1
20
�

�sin�Im½Ĥ1
21
Ĥy

�1
20
þĤ�1

2�1Ĥ
y
1
20
�Þ: (33)

IV. THE �b ! � FORM FACTORS IN THE
COVARIANT CONFINED QUARK MODEL

For the description of the couplings of the baryons �Q

(Q ¼ b, s) and the charmonium vector meson states
V ¼ J=c , c ð2SÞ to their three and two constituent
quarks, respectively, we employ a generic Lagrangian
that reads

�Q: L
�Q

int ðxÞ ¼ g�Q

��QðxÞ � J�Q
ðxÞ þ H:c:;

J�Q
ðxÞ ¼

Z
dx1

Z
dx2

Z
dx3F�Q

ðx; x1; x2; x3Þ
� �a1a2a3Qa1ðx1Þua2ðx2ÞC�5da3ðx3Þ; (34)

V:LV
intðxÞ¼gVVðxÞ �JVðxÞ;
JVðxÞ¼

Z
dx1

Z
dx2FVðx;x1;x2Þ �caðx1Þ��caðx2Þ:

(35)

The color index is denoted by a, and C ¼ �0�2 is the
charge conjugation matrix. In the baryon case we take
the u and d quarks to be in a [ud] diquark configuration
antisymmetric in spin and isospin. We emphasize, how-
ever, that we treat the u and d quarks as separate dynamical
entities and not as a dynamical diquark state. Vertex func-
tions in momentum space are obtained from the Fourier
transformations of the vertex functions FH in Eqs. (34) and
(35). In the numerical calculations we choose a simple
Gaussian form for the vertex functions (for both mesons
and baryons),

��Hð�P2Þ ¼ exp ðP2=�2
HÞ; (36)

where�H is a size parameter describing the distribution of
the quarks inside a given hadron H. We use the values of
these parameters fixed before in [29,30,32]. We would
like to stress that the Minkowskian momentum variable
P2 turns into the Euclidean form �P2

E needed for the
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appropriate falloff behavior of the correlation function (36)
in the Euclidean region. We emphasize that any choice for

the correlation function ��H is acceptable as long as it falls
off sufficiently fast in the ultraviolet region of Euclidean

space. The choice of a Gaussian form for ��H has obvious
calculational advantages.

For given values of the size parameters �H the coupling
constants g�Q

and gV are determined by the compositeness

condition suggested by Weinberg [38] and Salam [39]
(for a review, see [40]) and extensively used in our ap-
proach (for details, see [41]). The compositeness condition
implies that the renormalization constant of the hadron
wave function is set equal to zero,

ZH ¼ 1��0
H ¼ 0; (37)

where �0
H is the on-shell derivative of the hadron

mass function �H with respect to its momentum. The
compositeness condition can be seen to provide for the
correct charge normalization for a charged bound state
(see e.g. [29]).

Next we discuss the calculation of the matrix element of
the �b ! �þ V transition. We work in the so-called
factorization approximation in which the matrix element
for �b ! �þ V factorizes into a (b ! s) current-induced
matrix element h�jJ�j�bi and a (c ! c) current-induced
vacuum to vector meson matrix element hVjJ�j0i. In our
approach the�b ! � transition is described by a two-loop
Feynman-type diagram, and the current-induced vacuum
to vector meson transition is described by a one-loop
Feynman-type diagram. The latter diagram is proportional
to the leptonic decay constant of the vector meson denoted
by fV . We have calculated fJ=c before in Ref. [29] and

have found fJ ¼ 415 MeV in almost perfect agreement
with the measured value. In the calculation of quark-loop
diagrams we use the set of model parameters fixed in our
previous studies. The model parameters are the constituent
quark masses mq and the infrared cutoff parameter �

responsible for quark confinement. They are taken from a
fit done in the papers [29,30],

mu ms mc mb �

0:235 0:424 2:16 5:09 0:181 GeV
: (38)

The dimensional size parameters of the �b and �
baryons have been determined in [32] by a fit to the semi-
leptonic decays �b ! �c þ ‘� �
‘ and �c ! �þ ‘þ
‘.
The resulting values are �� ¼ 0:490 GeV, and ��b

¼
0:569 GeV. For the size parameter of the J=c we
take �J=c ¼ 1:482 GeV resulting from the fit in [29]. As

of yet we cannot treat radial excitations in our approach.
We therefore take the experimental value fc ð2SÞ ¼
286:7 MeV for the c ð2SÞ.

It should be quite clear that the evaluation of the form
factors is technically quite involved since it involves
the calculation of a two-loop Feynman diagram with a

complex spin structure resulting from the quark propaga-
tors and the vertex functions, which leads to a number of
two-loop tensor integrals. To tackle this difficult task we
have automated the calculation in the form of FORM [42]
and FORTRAN packages written for this purpose. The q2

behavior of the form factors are shown in Fig. 3.
The results of our numerical calculations are well

represented by a double-pole parametrization

fðŝÞ ¼ fð0Þ
1� aŝþ bŝ2

; (39)

where ŝ ¼ q2=M2
�b
. Using such a parametrization facili-

tates further treatment such as the q2 integrations without
having to do a numerical evaluation for each q2 value
separately. The values of fð0Þ, a and b are listed in
Table III. It is quite noteworthy that the numerical values
of a and b for each form factor in Table III are approxi-

mately related by
ffiffiffi
b

p 	 a=2 such that the ensuing form
factors are of approximate dipole form. The relevant scale
of the effective dipole form factors is determined by
mdipole ¼ m�b

=
ffiffiffi
r

p
where r is taken to be the average offfiffiffi

b
p

and a=2; i.e. we take r ¼ ð ffiffiffi
b

p þ a=2Þ=2. The corre-
sponding mass scale mdipole of the effective dipole form

factor is then given by mdipole ¼ m�b
=r. One calculates
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FIG. 3 (color online). q2 dependence of the three form factors
V1 � fV1 ðq2Þ, A1 � fA1 ðq2Þ and V2 � fV2 ðq2Þ. The form factor

A2 � fA2 ðq2Þ is not shown since it would not be visible at the

scale of the figure. The values of q2 ¼ 0 and q2 ¼ q2max corre-
spond to the maximal and minimal recoil points, respectively.

TABLE III. Parameters for the approximated form factors in
Eq. (39) in �b ! � transitions.

fV1 fV2 fA1 fA2

fð0Þ 0.107 0.043 0.104 �0:003
a 2.271 2.411 2.232 2.955

b 1.367 1.531 1.328 3.620
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mdipole ¼ 5:23, 5.08, 5.28 and 4.32 GeV for the four form

factors in Table III. It is quite gratifying that for each case
the effective dipole masses come out to be close to the
average weighted mass ðmBs

þ 3mB�
s
=4Þ ¼ 5:31 GeV of

the ground state (b�s) mesons, which would set the scale
for the q2 behavior of the form factors in a generalized
vector dominance picture.

In Table IV we list our form factor results for three
different values of q2 and compare them to the results of
the light-front diquark model calculation of [9] and the
potential quark model calculation of [10]. At q2 ¼ m2

J=c

all three model form factors agree for the large form factors
fV1 and fA1 , while the small form factors fV2 and fA2 of [9]

differ from those of the other two models. There are larger
discrepancies of the three sets of form factors for the other
two q2 values. In particular, at q2max the form factor values
of [9] are much smaller than those of the other two models,
while at q2 ¼ 0 the large form factors fV1 and fA1 of [10]

come out much smaller than in the two other models. The
q2 ¼ 0 values of our form factors in Table III slightly differ
from those in Table IV because the former are fit results
while the latter are full model results. The values of the
form factors at q2 ¼ m2

J=c show that the effective interac-

tion of the �b ! � transition is very close to a (V � A)
form in all three models.

At maximum recoil q2 ¼ 0 we can compare our results
with the light-cone sum rules (LCSR) results of [43] on the
�b ! p transition form factors if we assume SUð3Þ to
hold. In the limit of SUð3Þ the �b ! � and �b!p form

factors are related by Fð�b!�Þ¼ ffiffiffiffiffiffiffiffi
2=3

p
Fð�b!pÞ. This

can be seen by using the �3 
 3 ! 8 Clebsch-Gordan (C.G.)
table listed in [44]. Based on the observation that the [ud]
diquark is the (Y ¼ 2=3, I ¼ 0) member of the �3 multiplet
one needs the C.G. coefficients

�b!�:

�
�3;
2

3
;0;0;3;�2

3
;0;0j8;0;0;0

�
¼

ffiffiffiffiffiffiffiffi
2=3

p
;

�b!p:

�
�3;
2

3
;0;0;3;

1

3
;
1

2
;
1

2
j8;1;1

2
;
1

2

�
¼1:

(40)

The labeling in (40) proceeds according to the sequence
jR; Y; I; Izi where R denotes the relevant SUð3Þ
representation.
The LCSR results of [43] have been summarized in

Table 1 of [45]. We take central values of the results listed
in [45] and average over the two options of�b currents. We

finally multiply these numbers by
ffiffiffiffiffiffiffiffi
2=3

p
and obtain fV1 ¼

0:11 ð0:10Þ, fV2 ¼ 0:041 ð0:039Þ, fA1 ¼ 0:11 ð0:099Þ and

fA2 ¼ 0:018 ð�0:0036Þ where we have added our model
predictions in brackets. The agreement is quite satisfactory
except for the small form factor fA2 where we obtain a
smaller value that differs in sign from that in [45].

V. THE HEAVY QUARK LIMIT FOR THE
�b ! � FORM FACTORS

It is instructive to explore the HQL for the heavy-to-light
transition �b ! � in our form factor expressions. The
HQL corresponds to the limitm�b

,mb ! 1 while keeping

the difference m�b
�mb ¼ �� and the size parameter ��b

fixed. The limit has to be taken in the relevant expressions
for the coupling constants and the form factors.
First consider the local b-quark propagator that reduces

to the static form

Sbðk1 þ p1Þ ¼ 1

mb � 6k1 � 6p1

! 1þ 6v1

�2k1v1 � 2 ��
þO

�
1

mb

�
; (41)

in the HQL. In Eq. (41) p1 and v1 ¼ p1=m�b
denote the

momentum and the four-velocity of the �b. The momen-
tum k1 is the loop momentum running through the loop
involving the b ! s transition. The value of the parameter
�� ¼ m�b

�mb is fixed by our overall fit value for the

b-quark mass [see Eq. (38)].
Next consider the b-quark mass dependence of the

vertex function F�Q
ðx; x1; x2; x3Þ in Eq. (34). In our model

the vertex function reads

F�Q
ðx; x1; x2; x3Þ ¼ �ð4Þ

�
x�X3

i¼1

wixi

�
��Q

�X
i<j

ðxi � xjÞ2
�
;

(42)

where ��Q
is the correlation function of the three con-

stituent quarks with the coordinates x1, x2, x3 and the
massesm1,m2,m3, respectively. The variable wi is defined
by wi ¼ mi=ðm1 þm2 þm3Þ such that

P
3
i¼1 wi ¼ 1. In

the present application m1 ¼ mb, m2 ¼ mu and m3¼md.
In the limit m1 ! 1 one has

w1 ¼ 1�m2 þm3

m1

þO
�
1

m2
1

�
; w2 ¼ m2

m1

þO
�
1

m2
1

�
;

w3 ¼ m3

m1

þO
�
1

m2
1

�
: (43)

TABLE IV. Comparison of our form factor values at q2 ¼ 0,
q2 ¼ m2

J=c and q2 ¼ q2max with those obtained in [9,10].

fV1 fV2 fV3 fA1 fA2 fA3

q2 ¼ 0 [9] 0.1081 0.0311 0.1065 0.0064

[10] 0.025 0.017 �0:0053 0.028 0.0049 �0:019

our 0.10 0.039 �0:0017 0.099 0.0036 �0:047

q2 ¼ m2
J=c [9] 0.248 0.105 0.249 0.0214

[10] 0.255 0.100 �0:044 0.237 0.020 �0:136

our 0.25 0.11 �0:0097 0.24 �0:0066 �0:13

q2 ¼ q2max [9] 0.532 0.204 0.613 0.0471

[10] 0.903 0.256 0.054 0.869 �0:072 �0:308

our 1.02 0.52 �0:099 0.92 �0:0018 �0:67
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As it turns out, the next-to-leading order corrections m2

m1
and

m3

m1
contribute significantly to the HQL and cannot be ne-

glected in the numerical calculations. On the other hand,
we must keep such terms because the terms p1w2 �m2

and p1w3 �m3 occurring in the vertex function do not
vanish in the heavy quark limit (where p1 is the momenta
of the �b baryon).

In the HQL the coupling constant g�Q
does not depend

on the b-quark mass and the �b mass [there is a depen-

dence on the Oðm0
QÞ parameters— �� and �]. This is spe-

cific to the three-quark system. For example, in the meson
case the meson-quark coupling constant scales as

ffiffiffiffiffiffiffi
mb

p
when mb ! 1. The constancy of g�Q

in the HQL will be

used to demonstrate the validity of the HQL for the tran-
sition form factors. First, we stress that the Ward identity
relating the derivative of the mass operator and the elec-
tromagnetic vertex function at p1 ¼ p2 for the heavy
baryon with charge �1 is still valid. To show the validity
of the Ward identity we consider the charged baryon �c

(the heavy quark symmetry partner of the �b baryon),
which has the charge e�c

¼ 1. Using a Ward identity one

can rewrite the compositeness condition Z�c
¼ 0 for the

heavy �c baryon, in the form (see Ref. [32])

�u�c
ðpÞ��

�c
ðp; pÞu�c

ðpÞ ¼ �u�c
ðpÞ��u�c

ðpÞ;
6pu�c

ðpÞ ¼ m�c
u�c

ðpÞ;
(44)

where the electromagnetic vertex function �
�
�c
ðp; pÞ ob-

tains contributions from the electromagnetic current cou-
pling to the quark lines (triangle contributions) and the
vertices (bubble contributions) (see Ref. [32] for details).
To make the HQL more transparent we perform a shift of
the loop momenta k1 ! k1 þ ðw2 þ w3Þp and k2 ! k2 þ
w2p. One has

�
�
�c
ðp; pÞ ¼ 6g2�c

hhe1A�
1 � e2A

�
2 þ e3A

�
3 ii

þ 8g2�c
s�c

hh½Q1ðk�1 þ ðw2 þ w3Þp�Þ
þQ2ðk�2 þ w2p

�Þ�A0ii; (45)

where the double bracket notation hh� � �ii stands for the
two integrations over the loop momenta (see Ref. [32]).

Also we use the definitions

Q1 ¼ e1ðw2 þ 2w3Þ � e2ðw1 � w3Þ � e3ð2w1 þ w2Þ;
Q2 ¼ e1ðw2 � w3Þ � e2ðw1 þ 2w3Þ þ e3ðw1 þ 2w2Þ;
e1 � ec ¼ 2

3
; e2 � eu ¼ 2

3
; e3 � ed ¼ � 1

3
;

(46)

and

A0 ¼ ��2
�Q

ð�z0ÞS1ðk1 þ pÞ tr½S2ðk2Þ�5S3ðk2 � k1Þ�5�;
A
�
1 ¼ ��2

�Q
ð�z0ÞS1ðk1 þ pÞ��S1ðk1 þ pÞ

� tr½S2ðk2Þ�5S3ðk2 � k1Þ�5�;
A
�
2 ¼ ��2

�Q
ð�z0ÞS1ðk1 þ pÞ

� tr½S2ðk2Þ��S2ðk2Þ�5S3ðk2 � k1Þ�5�;
A�
3 ¼ ��2

�Q
ð�z0ÞS1ðk1 þ pÞ

� tr½S2ðk2Þ�5S3ðk2 � k1Þ��S3ðk2 � k1Þ�5�: (47)

Here s�Q
� 1=�2

�Q
and the argument of the vertex

function is

z0 ¼ 1

2
ðk1 � k2 þ w3pÞ2 þ 1

6
ðk1 þ k2 þ ð2w2 þ w3ÞpÞ2:

(48)

The calculational techniques of the matrix elements in the
heavy quark limit can easily be demonstrated for the
example of the structure integral occurring in the heavy
meson case (the extension to the heavy baryon case is
straightforward)

I2ð ��Þ ¼
Z d4k

i�2
esk

2
SQðk1 þ pÞ 1

m2 � k2
; (49)

where s ¼ 1=�2. For simplicity we only keep the product
of the heavy quark propagator and the denominator of the
light quark propagator. We start with the Schwinger repre-
sentation for the quark propagators assuming that both loop
and external momenta are Euclidean. In the Euclidean
region the denominator of the quark propagator is positive
and the integral over the Schwinger parameter is absolutely
convergent. However, to use the Schwinger representation
for the heavy quark propagator in Eq. (41) in a straightfor-
ward way is not quite correct because the HQL has to
be taken in Minkowski space where the denominator is
not necessarily positive. We will use the heavy quark
propagator in the form

SQðk1 þ pÞ ¼ mQð1þ 6vÞ
Z 1

0
d�e��ðm2

Q
�ðk1þpÞ2Þ; (50)

assuming again that all momenta in the exponential are in
the Euclidean region. For the numerator of the heavy quark
propagator we take the HQL: mQ þ 6kþ 6p ! mQð1þ 6vÞ.
Next we demonstrate how to proceed with the HQL for
such a representation. As mentioned above, we start in the
Euclidean region where k2 � 0 and ðkþ pÞ2 � 0. By us-
ing Schwinger’s representation for the heavy quark propa-
gator and the denominator of the light quark propagator,
scaling the Schwinger parameters �i ! t�i and imposing
an infrared cutoff, we arrive at
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I2ð ��Þ ¼ mQð1þ 6vÞ
Z 1=�2

0
dt

t

ðsþ tÞ2

�
Z 1

0
d�e�tð�m2

Qþð1��Þm2��ð1��Þp2Þþ st
sþt�

2p2

: (51)

We will use this representation for the analytical continu-

ation to the physical region p2 ¼ ðmQ þ ��Þ2 with mQ !
1. Note that in a theory without a cutoff (� ! 0) the

integral I2ð ��Þ has a branch point at �� ¼ m. The confine-
ment ansatz allows one to remove this singularity. Then we
scale the integration variable � ! �=mQ with mQ ! 1.

Finally, one has

I2ð ��ÞjmQ!1 ! IHQL2 ð ��Þ

¼ ð1þ 6vÞ
Z 1=�2

0
dt

t

ðsþ tÞ2
Z 1

0
d�e�tð�2�2� ��þm2Þþ st

sþt�
2
:

(52)

The calculation of the HQL for the coupling constant
g�b

and the transition form factors �
�
�b!�ðp1; p2Þ proceed

in the described way. All analytical calculations are done
by FORM [42] and the numerical calculations are done
using FORTRAN. One finds

g�b
¼

�
65:23 GeV�2 exact;

59:44 GeV�2 HQL:
(53)

The coupling constant in the HQL is smaller than the exact
coupling constant only by about 10%, which shows that
one is quite close to the HQL for the �b ! � transitions.
When calculating the HQL for the coupling constant it is

important to keep the numerical value of the parameter ��b

fixed at its physical value ��b ¼ m�b
�mb ¼ 0:53 GeV.

In fact, the value of gHQL�b
depends very sensitively on

the choice of the parameter ��b. For example, if one puts
��b ¼ 0, then one calculates gHQL�b

¼ 185:36 GeV�2,

which differs significantly from the exact result g�b
¼

65:23 GeV�2. This demonstrates how important it is to

keep the physical value of ��b. It is interesting to compare
our results for the coupling constants g�b

and g�c
. For g�c

one finds

g�c
¼

�
69:88 GeV�2 exact;

60:01 GeV�2 HQL:
(54)

One can see that there is a small difference between the
coupling constants in the exact case, while in the HQL they
are practically degenerate. This happens because, as was
emphasized before, the coupling constant g�Q

in the HQL

does not depend on the heavy quark mass. A small differ-
ence of the coupling constants g�b

and g�c
in HQL is due

to dependence on Oðm0
QÞ parameters— �� and �).

The vertex function ��
�b!�ðp1; p2Þ that describes the

heavy-to-light �b ! � transition reads

�
�
�b!�ðp1; p2Þ ¼ 6g�b

g�
DD

���ð�zsÞ ���b
ð�zbÞ

� Ssðk1 þ p2Þ��Sbðk1 þ p1Þ
� tr½Suðk2Þ�5Sdðk2 � k1Þ�5�

EE
; (55)

where

zi ¼ 1

2
ðk1 � k2 þ wi

3p2Þ2 þ 1

6
ðk1 þ k2 þ ð2wi

2 þ wi
3Þp2Þ2:
(56)

In the present application we have to consider two cases of
��: �� and ���5. The loop calculation contains the vari-
able v1p2 that, for a given q

2, is fixed by the kinematics of
the process through

v1p2 ¼
m�b

2

�
1þm2

� � q2

m2
�b

�
; (57)

where p2 and m� are the momentum and mass of the �.
In the heavy quark limit we reproduce the form factor

structure derived previously from heavy quark effective
theory [46–48], which is usually written in the form

�u2ðp2Þ��
�b!�ðp1; p2Þu1ðp1Þ

¼ �u2ðp2Þ½F1ðq2Þ þ F2ðq2Þ6v1���u1ðp1Þ: (58)

Again, for the present application, �� is �� or ���5. From
Eq. (58) one finds

fV;HQL1 ¼ fA;HQL1 ¼ F1 þM2

M1

F2;

fV;HQL2 ¼ fA;HQL2 ¼ �F2;

fV;HQL3 ¼ fA;HQL3 ¼ F2;

(59)

i.e. there are only two independent form factors in the
HQL. We emphasize that the form factor relations
Eq. (59) are valid in the full kinematical region 4m2

‘ �
q2 � ðM�b

�M�Þ2. In Fig. 4 we plot the q2 dependence of
the form factors fV1 and fV2 and compare them to the

corresponding form factors calculated in the HQL. For
the large form factor fV1 the HQL form factor exceeds

the full form factor byOð10%Þ while the small form factor
fV2 is lowered by Oð50%Þ.
It is interesting to compare our HQL form factors with

the corresponding static lattice results presented in [49].
Although the main concern of [49] was the �b ! p form
factors, the authors also present results on the �b ! �
form factors in their Fig. 4. At q2max , where the lattice
calculations are most reliable, one reads off from their
Fig. 4 F1 ¼ 1:28� 0:05 and F2 ¼ �0:30� 0:02, where
the errors are only statistical, compared to the HQL limit-
ing values F1 ¼ 1:21 and F2 ¼ �0:30 in our model. The
agreement is satisfactory. As concerns the q2 behavior of
the form factors our HQL form factors fall off somewhat
more steeply than the static lattice form factors. At
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q2 ¼ 12:4 GeV2, where the lattice results may not be so
reliable, one finds from Fig. 4 of [49] F1 ¼ 0:64� 0:1 and
F2 ¼ �0:11� 0:04, where the errors now include the
systematic errors, compared to our values F1 ¼ 0:31 and
F2 ¼ �0:07. We mention that the static results given in

[49] approximately satisfy the SUð3Þ relation Fið�b !
�Þ ¼ ffiffiffiffiffiffiffiffi

2=3
p

Fið�b ! pÞ (i ¼ 1, 2) derived in Eq. (40).
At the large recoil end of the q2 spectrum soft collinear

effective theory predicts that the form factor F2 vanishes in
the heavy quark limit at the leading order of �s [45,50].

The plot of fV;HQL2 ðq2Þ ¼ �F2ðq2Þ in Fig. 4 shows that our
prediction for F2 reaches a very small albeit nonzero value
at large recoil.

VI. NUMERICAL RESULTS

We begin by presenting our numerical results for the
decay �b ! �þ J=c ð! eþe�; �þ��Þ for which one
can safely use the zero lepton mass approximation (see
Table II). Our results are presented in Tables V, VI, and VII
where we compare them with the available data [1,11] and
predictions of other theoretical approaches [3–10]. In

Table V we present our result on the branching fraction
Bð�b ! �J=c Þ and compare it with data and the results
of other theoretical models. The data value of Bð�b !
�J=c Þ ¼ ð5:8� 0:8Þ � 10�4 is based on the PDG13
value for �ð�b ! �J=c Þ � Bðb ! �bÞ given in [11]
and a value of Bðb ! �bÞ ¼ 0:1 as used in previous edi-
tions of the PDG. Our result on the branching fraction is
based on the lifetime measurement 1:429� 10�12 s as
listed in the 2013 update of the PDG [11]. If one would
instead take the value of 1:482� 10�12 s reported in [51],
one would have to scale our result on the branching frac-
tion upward by 3.7%. For easy comparison we have taken
the freedom to present the results of [9,10] using our
parameters (�b life time, CKM matrix elements and
Wilson coefficients). Our branching fraction is slightly
larger than those of [9,10]. All three branching fractions
are somewhat larger than the experimental PDG average
value. To judge on the significance of this discrepancy one
would have to wait for an absolute measurement of the
branching fraction Bð�b ! �J=c Þ. We mention that the
remaining theoretical branching fractions in Table V would
have to be readjusted upward by (4–7)% (depending on the
year of publication) if the new 2013 lifetime measurement
of the LHCb Collaboration [51] is used.
In Table VI we present our result for the asymmetry

parameter �b and compare it with the data and the results
of other theoretical models. In agreement with the mea-
surement the theoretical results on the asymmetry parame-
ter come out to be quite small. Since the measurement
carries large error bars, one cannot really draw any con-
clusions on the quality of the agreement between the
experiment and the model predictions.
In Table VII we compare our predictions for the

asymmetry parameters and the moduli squared of the
normalized helicity amplitudes with the corresponding
measurements of [1]. The fourth column of Table VII
contains our predictions for the corresponding quantities
in the decay �b ! �þ c ð2SÞ, which differ notably from
the corresponding quantities in the �b ! �þ J=c mode.
The numerical results clearly show the dominance of the
�� ¼ �1=2 helicity configurations in both cases where the
dominance is more pronounced for the�b ! �J=c mode.
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FIG. 4 (color online). Comparison of the form factors Vi �
fVi ðq2Þ vs VHQL

i � fV;HQLi ðq2Þ (i ¼ 1, 2).

TABLE V. Branching ratio Bð�b ! �þ J=c Þ (in units of 10�4).

Our result Theoretical predictions Data [11]

8.9 2.1 [3]; 1.6 [4]; 2.7 [5]; 6.04 [6];

2.49 [7]; 3:45� 1:81 [8]; 8.4 [9]; 8.2 [10]

5:8� 0:8 (PDG average) [11]

TABLE VI. Asymmetry parameter �b.

Our result Theoretical predictions Data [1]

�0:07 �0:11 [3]; �0:10 [4]; �0:21 [5]; �0:18 [6];

�0:208 [7]; �0:155� 0:015 [8]; �0:10 [9], �0:09 [10]

�0:04� 0:17� 0:07
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For the �b ! �J=c mode the agreement between our
results and the data is quite satisfactory.

Using our results in Table VII we can calculate the three
measures Eqs. (26)–(28) characterizing the single angle
decay distributions Eqs. (21)–(23). For the polarization
related FB asymmetry AFBj� calculated in Eq. (26) one
obtains

AFBj� ¼ �0:035Pb: (60)

The analyzing power related to the measurement of the
�b-polarization Pb is quite small due to the fact that in our

model jĤþ1
20
j2 	 jĤþ1

2þ1j2 	 0 and jĤ�1
20
j2 	 jĤ�1

2�1j2
leading to a very small value of the parameter �b. This is
reflected in the poor precision of the polarization measure-
ment Pb ¼ 0:05� 0:07� 0:02 reported by the LHCb
Collaboration [1].

The second measure AFBj�1 related to the hadron-side

decay� ! p�� is nearly maximal in our model due to the
fact that the longitudinal polarization of the daughter
baryon � is close to its maximal value. From Table VII
one finds P‘

� ¼ 2r1 � �b ¼ �0; 99 and P‘
� ¼ �0:97 for

the decays�b ! �þ J=c and�b ! �þ c ð2SÞ, respec-
tively. For the decay �b ! �þ J=c the FB asymmetry is
given by [see Eq. (27)]

AFBj�1 ¼P‘
���¼ð2r1��bÞ��¼�0:64ð�0:62Þ; (61)

where we have used the experimental value for the asym-
metry parameter �� ¼ 0:642 [11] and where we have
added the corresponding number for the �b ! �c ð2SÞ
mode in round brackets.

Next we discuss the lepton-side cos �2 distribution (23)
for the decay �b ! �Vð! ‘þ‘�Þ, which is governed by
the polarization of the vector charmonium state V. The

transverse/longitudinal composition of the vector charmo-

nium state V is given by Û: L̂ ¼ ð1� r0Þ: r0, where Û is

the sum of the transverse helicity contributions jĤþ1
2þ1j2 �

jĤ�1
2�1j2. As mentioned before the electromagnetic decay

V ! ‘þ‘� is not sensitive to the difference of the two
transverse helicity contributions. Table VII shows that the
transverse and longitudinal states are approximately
equally populated for both vector charmonium states lead-
ing to an approximate angular decay distribution of

Ŵð�2Þ � 3
16 ð3� cos 2�2Þ for " ¼ 0. The exact numbers

are Û: L̂ ¼ 0:47:0:53 and 0:55:0:45 for V ¼ J=c and V ¼
c ð2SÞ, respectively. In Fig. 5 we plot the cos� distribution
for the decay�b ! �J=c ð! eþe�Þ. The convexity of the
distribution is characterized by the convexity parameter cf
defined in Eq. (28) for which we obtain cf ¼ �0:44.

Negative convexities correspond to a downward open pa-
rabola for the decay distribution as is also evident from
Fig. 5. Figure 5 also contains a plot of the cos�2 distribu-
tion for the case �b ! �c ð2SÞð! �þ��Þ for which the
convexity parameter is given by cf ¼ �0:016 implying an

almost flat cos �2 distribution. Because of the small factor
v2 ¼ 1� 4" ¼ 0:071 in the cos�2 distribution Eq. (23)

TABLE VII. Asymmetry parameters and moduli squared of normalized helicity amplitudes.

Data [1] Our results

Quantity �J=c mode �J=c mode �c ð2SÞ mode

�b �0:04� 0:17� 0:07 �0:07 0.09

r0 0:57� 0:02� 0:01 0.53 0.45

r1 �0:59� 0:10� 0:05 �0:53 �0:44
jĤþ1

20
j2 �0:01� 0:04� 0:03 0:46� 10�3 0:33� 10�2

jĤ�1
20
j2 0:58� 0:06� 0:03 0.53 0.45

jĤ�1
2�1j2 0:49� 0:05� 0:02 0.47 0.54

jĤþ1
2þ1j2 �0:06� 0:04� 0:03 0:31� 10�2 0:12� 10�1

TABLE VIII. Branching ratios Bð�b!�þc ð2SÞð!‘þ‘�ÞÞ
in units of 10�6.

Mode Our results

�b ! �þ eþe� 5.61

�b ! �þ�þ�� 5.61

�b ! �þ �þ�� 2.18

-1 -0.5 0 0.5 1
cos(θ)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

J/ψ, electron mode
Ψ(2S),τ-mode

FIG. 5 (color online). Polar angle distribution Ŵð�2Þ for the
two cases �b ! �þ J=c ð! eþe�Þ and �b ! �þ c ð2SÞ�
ð! �þ��Þ.
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the lepton side has lost all of its analyzing power in this
case.

As has already been argued after Eq. (29) one expects
a minimal azimuthal correlation of the two decay
planes spanned by (p��) and (‘þ‘�). In the zero lepton
mass approximation one obtains the azimuthal decay
distribution [see Eq. (33)]

AFBð�Þ ¼ �

8
ffiffiffi
2

p �� ReðĤ1
21
Ĥy

�1
20
� Ĥ�1

2�1Ĥ
y
1
20
Þ cos�

¼ �0:0046 cos�; (62)

where the numerical value can be obtained from the entries
in Table VII with the additional information that our model
helicity amplitudes (which are real) with helicities �� ¼
�1=2 and �� ¼ 1=2 are positive and negative, respec-
tively. As expected, the azimuthal correlation between
the two decay planes spanned by (p��) and (‘þ‘�) is
negligibly small. We do not write out the result for the
decay �b ! �þ c ð2SÞð! �þ��Þ since the additional
factor of ð1� 4"Þ=ð1þ 2"Þ ¼ 0:049 in (23) reduces the
correlation measure to a value close to zero.

Finally, we calculate the cascade �b ! �þ c ð2SÞ�
ð! ‘þ‘�Þ-decay width by using the zero width
approximation

Bð�b ! �þ c ð2SÞð! ‘þ‘�ÞÞ
¼ Bð�b ! �þ c ð2SÞÞBðc ð2SÞ ! ‘þ‘�Þ: (63)

We take the value of the leptonic decay constant
fc ð2SÞ ¼ 286:7 MeV from the electronic mode measured

experimentally and employ the formula

�ðc ð2SÞ ! ‘þ‘�Þ

¼ 16��2

27

f2c ð2SÞ
mc ð2SÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘

m2
c ð2SÞ

s �
1þ 2m2

‘

m2
c ð2SÞ

�
(64)

to evaluate the other modes. The results for the branching
ratios of the decays �b ! �þ c ð2SÞð! ‘þ‘�Þ are given
in Table VIII. Again, one can see that the �-lepton
mass plays an essential role in reducing the value of the
decay width as compared to the electron and muon
modes. Our prediction for the branching fraction of the

�b ! �þ c ð2SÞ transition is (based on the lifetime value
��b

¼ 1:429� 10�12 s)

Bð�b ! �þ c ð2SÞÞ ¼ 7:25� 10�4: (65)

VII. SUMMARY

We have performed a detailed analysis of the decay
process �b ! �þ J=c in the framework of the covariant
quark model. We have worked out two variants of threefold
joint angular decay distributions in the cascade decay
�b ! �ð! p��Þ þ J=c ð! ‘þ‘�Þ for polarized and un-
polarized �b decays. We have reported our numerical
results on helicity amplitudes, on the rate and on the
asymmetry parameters in the decay processes �b ! �þ
J=c and �b ! �þ c ð2SÞ. We have included the decay
�b ! �þ c ð2SÞ in our analysis since this decay allows
one to discuss nonzero lepton mass effects in the kinemati-
cally allowed decay�b ! �þ c ð2SÞð! �þ��Þ. We con-
firm expectations from the naive quark model that the
transitions into the �� ¼ 1=2 helicity states of the daughter
baryon � are strongly suppressed leading to a near maxi-
mal negative polarization of the�. For the same reason the
azimuthal correlation between the two decay planes
spanned by (p��) and (‘þ‘�) is negligibly small. We
have compared our results with the available experimental
data and with the results of other theoretical approaches. In
a separate section we have presented form factor results
over the whole accessible range of q2 values. These results
are close to lattice results at minimum recoil and to LCSR
results at maximum recoil.
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