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We show that the magnitude of the order parameters in the Polyakov–Nambu–Jona-Lasinio (PNJL)

model given by the quark condensate and the Polyakov loop can be used as a criterion to clearly identify,

without ambiguities, phases and boundaries of the strongly interacting matter, namely, the broken/restored

chiral symmetry and confinement/deconfinement regions. This structure is represented by the projection

of the order parameters in the temperature-chemical potential plane, which allows a clear identification of

pattern changes in the phase diagram. Such a criterion also enables the emergence of a quarkyonic phase

even in the two-flavor system. We still show that this new phase diminishes due to the influence of an

additional vector-type interaction in the PNJL phase diagrams and is quite sensitive to the effect of the

change of the T0 parameter in the Polyakov potential. Finally, we show that the phases and boundaries

constructed by our method indicate that the order parameters should be more strongly correlated, as in the

case of the entanglement PNJL model. This result suggests a novel way to pursue further investigation of

new interactions between the order parameters in order to improve the PNJL model.
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I. INTRODUCTION

In the large distances, or equivalently, low energies
regime, one of the methods to treat quantum chromody-
namics (QCD) is the numerical lattice calculations [1]
based on Monte Carlo simulations [2]. The results from
these techniques are provided for the pure gluon sector, i.e.,
in the limit of infinitely heavy quarks, as well as for
systems including dynamical quarks. The latter systems,
however, face the fermion sign problem [3] at the finite
quark chemical potential (�q) regime. Nevertheless, such a

problem is circumvented by reweighting methods, density
of state ones, and others, see Refs. [4–8] for such treat-
ments. Different from this method, another approach to
describe QCD is the use of effective models such as the
MIT bag model [9] and the Nambu–Jona-Lasinio (NJL)
one [10–12]. The former treats gluons and massless quarks
as free particles in which the confinement phenomenon is
incorporated by including a bag constant in an ad hoc
fashion. The latter presents further similarities with the
full QCD theory but does not take into account the con-
finement, since quarks interact each other via pointlike
interactions without exchanged gluons.

In order for the NJL model to become more realistic and
taking into account the quark confinement at low energies,
Fukushima [13] developed the Polyakov–Nambu–Jona-
Lasinio model (PNJL), in which the confinement is in-
cluded in the NJL structure through the Polyakov loop

� ¼ e�Fq=T , where Fq stands for the quark free energy

(in Ref. [14], it is argued that� can be also represented by
hadronic states). From this widely studied effective QCD
model [15–28], much information on the strongly

interacting matter can be obtained, such as its phase
diagram [29], where the proper broken/restored chiral
symmetry and confinement/deconfinement regions are
identified. Other typical approaches are the use of two
equations of state [30] in the description of the quark phase
and the hadronic one [31], as well as hybrid models [32].
Moreover, other effective models coupled to the Polyakov
loop are equally useful [33–38].
Different ways based on different criteria to construct the

phase diagram in the T ��q plane are addressed in the

literature. In this work we compare such criteria and present
a new criterion in order to clearly identify the regions and
boundaries of the quark phase diagram generated exclu-
sively from the PNJL model. Our analysis suggests that the
order parameters should be correlated as in the entangle-
ment PNJL model if the coincidence seen for the chiral and
confinement transitions obtained from lattice QCD calcu-
lations at high T and very small �q is also confirmed for

small temperatures and larger quark densities’ values. This
investigation follows a sequence of studies presented by our
group in previous works [39,40], all of them motivated by
the search of a better description of phases and boundaries
of strongly interacting matter, specifically through analysis
of PNJL phase diagrams.
The regime of high�q and very low temperatures is very

important to investigate the existence of quark matter in the
core of neutron stars or even in bare quark stars [41], one of
the most important questions nowadays concerning the
internal matter composition of compact stars, in particular,
if the quarkyonic phase is presented or not. Therefore, our
findings are useful, for instance, in the study of protoneu-
tron stars that are described at T < 50 MeV. Applications
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of PNJL models to compact stars have been done recently
for the protoneutron stars’ evolution [42,43], for quarks
[44], and for hybrid stars [45]. Furthermore, we also point
out that investigations of the quark phase diagram are
relevant for a deeper understanding of the strongly inter-
acting matter. The predictions of such studies, especially
at the high density regime, will be tested in future
experiments [46,47].

The paper is organized as follows. In Sec. II the basic
thermodynamical quantities of the PNJL model are pre-
sented along with the distinct Polyakov potentials used in
the literature. In Sec. III we discuss the PNJL phase dia-
grams constructed from different criteria and present our
new method based on the magnitude of the order parame-
ters. We also discuss the effect of the repulsive interaction
in the PNJL phase diagrams obtained from our method.
The change of a specific parameter in the Polyakov poten-
tial of the PNJLmodel is analyzed in this section, as well as
the entanglement PNJL (EPNJL) model. Finally, in Sec. IV
we present a summary and our main conclusions.

II. PNJL MODEL

The connection between the fermion (q) and the gauge
(A�) field in the PNJL model is achieved by making the
substitution @� ! D� ¼ @� � iA� in the Lagrangian den-

sity, where A� ¼ ��
0 A0 and A0 ¼ gA0

�
��

2 (g is the gauge

coupling and �� are the Gell-Mann matrices). Techniques
from field theory at finite temperature, as those used in
Ref. [19], are applied to get the following grand canonical
potential per volume:

�PNJL ¼ Uð�;��; TÞ þGs�
2
s � �

2�2

Z �

0
Ek2dk

� �

6�2

Z 1

0

k4

E
dk½FðE; T;�q;�;��Þ

þ �FðE; T;�q;�;��Þ�; (1)

where E ¼ EðMÞ ¼ ðk2 þM2Þ1=2, �s is the quark conden-
sate given by �s ¼ h �qqi ¼ h �uui þ h �ddi ¼ 2h �uui in the
isospin symmetric system, and � ¼ Ns � Nf � Nc ¼ 12

is the degeneracy factor due to the spin (Ns ¼ 2), flavor
(Nf ¼ 2), and color numbers (Nc ¼ 3). The constituent

quark mass is M ¼ m0 � 2Gs�s. The second integral in
Eq. (1) leads to the expected Stefan-Boltzmann limit, since
the momentum of the active quarks are unconstrained.

The traced Polyakov loop is defined in terms of A4 ¼
iA0 � T� as

� ¼ 1

3
Tr

�
exp

�
i
Z 1=T

0
d	A4

��
¼ 1

3
Tr½exp ði�Þ�

¼ 1

3
Trfexp ½ið�3�3 þ�8�8Þ�g

¼ 1

3
½eið�3þ�8=

ffiffi
3

p Þ þ eið��3þ�8=
ffiffi
3

p Þ þ e�2i�8=
ffiffi
3

p
� (2)

in a gauge (Polyakov gauge) in which the gluon field is
written in terms of the diagonal Gell-Mann matrices as
� ¼ �3�3 þ�8�8, with �3, �8 2 R. Here, the defini-
tions�3 ¼ A3

4=T and�8 ¼ A8
4=T were taken into account.

It is worth mentioning that�� is the complex conjugate of
the complex field �.
As pointed out in Refs. [22,23], an important conse-

quence of the coupling between � and the quark sector
is the possibility to deal with the PNJL model in the same
theoretical way as in the NJL one, regarding the statistical
treatment. However, in this case new distribution functions
for quarks and antiquarks appear and are given by

FðE; T;�q;�;��Þ

¼ �e2ðE��qÞ=T þ 2��eðE��qÞ=T þ 1

3�e2ðE��qÞ=T þ 3��eðE��qÞ=T þ e3ðE��qÞ=T þ 1
;

(3)

and �FðE; T;�q;�;��Þ ¼ FðE; T;��q;�
�;�Þ general-

ized from the usual Fermi-Dirac distributions by the in-
clusion of � and ��. Another difference in the PNJL
model is the Polyakov loop potential Uð�;��; TÞ. Some
versions of this potential were proposed in the literature,
and following the language of Ref. [25], we refer to two of
them by RTW05 [18] and RRW06 [19–24]. The other two
are FUKU08 [25] and DS10 [48]. Their functional forms
are given, respectively, by

URTW05

T4
¼ � b2ðTÞ

2
��� � b3

6
ð�3 þ��3Þ þ b4

4
ð���Þ2;

(4)

URRW06

T4
¼ �b2ðTÞ

2
��� þ b4ðTÞ ln ½hð�;��Þ�; (5)

UFUKU08

bT
¼ �54e�a=T��� þ ln ½hð�;��Þ�; (6)

UDS10 ¼ ða0T4 þ a1�
4
q þ a2T

2�2
qÞ�2

þ a3T
4
0 ln ½hð�;�Þ�; (7)

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
; (8)

hð�;��Þ ¼ 1� 6��� þ 4ð�3 þ��3Þ � 3ð���Þ2; (9)

and b4ðTÞ ¼ b4ðT0=TÞ3. The constants of these parametri-
zations are given in Table I.
In a general way, the Polyakov potentials are constructed

in order to reproduce the well-established data from lattice
calculations of the pure gluon sector (where � ¼ ��)
concerning the temperature dependence of the Polyakov
loop and its first order phase transition characterized by
the jump of � from the vanishing to a finite value at
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T0 ¼ 270 MeV (see the dotted curve of Fig. 2 in Ref. [19],
for instance).

The free parameters � ¼ 651 MeV, m0 ¼ 5:5 MeV,
and Gs ¼ 5:04 GeV�2, are obtained from the NJL sector
of the PNJL model in order to reproduce the vacuum values

of m� ¼ 140:51 MeV, f� ¼ 94:04 MeV, and jh �uuij1=3 ¼
251:32 MeV for the pion mass, the pion decay constant,
and the quark condensate, respectively.

To completely define the model, and consequently con-
struct its phase diagram, one needs to evaluate the order
parameters. This is done by requiring that �PNJL is mini-
mized with respect to the set of fields of the model, i.e., �s,
�3,�8, or, equivalently, �s,�,��. Therefore, the condition

@�PNJL

@Xi

¼ 0 (10)

with Xi ¼ �s,�3,�8 or Xi ¼ �s,�,�� has to be satisfied.
However, as pointed out in Ref. [49] in the context of the
Polyakov-quark-meson model, Eq. (10) is only a necessary
but not a sufficient condition to ensure that the values of Xi

minimize �PNJL. The authors discuss two distinct situ-
ations in which �PNJL presents no minima. The first of
them is related to the fact that �PNJL is in general a
complex-valued function due to the complex fields � and
��. In this case, the minimum cannot be defined. One way
to circumvent this problem very often used in the literature
is to make�PNJL a real function by requiring that� and��
be real and independent quantities. However, this assump-
tion itself is not sufficient to ensure that the conditions (10)
provide a field configuration which minimizes �PNJL.

The authors of Ref. [49] show that some Polyakov
potentials, such as RTW05 and RRW06 given, respec-
tively, in Eqs. (4) and (5), are unbounded from below for
some values of the real quantities � and ��. For instance,
it was shown that for �� ! 1 and � ¼ 0, one has
URTW05, URRW06 ! �1. Therefore, there are no minima
for �PNJL in such cases, even with �PNJL being a real
function. In order to ensure that the real fields minimize
�PNJL, the authors suggest the use of condition (10) with
the additional positivity constraint of all eigenvalues of the
respective i� i Hessian matrix. The use of Eq. (10) with-
out additional constraints to find the mean fields of the
model is called the saddle point approach, frequently used
in literature.

In our work, we will use the mean-field approxima-
tion described in Refs. [20,21] that takes into account the

mean-field configuration in which �8 ¼ 0 in Eq. (2). In
this case, � ¼ �� ¼ ½2 cos ð�3Þ þ 1�=3 even for �q > 0,

which leads to �PNJL 2 R. Another feature of this ap-
proach is that we do not have the problem of
URTW05;URRW06 ! �1, previously raised.
The condition given in Eq. (10), namely,

@�PNJL

@�s

¼ @�PNJL

@�
¼ 0; (11)

generates the following set of coupled equations to be
solved:

M�m0 þ 2Gs�s½M;EðMÞ; T; �q;�� ¼ 0; (12)

and

@Uð�; TÞ
@�

� 3T�

2�2Nc

Z 1

0
k2dk½gðEðMÞ; T; �q;�Þ

þ gðEðMÞ; T;��q;�Þ� ¼ 0; (13)

where the function gðE; T;�q;�Þ leads to
gðE; T;�q;�Þ

¼ 1þ e�ðE��qÞ=T

3�½1þ e�ðE��qÞ=T� þ eðE��qÞ=T þ e�2ðE��qÞ=T :

(14)

The quark condensate is given by

�s ¼ �M

2�2

Z 1

0

k2

E
dk½FðE; T;�q;�Þ þ �FðE; T;�q;�Þ�

� �M

2�2

Z �

0

k2

EðMÞdk: (15)

Our study is based on the aforementioned saddle
point approach. In addition, in the case of the mean-
field approximation used here (�8 ¼ 0), we have also
checked the sign of the Hessian matrix eigenvalues. In
general, our solutions correspond to minima of �PNJL.
Negative eigenvalues were found only for a small region
of T and �q around the first order phase transition.

Nevertheless, the projection of the order parameters in
the T ��q plane from the saddle point approach that we

will present in the next section does not differ signifi-
cantly from the one obtained by the method proposed in
Ref. [49]. Our calculations confirm the findings of
Ref. [49], that the phase boundary is not changed by
considering the saddle point approach for the RRW06
potential adopted in our work.
It is worth noting that in such equations, we still did not

consider the repulsive interaction, which has its magnitude
given by the coupling constant GV . The impact of this
specific interaction in the phase diagrams will be analyzed
in Sec. III B, and in these cases, the saddle point solutions
provide minima of �PNJL.

TABLE I. Dimensionless parameters of the potentials given in
Eqs. (4), (5), and (7). The constants of the FUKU08 potential are
given by a ¼ 664 MeV and b ¼ 0:03�3 MeV3.

Potentials a0 a1 a2 a3 b3 b4

RTW05 6.75 �1:95 2.625 �7:44 0.75 7.5

RRW06 3.51 �2:47 15.22 . . . . . . �1:75
DS10 �1:85 �1:44� 10�3 �0:08 �0:40 . . . . . .
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III. RESULTS AND DISCUSSION

A. Phase diagrams without vector interaction

For each pair (T;�q), the Eqs. (11) and (13) are solved

for the quantitiesM and the Polyakov loop that are used in
Eq. (15) in order to evaluate the quark condensate. In this
way, one has for the given pair (T;�q) both order parame-

ters, �s and �, basic thermodynamical quantities used to
construct the quark phase diagram. Frequently, many au-
thors use the criterion of finding the maxima of @�s=@T
and @�=@T to generate the T ��q diagram. Thus, from

this assumption, one can obtain the following behavior
depicted in Fig. 1 constructed for the RRW06 parametri-
zation at vanishing chemical potential.

This behavior indicates a smooth crossover instead of a
first order phase transition. Therefore, the transition tem-
perature (or the pseudocritical temperature, as it is also
named) is defined as that in which a maximum is found. In
the case of �q ¼ 0, the maxima of @�s=@T and @�=@T

occur practically at the same temperature, T � 220 MeV.
Thus, the corresponding point in the T ��q plane for this

case is �q ¼ 0, T � 220 MeV.

The peak structure of @�=@T exhibited in Fig. 2(a) does
not keep the same as in Fig. 1 for higher chemical potential
values. Notice that from a determined chemical potential
value, a multiple extrema structure takes place in @�=@T,
different from the @�s=@T case, that presents only one
maximum for any chemical potential, see Fig. 2(b). For
those @�=@T curves in which this effect is exhibited, the
first peaks always coincide with those in the @�s=@T curve
at the same �q. The reason can be understood from the

coupling between Eqs. (12) and (13). The peak in @�=@T
coming from the abrupt fall in the quark condensate is

reflected in the Polyakov loop via Eq. (13), since E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðm0 � 2Gs�sÞ2

p
. This variation in �s influences �

also generating an abrupt change in its value and, conse-
quently, a peak in @�=@T. The second peak is uniquely

coming from the Polyakov loop dynamics itself since in
this temperature range, the quark condensate practically
vanishes. This possibility of more than one peak in the
temperature derivatives of the order parameters was already
reported for the PNJL model [36], as well as in the linear
sigma model coupled with the Polyakov loop [36–38].
We point out here that the construction of the phase

diagram based on the choice of the coincident peaks in
@�s=@T and @�=@T leads to a situation where the region in
which the chiral symmetry is broken (restored) and that
one in which the quarks are confined (deconfined) are
exactly the same. Therefore, there is no possibility to
identify, following this criterion, a quarkyonic phase [50]
region where the chiral symmetry is restored but with
quarks still confined.
Another criterion used to construct the PNJL diagrams is

to investigate the magnitude of the order parameters, since
their values are directly related to the symmetries that are
broken or are not in the regions delimited by the boundary
curves in the T ��q plane. It is well known that �s � 0

indicates broken chiral symmetry, and �s ¼ 0 means that
this symmetry is restored. The same concept is adopted for
the Polyakov loop �. The difference is that the involved
symmetry is the center symmetry, closely associated with
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FIG. 1. Temperature derivatives of the order parameters as a
function of T for the RRW06 parametrization at �q ¼ 0.
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FIG. 2 (color online). Temperature derivatives of (a) � and
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 ¼ �s=�sðvacÞ, as a function of T at finite �q values.

M. DUTRA et al. PHYSICAL REVIEW D 88, 114013 (2013)

114013-4



the confinement phenomenon [51]. In this case, the pseu-
docritical temperature is defined by Fukushima [25] as that
in which all the order parameters normalized by its vacuum
values (with exception for the Polyakov loop) reach the
value of 1=2. Thus, the author constructed three distinct
boundary curves, also identifying the quarkyonic phase, in
this case for the SU(3) version of the PNJL model, see
Fig. 12 of Ref. [25].

Our purpose here is to furnish an alternative and more
natural criterion to identify the different quark phases and
their boundary curves while also using the magnitude of �s

and�. The method is based on the analysis of the projected
surface of the order parameters as a function of T and
�q. An example is given in Fig. 3 for the RRW06

parametrization.
The broken and restored chiral symmetry regions are

very well defined, as well as their boundaries in the left
panel. In the � plot (right panel), one can also recognize

the confined and deconfined quark phases. The interesting
feature in this diagram is the natural emergence of a phase

between the confined and the deconfined one. To become
clear that such a phase is the quakyonic one, we plot inside
these diagrams the curves delimiting all regions. The result

is shown in Fig. 4.

The lower full curves were generated by making fixed
the value of �s=�sðvacÞ. From Fig. 3, the color code suggests

that the 1=2 value is a good representative of the boundary
between the broken and restored chiral symmetry phases.
In the case of the Polyakov loop curves, upper full ones, we
found� ¼ 0:4 as a reasonable value to delimit the onset of
the deconfined quark phase. We remark here that other
values could represent this boundary line, depending on
the used model. The authors of Ref. [24] (see their Figs. 1
and 5) used a value of � ¼ 0:3 for the nonlocal version of
the PNJL model in the chiral limit and for finite quark
masses but using a Landau expansion and susceptibilities
to find the crossover chiral line. Also, Fukushima defined
�s=�sðvacÞ ¼ � ¼ 1=2 to represent the �s=�sðvacÞ and �

boundaries in the PNJL-SU(3) model [25], claiming that
the magnitude of the order parameter was a more suitable
quantity to probe the physical state of matter. Here,
we construct the boundary lines by finding the suitable
values of the order parameters from their projection on the
T ��q plane.

From Fig. 4 is clear that the region between the two full
lines is the quarkyonic phase exhibited in our calculations
even in the SU(2) version of the PNJL parametrizations
presented here. In the same figure, we also furnish the first
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FIG. 3 (color online). Order parameters’ surfaces �s (left panel) and � (right panel) projected in the T ��q plane.
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Full circle curves: obtained from the peaks in @�s=@T and @�=@T. Dashed lines: first order phase transitions curves.
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order transition lines (dashed ones). In order to clarify the
definition of the solid boundaries in Fig. 4, we present in
Fig. 5 the temperature dependence of the order parameters
for �q ¼ 0. In this figure, we show by the circles the

peaks’ positions of @�=@T and @�s=@T. The position of
the points in which � ¼ 0:4 and �s=�sðvacÞ ¼ 1=2 are

denoted by the crosses.
In order to compare this new method of construction of

the boundary lines with those that use the peaks criterion,
we also display in Fig. 4 the points corresponding to the
peaks of @�s=@T and @�=@T. In the range of 0<�q &

270 MeV, the derivative curves present only one peak that
is almost coincident, see Fig. 2. Therefore, it is possible
to determine only one curve in the T ��q plane (circles

starting at �q ¼ 0 in Fig. 4). From �q � 270 MeV, the

@�=@T curve presents two peaks, one of them, the first
one, the same as in the @�s=@T curve. The second peaks of
@�=@T are represented in Fig. 4 by the circles starting at
�q � 270 MeV. The composition of the first and second

peaks’ lines leads to delimit a smaller quarkyonic phase
when we compare it to that obtained by the region between
the two full lines. This feature is also verified when we add
an additional vector interaction in the PNJL model.

In the cases in which one chooses only the first peaks in
the @�=@T curve, the circles starting at �q � 270 MeV

would not appear, and consequently, there would be no
quarkyonic phase. In this case, the quark phase diagram
would lose essential information. This does not happen if
we use the method of the magnitude of the order parame-
ters to construct the boundary curves. The quarkyonic
phase is always present in the phase diagram.

We have checked that by using � � ��, the phase
diagrams are not altered significantly. We illustrate our
computation in Fig. 6 for the potential RRW06, which
should be compared with Fig. 3. We present results of the
phase diagrams for �s, �, and ��. We observe negligible
differences in the� and�� projections compared to the�

one for the� ¼ �� case shown in Fig. 3. The same pattern
is verified in the case of �s.
Our results corroborate the findings of Ref. [18]

for a single �q value, giving support to the assumption

� ¼ �� used in our work for a large region of �q > 0 and

necessary for the study of PNJL phase diagrams.

B. Effect of the vector interaction

It is known that a vector-type interaction in the PNJL
model is responsible for shrinking the first order phase
transition [25,52,53]. Therefore, the critical end point is
moved in the direction to be completely removed, as the
strength of the interaction is increasing. The same effect
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FIG. 5. Order parameters as a function of T. Circles: peaks’
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could also be observed in the NJL model [11,54]. The
inclusion of a vector term of the form �GVð �q��qÞ2 in
the PNJL Lagrangian density modifies the grand canonical
potential as

�PNJLð�q; T;�Þ ! �PNJLð ~�q; T;�Þ �GV�
2; (16)

with

~�q ¼ �q � 2GV� (17)

being the effective chemical potential and � the quark
density. All the other quantities and equations are modified
by making �q ! ~�q. Therefore, besides Eqs. (12) and

(13), Eq. (17) should be taken into account also in the
self-consistent solutions of the order parameters.

Other effect of the vector interaction is to change the
double peak structure in @�=@T compared to the case in
which GV ¼ 0. Figure 7 shows this behavior for the GV ¼
0:2Gs case. Notice that in this case, there is only one peak.
The boundary curve constructed from the analysis of
@�=@T is shown in the � projected curve in the T ��q

plane of Fig. 8. In the same figure, we also show the
boundary lines constructed by taking the fixed values of
�s=�sðvacÞ ¼ 1=2 and � ¼ 0:4.

It is clear that if the peak’s criterion in @�=@T is adopted
in this situation, the obtained curve is not sufficient to
correctly delimit all the possible phases of the system, as
in the case of GV ¼ 0, see Fig. 4. Therefore, it is also
necessary to use the peaks of @�s=@T to make clear the
distinct regions. Notice also the difference between the
curve obtained via the @�=@T peaks and that constructed
via � ¼ 0:4. The latter one is more precise in the descrip-
tion of the boundary of the confinement/deconfinement
phases.

Finally, we show how the strength of the vector interac-
tion affects the quarkyonic phase in the PNJL model.
Figure 9 shows the behavior of the order parameters for
some values of GV . The pattern exhibited shows that the

quarkyonic phase tends to become smaller as GV is
increased.
Even with such bands shown when GV is increased, it is

still possible to use the magnitude of the order parameters
to define boundaries of the broken/restored chiral symme-
try and confinement/deconfinement phases. Indeed, we
have studied in Ref. [40] the quark phase diagrams of
PNJL models constructing the boundary of the broken/
restored chiral symmetry phase, for distinct GV values,
using different values of �s=�sðvacÞ. Notice also a diffusing

effect on the values of �s, mainly at higher values of�q. A

similar behavior is also verified for different values of the
T0 parameter in the PNJL models even at GV ¼ 0. In next
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subsection, we show the case for T0 ¼ 205 MeV in the
RRW06 parametrization.

Notice also that the effect of moving the boundary
related to the broken/restored chiral symmetry phases is
not observed in the� projection. In this case, the boundary
of the confined/deconfined phases remains unchanged. The
quarkyonic phase is moved to the direction of increasing
�q values, but the phase related to free massless quarks is

unaffected.
As a last remark of the inclusion of the vector interac-

tion, we point out that the projections of the order parame-
ters generated by the saddle point approach and by the
method of Ref. [49] are exactly the same, since for the
values of GV used here, there are no regions of first order
phase transitions, and therefore, no regions of negative
eigenvalues of the Hessian matrix.

C. Effect of the T0 parameter and the EPNJL model

The Polyakov potentials presented in Eqs. (3)–(5) have
their free parameters adjusted to correctly reproduce some
lattice QCD results for the pure gluon sector (quenched
approximation). In particular, the value of T0 ¼ 270 MeV
is the temperature in which the gluonic system presents a
first order phase transition. The discontinuity in this case
is verified in the Polyakov loop plotted as a function
of T. With the found parameters, the PNJL model is used
to describe, in an effective way, the system with quarks
and gluons. However, the transition temperature found
in the PNJL models at �q ¼ 0 is higher than that

obtained by lattice QCD calculations. The latter is given
by 173� 8 MeV [55]. The former is calculated as
Tð�q ¼ 0Þ> 200 MeV through the peak’s criterion or

even using the magnitude of the order parameters (projec-
tion in the T ��q), see the starting point at �q ¼ 0 of the

circles and full curves in Fig. 4.
In order to make the PNJL model consistent with the

lattice results at�q ¼ 0, the rescaling in T0 is often used in

the literature. The change to T0 ¼ 190 MeV decreases the
transition temperature of the PNJL models at zero chemi-
cal potential to compatible values when the peak’s criterion
is adopted. However, as pointed out in Ref. [18], the peaks
of @�s=@T and @�=@T are not coincident anymore, as in
the case in which T0 ¼ 270 MeV. Due to lattice QCD,
studies indicate that quark deconfinement and chiral res-
toration occurs at the same temperature at �q ¼ 0; this

problem is circumvented in the PNJL model by taking the
average temperatures associated to the peaks of @�s=@T
and @�=@T. Such a procedure generates only one bound-
ary curve in the T ��q plane, characterizing one region in

which (i) chiral symmetry is broken with confined quarks,
and (ii) the other one presenting restoration of chiral
symmetry and deconfined quarks. There is no possibility
of a quarkyonic phase (restored chiral symmetry and con-
fined quarks). This is not the case if we construct the

boundary curves from the analysis of the �s and � projec-
tions, as we will make clear below.
If the projection of the order parameters in the T ��q

plane is used, it is also possible find suitable values of the
transition temperature in the PNJL model at �q ¼ 0. This

is done in Fig. 10 by rescaling T0 from 270 to 205 MeV.
Important points regarding the phase diagrams exhibited

in this figure deserve to be discussed. First of all, notice
that the change in the T0 parameter makes the boundary of
the broken/restored chiral symmetry phases larger than that
presented in Fig. 3. The ‘‘red line’’ in Fig. 3 gives rise to the
‘‘red band’’ in Fig. 10. It means that if we want to construct
a boundary curve in the T ��q plane, it has to be inside

such a band. The same does not occur for the� projection.
Notice that we still can define unambiguously a curve
separating the confined and deconfined phases. Indeed,
such a curve is constructed by making � ¼ 0:44, a value
that furnishes a curve in which the transition temperature at
�q ¼ 0 is compatible with lattice QCD results. Since this

curve is defined, one has to find a fixed value of �s=�sðvacÞ
in order to make the boundary curve of the broken/restored
chiral symmetry phases present the same transition tem-
perature at �q ¼ 0. The value found in this case was

�s=�sðvacÞ ¼ 0:77.
The choice of �s=�sðvacÞ ¼ 0:77 is not unique. Different

values that make the boundary curve inside the red band
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can be found. However, these values generate curves that
do not have the same transition temperature at �q ¼ 0 as

that presented by the � ¼ 0:44 curve. Moreover, such
temperatures are different from approximately 170 MeV.
Therefore, they do not satisfy the constraint established by
the lattice results.

An important aspect shows in Fig. 10 that the change in
the T0 parameter makes the confined phase smaller than
that presented in the case in which T0 has its original value
of 270 MeV. Actually, this is the reason why the transition
temperature at �q ¼ 0 is compatible with the lattice re-

sults. The same is not verified for the broken chiral sym-
metry phase. The change in the values of� induced by the
T0 rescaling is not totally followed by �s. As already
mentioned, the boundary of the phases in the �s projection
on the T ��q plane becomes a band that is still larger for

lower values of T0. This is due to the ‘‘weak interaction’’
between the order parameters � and �s presented in the
structure of the PNJL models treated here. This shortcom-
ing in the PNJL models can be circumvented by including
a � dependence in the scalar coupling Gs, i.e., by making
Gs ¼ Gsð�Þ. In order to illustrate the effect of such a
modification, we use the � dependence on Gs as given by

Gsð�Þ ¼ Gs½1� �1��� � �2ð�3 þ��3Þ�; (18)

closely following Ref. [56], even concerning the values of
�1 ¼ �2 ¼ 0:2. The PNJL model modified by making
Gs ! Gsð�Þ is named the EPNJL model [57], since Gs ¼
Gsð�Þ is an effective vertex called an entanglement vertex
[56]. In Fig. 11, we show the order parameters’ projections
of the RRW06 parametrization of the EPNJL model for
T0 ¼ 200 MeV.

Notice that the consequence of the strong correla-
tion between �s and � in the phase diagrams of the
EPNJL model is to reduce the red band to a line in the
�s projection. In this case, the boundary line of the broken/
restored chiral symmetry phases is unambiguously given
by �s=�sðvacÞ ¼ 1=2, exactly as in the case of the PNJL

model for T0 ¼ 270 MeV, see Fig. 4. Also, the boundary
curve of the confined/deconfined is defined by fixing the
value of � ¼ 0:4. Now, both curves start at a transition
temperature at �q ¼ 0 comparable to the lattice result of

173� 8 MeV.
Another important result shown in Fig. 11 is that

the information on the quarkyonic phase is never lost.
The full boundary curves constructed by defining
�s=�sðvacÞ ¼ 1=2 and � ¼ 0:4 always delimit a phase

where the chiral symmetry is restored and the quarks are
still confined. Therefore, it is possible also to represent all
the phases and boundaries of strongly matter with the
EPNJL model. Moreover, notice also that the EPNJL
model provides the emergence of the quarkyonic phase
only from �q � 240 MeV for GV ¼ 0 differently for the

case of the PNJL model of Fig. 10, where the quarkyonic
phase starts at �q � 130 MeV.

Finally, we stress here that our method of construction
of the quark phase diagrams with all possible boundaries
making the projections of �s and� suggests that the order
parameters should be more correlated to each other in order
to unambiguously define the boundaries from the magni-
tude of �s and �. As our results point out, the EPNJL
model that presents such a correlation at any temperature
and chemical potential seems to be a better candidate to
describe the strongly interacting matter phase diagrams
than the PNJL model itself. This result corroborates the
lattice QCD calculation that points to this correlation at
�q ¼ 0, since it obtains the same temperature transition

related to both order parameters, namely, Tð�q ¼ 0Þ ¼
173� 8 MeV.

IV. SUMMARYAND CONCLUSIONS

In this work, we have proposed a method of identifying
the phases and boundaries of strongly interacting matter
obtained through the PNJL model. This method consists
of analyzing the magnitude of the order parameters �s and
� by projecting their surfaces in the T ��q plane.

Therefore, it is natural to localize the broken/restored
chiral symmetry and confinement/deconfinement phases,
see an example of such a projection for the RRW06 pa-
rametrization in Fig. 3. The projections also allow the
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determination of a particular value of �s=�sðvacÞ and �

used to construct the boundaries in the phase diagram. In
the case of the RRW06 model, the boundary curves are
defined as those in which �s=�sðvacÞ ¼ 1=2 and � ¼ 0:4

are represented by the full curves in Fig. 4. We also
compared our boundary curves with those determined
through the peaks of @�s=@T and @�=@T, frequently
used in the literature and showed that the quarkyonic phase
found by the latter is underestimated when compared to
that found by the former.

The vector repulsive interaction in the PNJL model was
other important aspect studied in our work. We have shown
that is not possible to construct two boundaries in the phase
diagram if only peaks of @�=@T are taken into account.
The double peak structure of @�=@T in Fig. 2(a) is
changed to the one depicted in Fig. 7. By using the fixed
values of the order parameters from the aforementioned
projections, it is natural to define the boundary curves even
for theGV > 0 cases. It is also clear that the increase ofGV

decreases the quarkyonic phase, see Fig. 9.
Finally, we have investigated the influence of the T0

parameter of the Polyakov potential RRW06 given in
Eq. (5). If we keep the value of T0 ¼ 270 MeV in the
original version of the RRW06 parametrization, the bound-
ary curves constructed via the peak’s criterion or by the
magnitude of the order parameters (projection on T ��q

plane) give a value greater than 200 MeV for the transition
temperature at �q ¼ 0, which is not supported by lattice

QCD calculations that give the result of 173� 8 MeV. The
common procedure adopted in the literature is the rescaling
of T0 from 270 to 190 MeV, taking the average values of
the transition temperatures associated with the peaks of
@�s=@T and @�=@T (not coincident for T0 rescaled). This
generates only one boundary curve and does not allow the
emergence of a quarkyonic phase in the SU(2) version of
the PNJL model. In our method based on the analysis of the
projection of the order parameters, the suitable rescaling is
to change T0 from T0 ¼ 270 MeV to T0 ¼ 205 MeV. This
is the value that allows us to construct the two boundary

curves presented in Fig. 10 starting at the same point at
�q ¼ 0 and presenting compatible values for the transition

temperature. In this case, the curves have the values of 0.77
and 0.44 associated with �s=�sðvacÞ and �, respectively.

The region surrounded by the two curves is the quarkyonic
phase.
We also concluded that the value of 0.77 is not unique to

define a boundary curve of the broken/restored chiral
symmetry phases for T0 ¼ 205 MeV. Such an ambiguity
can be removed if the correlation between the order pa-
rameters is increased by making Gs ! Gsð�Þ. The EPNJL
model constructed in this way produces the projections of
�s and� obtained in Fig. 11. The boundary of the broken/
restored chiral symmetry phases is again uniquely defined
by the �s=�sðvacÞ ¼ 1=2 curve and present a value of

Tð�q ¼ 0Þ � 170 MeV, compatible with the lattice result

for this quantity. Also, the� ¼ 0:4 curve starts at the same
point at �q ¼ 0. From this perspective, our results show

that the EPNJLmodel describes in an unambiguous way all
phases and boundaries of quark matter, better than the
PNJL model. This indicates that the correlation between
the order parameters of the quark phase transition must be
strongly correlated, as the lattice QCD results for the
temperature transition at �q ¼ 0 point out.

As a last remark, we stress here the importance and need
of theoretical studies of the strongly interacting matter
phase diagram, mainly in the region of higher chemical
potentials (compressed matter), since this is a region where
new experiments will focus in the near future, for instance,
at the Facility for Antiproton and Ion Research (FAIR)
[46] and at the Joint Institute for Nuclear Researches
(JINR) [47].
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