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We study a few �F ¼ 2 and �F ¼ 1 flavor-changing neutral current processes in the minimal 3-3-1

model by considering, besides the neutral vector bosons Z0, the effects due to one CP-even and one

CP-odd scalar. We find that there are processes in which the interference among all the neutral bosons is

constructive or destructive and in others the interference is negligible. We first obtain numerical values for

all the unitary matrices that rotate the left- and right-handed quarks and give the correct mass of all the

quarks in each charge sector and the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.
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I. INTRODUCTION

The so-called 3-3-1 models with gauge symmetry
SUð3ÞC � SUð3ÞL �Uð1ÞX are interesting extensions of
the standard model (SM). The main feature of these models
is that, by choosing appropriately the representation con-
tent, the triangle anomalies cancel out, and the number of
families has to be a multiple of three. Moreover, because of
the asymptotic freedom, this number is just three [1–3]. In
particular, the minimal version of this class of models (m3-
3-1 for short) [1] has other interesting predictions: It ex-
plains why sin 2�W < 1=4 is observed, and at the same
time, when sin 2�W ¼ 1=4, it implies the existence of a
Landau-like pole at energies of the order of a few TeVs [4].
The existence of this Landau-like pole also stabilizes the
electroweak scale avoiding the hierarchy problem [5], and
the model allows the quantization of electric charge inde-
pendently of the nature of the massive neutrinos [6,7]. It
also has an almost automatic Peccei-Quinn symmetry if the
trilinear term in the scalar potential becomes a dynamical
degree of freedom [8], there are also new sources of CP
violations which allow to obtain � and �0=� even without
the Cabibbo-Kobayashi-Maskawa (CKM) phase; i.e., if we
put � ¼ 0 [9]. And, probably, it could explain CP violation
in the B �B mesons as well. One important feature that
distinguishes the model from any other one is the predic-
tion of extra singly charged and doubly charged gauge
boson bileptons [10] and also exotic charged quarks, while
the lepton sector is the same as that of the SM. Right-
handed neutrinos are optional in the model. They are
not needed to generate light active neutrinos or the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing ma-
trix. Those exotic charged particles may have an effect on
the two photon decay of the SM-like Higgs scalar [11].

A common feature of all 3-3-1 models is that two of the
quark triplets transform differently from the third one, and
this implies flavor-changing neutral currents (FCNC) at
tree level mediated by the extra neutral vector boson, Z0
[12–14] and also by neutral scalar and pseudoscalar fields.
However, in these models it is not straightforward to put

constraints on the Z0 boson mass from the analysis of the
FCNC processes because the relevant observables depend

on unknown unitary matrices that are needed to diagonal-
ize the quark mass matrices. Those matrices, here denoted

by VU;D
L;R , survive in some parts of the Lagrangian, in

addition to their combination appearing in the CKM ma-

trix, here defined as VCKM ¼ VU
L V

Dy
L .

A possibility, as in Ref. [15], is not to attempt to place
lower bounds on the Z0 mass, but rather set its mass at

several fixed values and try to obtain some information

about the structure of the VU;D
L;R matrices. Moreover, usually

it is considered that the dominant contribution, by far, to

the FCNC is the one mediated by the Z0, since the con-
tributions of the (pseudo)scalars are assumed to be negli-

gible. Notwithstanding, we show here that this is not the
most general case, and there is a range of the parameters
that allows interference between the Z0 and, at least, one
neutral scalar which we assume as being the SM-like Higgs
with a mass around 125 GeV [16] and, at least, one

pseudoscalar field. At the LHC energies, heavy (pseudo)
scalars may interfere with the Z0 near the resonance, but

this will be considered elsewhere.
Our analysis implies in a new range of the parameters of

3-3-1 models that have not been taken into account yet
[15,17,18]. Another difference of our analysis from those

in the literature is that we first calculate the quark masses

and all the unitary matrices appearing in the model, VU;D
L;R ,

and which appear, besides the usual combination VCKM in

the charged currents with W�, in the Yukawa interactions.
Then, we calculate the contributions of the Z0 and the

neutral (pseudo)scalar to the FCNC processes. Here we
will not consider CP violation.
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We would like to emphasize that the values for the

matrices VU;D
L;R should be valid at the energy scale of the

m3-3-1 model, say, � ¼ �331. However, since we do not
know this energy, we use instead� ¼ MZ. We also assume
that as in the standard model, the CKMmatrix elements do
not change with the energy, but this has to be proven in the
3-3-1 model, and probably it is not the case, but its com-
putation is beyond the scope of the present work. Hence,
our results should be considered only as a first illustration
of the sort of analysis that has to be down in most of the
extensions of the SM.

The outline of the paper is as follows. In Sec. II we show

how to obtain the VU;D
L;R matrices by using the known quark

masses and the CKM mixing matrix. In Sec. III we show
the FCNC processes arising at the tree level in the m3-3-1
model: those related to the Z0 in Sec. III A and those related
to neutral (pesudo)scalars in Sec. III B. Neutral processes
with �F ¼ 2 are considered in Sec. IV: in Sec. IVA we
consider the �MK and in Sec. IVB the �MB mass differ-
ences. Then, in Sec. V, we show the conditions under
which the Yukawa interaction of the neutral scalar with
mass of 125 GeV has the same coupling to the top quark as
in the SM, implying that the Higgs production mechanism
is, for all practical purposes, the same in both models.
�F ¼ 1 processes are considered in Sec. VI. The last
section is devoted to our conclusions.

II. QUARK MASSES AND MIXING MATRICES
IN THE MINIMAL 3-3-1 MODEL

In the 3-3-1 models of Refs. [1,2], the left-handed quark
fields are chosen to form two antitriplets Q0

mL ¼
ðdm;�um; jmÞTL � ð3�;�1=3Þ, m ¼ 1, 2, and a triplet
Q0

3L ¼ ðu3; d3; JÞTL � ð3; 2=3Þ. The right-handed ones are

in singlets: u�R � ð1; 2=3Þ, d�R � ð1;�1=3Þ, � ¼ 1, 2, 3,
jmR � ð1;�4=3Þ, and JR � ð1; 5=3Þ. The scalar sector that
couples to quarks is composed by three triplets: � ¼
ð�0; ��

1 ; �
þ
2 ÞT � ð3; 0Þ, � ¼ ð�þ; �0; �þþÞT � ð3; 1Þ, and

� ¼ ð��; ���; �0ÞT � ð3;�1Þ. Above, the numbers be-
tween parentheses mean the transformation properties
under SUð3ÞL and Uð1ÞX, respectively.

The model also needs a scalar sextet that gives mass to
the charged leptons and neutrinos. However, it is also
possible to obtain these masses considering only the three
triplets above and nonrenormalizable interactions, for de-
tails, see Ref. [19]. Here the effects of the sextet are in the
leptonic vertex of semileptonic meson decays, see Sec. VI.

With the fields above, the Yukawa interactions using the
quark symmetry eigenstates are

�LY ¼ �Q0
mL½Gm�U

0
�R�

� þ ~Gm�D
0
�R�

��
þ �Q0

3L½F3�U
0
�R�þ ~F3�D

0
�R�� þ H:c: (1)

From Eq. (1), we obtain the followingmass matrices in the
basis U0

LðRÞ¼ð�u1;�u2;u3ÞLðRÞ andD0
LðRÞ¼ðd1;d2;d3ÞLðRÞ:

MU ¼
rG11 rG12 rG13

rG21 rG22 rG23

F31 F32 F33

0
BB@

1
CCAjv�j;

MD ¼
r�1 ~G11 r�1 ~G12 r�1 ~G13

r�1 ~G21 r�1 ~G22 r�1 ~G23

~F31
~F32

~F33

0
BB@

1
CCAjv�j:

(2)

By choosing jv�j ¼ 54 GeV and jv�j ¼ 240 GeV, r ¼
jv�j=jv�j ¼ 0:225, the mixing between Z and Z0 vanishes
independently of the value of jv�j (see the next section and

Ref. [20] for details). For simplicity, we will consider all
vacuum expectation values (VEVs) and Yukawa couplings as
being real numbers.
The symmetry eigenstates U0

L;R, D0
L;R and the mass

eigenstates UL;R, DL;R (unprimed fields) are related by

U0
L;R ¼ ðVU

L;RÞyUL;R and D0
L;R¼ðVD

L;RÞyDL;R, where VU;D
L;R

are unitary matrices such that VU
LM

UVUy
R ¼ M̂U and

VD
LM

DVDy
R ¼ M̂D, where M̂U ¼ diagðmu;mc;mtÞ and

M̂D ¼ diagðmd;ms;mbÞ. The notation in these matrices is

VD
L ¼

ðVD
L Þdd ðVD

L Þds ðVD
L Þdb

ðVD
L Þsd ðVD

L Þss ðVD
L Þsb

ðVD
L Þbd ðVD

L Þbs ðVD
L Þbb

0
BB@

1
CCA; (3)

for instance, and similarly for VD
R and VU

L;R.

In order to obtain these four unitary matrices, we have to
solve the matrix equations:

Vq
LM

qMqyVqy
L ¼ Vq

RM
qyMqVqy

R ¼ ðM̂qÞ2; q ¼ U;D:

(4)

Solving numerically Eqs. (4), we find the matrices VU;D
L;R ,

which give the correct quark mass square values and, at the
same time, the Cabibbo-Kobayashi-Maskawa quark mix-

ing matrix (here defined as VCKM ¼ VU
L V

Dy
L ). We get

VU
L ¼

�0:00032 0:07163 �0:99743

0:00433 �0:99742 �0:07163

0:99999 0:00434 �0:00001

0
BB@

1
CCA;

VD
L ¼

0:00273 ! 0:00562 ð0:03 ! 0:03682Þ �ð0:99952 ! 0:99953Þ
�ð0:19700 ! 0:22293Þ �ð0:97436 ! 0:97993Þ �0:03052

0:97483 ! 0:98039 �ð0:19708 ! 0:22291Þ �ð0:00415 ! 0:00418Þ

0
BB@

1
CCA;

(5)
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and the CKM matrix

jVCKMj ¼
0:97385 ! 0:97952 0:20134 ! 0:22714 0:00021 ! 0:00399

0:20116 ! 0:22679 0:97307 ! 0:97869 0:04116 ! 0:04118

0:00849 ! 0:01324 0:03919 ! 0:04028 0:99914 ! 0:99915

0
BB@

1
CCA; (6)

which is in agreement with the data [21]. In the same way, we obtain the VU;D
R matrices:

VU
R ¼

�0:45440 0:82278 �0:34139

0:13857 �0:31329 �0:93949

0:87996 0:47421 �0:02834

0
BB@

1
CCA;

VD
R ¼

�ð0:000178 ! 0:000185Þ ð0:005968 ! 0:005984Þ �0:999982

�ð0:32512 ! 0:32559Þ �ð0:94549 ! 0:94566Þ �ð0:00558 ! 0:00560Þ
0:94551 ! 0:94567 �ð0:32511 ! 0:32558Þ �ð0:00211� 0:00212Þ

0
BB@

1
CCA:

(7)

The values for the coupling constants in Eq. (2), which
give the numerical values for the matrix entries in
Eqs. (5)–(7) areG11¼1:08,G12¼2:97,G13 ¼ 0:09,G21¼
0:0681, G22¼0:2169, G23¼0:1�10�2, F31 ¼ 9� 10�6,

F32¼6�10�6, F33¼1:2�10�5, ~G11¼0:0119, ~G12¼
6�10�5, ~G13 ¼ 2:3� 10�5, ~G21 ¼ ð3:62–6:62Þ � 10�4,
~G22¼2:13�10�4, ~G23 ¼ 7� 10�5, ~F31 ¼ 2:2� 10�4,
~F32 ¼ 1:95� 10�4, ~F33¼1:312�10�4. With the values
above, we obtain from Eq. (4) the masses at the Z pole (in
GeV): mu¼0:00175, mc¼0:6194, mt¼171:163, and
md¼ð33:6–39:3Þ�10�4, ms ¼ ð0:0544–0:0547Þ, mb¼
ð2:8537–2:8574Þ, which are in agreement with the values
given in Ref. [22]. For the sake of simplicity, we are only
allowing the d-type quark masses to vary within the 3	
experimental error range. These results are valid for the
models in Refs. [1,2], but other 3-3-1 models can be
similarly studied.

III. NEUTRAL CURRENT INTERACTIONS

It is usually considered that 3-3-1models reduce to the SM
only at high energies. If v� is the VEV that breaks the 3-3-1

symmetry down to the 3-2-1 one, then v� � vSM ¼
ð1= ffiffiffi

2
p

GFÞ1=2 	 246 GeV. In this limit, the lightest neutral
vector boson, Z1, whose mass is MZ1

, has for all practical

purposes the same couplings with fermions of the SM Z,
since in this case themixing amongZ andZ0 is less than 10�3

[14]. This mixing is small due to the existence of an approxi-
mate SUð2ÞLþR custodial global symmetry, see Ref. [20].

However, there is another solution which also reprodu-
ces the SM model couplings for the lightest neutral vector
boson, Z1, without imposing v� � vSM at the very star.

This is a nontrivial solution that implies that Z and Z0 do
not mix at the tree level independently of the value of v� as

it was shown in Ref. [20]. There, the �1 parameter is
defined as �1 ¼ c2WM

2
Z1
=M2

W , where MZ1
has a compli-

cated dependence on all the VEVs and sin 2�W . In general,
�1 
 1 sinceMZ1


 MZ. In the SM context, it is defined as

�0 ¼ c2WM
2
Z=M

2
W . We define the SM limit of the 3-3-1

model at the tree level, imposing the condition �1 ¼ �0 ¼
1. We find that this condition is satisfied in two cases: First,
the usual one when v�!1. A second nontrivial solution

for satisfying this condition can be found by solving

for v�¼
ffiffiffi
2

p h�0i, given the solution �v2
�¼½ð1�4s2WÞ=

2c2W� �v2
SM, where �v� ¼ v�=v� and �vSM ¼ vSM=v�. As v�

and v� (v� ¼ ffiffiffi
2

p h�0i) are constrained by vSM as v2
� þ

v2
� ¼ v2

SM, in order to give the correct mass toMW , we find

�v2
� ¼ ½ð1þ 2s2WÞ=2c2W� �v2

SM, where �v� ¼ v�=v�. It im-

plies that the VEVs of the triplets � and � must have the
values considered in the previous section, i.e., jv�j ¼
54 GeV and jv�j ¼ 240 GeV, while leaving v� com-

pletely free, and it may be even of the order of the elec-
troweak scale unless there are constraints coming from
specific experimental data. This justifies the values for
these VEVs used in Eqs. (2) and (4).
The nontrivial solution above is in fact the SM limit of

the 3-3-1 model: When the expressions of �v� and �v� are

used in the full expression of MZ1
, we obtain that MZ1

¼
MZ. This also happens with the couplings of Z1 to the

known fermions denoted generically by i, say, gZ1;i
V;A, which

in this model are also complicated functions of all VEVs
and sin 2�W . It is found that they are exactly the same as the

respective couplings of the SM’s Z, gZ1;i
V;A ! gZ SM;i

V;A .

Moreover, this SM limit is obtained regardless of the v�

scale, since it factorizes in both sides of the relations
defining �v�. In any case, the Z0 with a mass that depends

mainly on v� may be lighter than what we thought before if

v� * vSM. From this SM limit, it results that MZ1
� MZ,

Z1 � Z, and Z2 � Z0, and there is no mixing at all between
Z and Z0 at the tree level. See Ref. [20] for details.
A light Z0 is then a theoretical possibility. However,

the phenomenology of the FCNC may impose strong
lower bounds on MZ0 . Here we will consider FCNC pro-
cesses induced by both Z0 and neutral scalars and pseudo-
scalars. In some of these processes, there is non-negligible
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interference among all neutral particle contributions and,
depending on a given range of the parameters, the inter-
ference may be constructive or destructive. This sort of
interference happens when at least one neutral scalar with
mass of the order of the 125 GeV and/or a pseudoscalar
with a mass larger than the scalar one are considered. The
(pseudo)scalars have to be included since their interactions
with quarks are not proportional to the quark masses. In the
next subsections, we show explicitly the quark neutral
current interactions which induce the FCNC for both the
Z0 and scalar fields.

A. Neutral currents mediated by the Z0

As it is well known [12–14], the neutral vector boson Z0
induces the FCNC at the tree level. In fact, its interactions
to quarks are given by the Lagrangian

LZ0 ¼ � g

2 cos�W

X
q¼U;D

½ �qL
�Kq
LqL þ �qR


�Kq
RqR�Z0

�;

(8)

where we have defined

Kq
L ¼ Vq

LY
q
LV

qy
L ; Kq

R ¼ Vq
RY

q
RV

qy
R ; q¼U;D (9)

with VU;D
L;R given in Eqs. (5) and (7), and

YU
L ¼ YD

L ¼ � 1

2
ffiffiffi
3

p
hðxÞ diag½�2ð1� 2xÞ;�2ð1� 2xÞ; 1�

(10)

and

YU
R ¼ � 4xffiffiffi

3
p

hðxÞ 13�3; YD
R ¼ 2xffiffiffi

3
p

hðxÞ 13�3; (11)

and hðxÞ � ð1� 4xÞ1=2, x ¼ sin 2�W . See Ref. [23].
Using the matrices in Eqs. (5), (10), and (11), we obtain

for the Kq
L defined in Eqs. (9)

KU
L 	

�1:04793 �0:08905 �0:00004

�0:08905 1:12718 �10�6

�0:00004 �10�6 1:13088

0
BB@

1
CCA;

KD
L 	

�1:05154 �0:00140 �0:00826

�0:00140 1:13082 �5� 10�6

�0:00826 �5� 10�6 1:13078

0
BB@

1
CCA:

(12)

Since YU;D
R are proportional to the identity matrix, there are

no FCNCs in the right-handed currents coupled to the Z0,
and using the matrices in Eqs. (7), we obtain KU

R 	
�1:94465 13�3 and KD

R 	 0:97232 13�3.

B. Neutral currents mediated by scalars
and pseudoscalars

As we said before, there are also FCNCs at the tree level
in the scalar sector. From Eq. (1), we obtain the following
neutral scalar-quark interactions:

�Lqqh ¼
X

q¼U;D

�qLKqqR þmass termsþ H:c:; (13)

where we have defined KU ¼ VU
LZ

UVUy
R and KD ¼

VD
LZ

DVDy
R , and we have arranged, for simplicity, the in-

teractions in matrix form (in the quark mass eigenstates
basis):

ZU ¼
G11�

0 G12�
0 G13�

0

G21�
0 G22�

0 G23�
0

F31�
0 F32�

0 F33�
0

0
BB@

1
CCA;

ZD ¼
~G11�

0 ~G12�
0 ~G13�

0

~G21�
0 ~G22�

0 ~G23�
0

~F31�
0 ~F32�

0 ~F33�
0

0
BB@

1
CCA;

(14)

where �0 and �0 are still symmetry eigenstates. These

neutral symmetry eigenstates may be written as
ffiffiffi
2

p
x0 ¼

Rex0 þ i Imx0, with x0 ¼ �0, �0, and their relations to
mass eigenstates are defined as Re�0 ¼ P

iU�ih
0
i , Re�

0 ¼P
iU�ih

0
i . The real scalars h0i are mass eigenstates with

mass mi, and similarly for the imaginary part pseudoscalar
fields, Im�0 ¼ P

iV�iA
0
i and Im�0 ¼ P

iV�iA
0
i , with A0

i

including two Goldstone bosons and at least one CP-odd
mass eigenstate. The physical CP-odd pseudoscalars have
a mass denoted as mAi

. Notice that, besides the matrices

U�1 and U�1, the matrices VU;D
L;R survive in the interactions

given in Eqs. (13) and (14).

Using in Eq. (14) the values of G, F, ~G, ~F written below
Eq. (7), and the matrices VD

L and VD
R given in Eqs. (5) and

(7), respectively, the matrix KD in Eq. (13) is given by

KD 	
10�4�0 � 10�6�0 10�4�0 � 10�5�0 �10�4�0 þ 10�5�0

10�6�0 þ 10�4�0 10�5�0 þ 10�3�0 �10�6�0 þ 10�2�0

10�6�0 � 10�5�0 10�6�0 � 10�3�0 �10�6�0 þ 0:011�0

0
BB@

1
CCA; (15)

where we have shown only the order of magnitude of each
entry. As many multi-Higgs extensions of the SM, in the
m3-3-1 model there are other scalars that mix with the
SM-like Higgs boson. These scenarios may be tested

experimentally if the couplings of the 125 GeV Higgs are
measured [24,25].
In the present model, the interaction vertex h01VV, V ¼

W, Z includes all the scalar components of the neutral
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scalars and pseudoscalars which couple to the known
quarks and leptons; i.e., this vertex is proportional to
yVðPiUi1Þ, i ¼ �, �, 	2, 	1 where 	1 and 	2 denote the
neutral components in the scalar sextet, and yV is the
respective vertex in the SM. If

P
iUi1 & 1, we can have

agreement with the SM strength. On the other hand, the
interactions with fermions have additional reducing factors

given by the numbers KU;D
q1q2 in Eqs. (15) and (43). In this

case, the strength of the couplings are given, for instance,
by the matrix elements of KD in Eq. (15), with

�0!U�1h
0
1 and �0!U�1h

0
1. We will denote KDx

q1q2¼
�KD

q1q2Ux1, x ¼ �, �, where �KD
q1q2 denotes the number in

the respective entries in KD, and similarly with the pseu-
doscalar A0

1, although the latter one has no counterpart in

the SM. Notice that in the present model, the diagonal
elements are ðKD�Þdd 	 10�4U�1, ðKD�Þss 	 10�3U�1,

and ðKD�Þbb 	 1:1� 10�2U�1.

In the SM, the neutral scalar has only a diagonal interac-

tion to a fermion f: yf ¼ mf

ffiffi
2

p
v , hence, we have the following

Yukawa couplings yd ¼ 2:8� 10�5, ys ¼ 5:5� 10�4, and
yb ¼ 2:7� 10�2. Therefore, since jUx1j 
 1, for x ¼ �, �,
we see that the quarks d and s can have the same numerical
Yukawa couplings as in the SM, but this is not the case for
the b quark since ðKD�Þbb & yb even if jU�1j ¼ 1. We

recall that this happens at the energy scale� ¼ MZ, and it is
not obvious that in this model these couplings do not change
enough between this energy and 125 GeV.

Notwithstanding, at present we have to compare this
value not with the SM one but with the measured value
and the respective errors. Denoting ybbh ¼ ybð1þ �bÞ, the
experimental data still allow 1:04� 10�2 < yhhb < 4:6�
10�2 [26], and we see that ybbh is still compatible with the
value of ðKD�Þbb above. Recently, the first indication of
the H ! bb decay at the LHC has been obtained by the
CMS Collaboration. It has an excess of 2:1	 relative to that
of the SM Higgs boson [27]. On the other hand, fermio-
phobic scalars have been excluded in the mass ranges
110.0–118.0 and 119.5–121.0 GeV [28] but, in fact, the
important coupling of a Higgs with mass of the order of
125 GeV is that with the t quark, see also Sec. V. The
present model corresponds under the SUð2ÞL �Uð1ÞY sub-
group to a model with three-Higgs doublets Y ¼ þ1, a
neutral scalar singlet Y ¼ 0, and a non-Hermitian triplet
Y ¼ 2which couples to leptons. The latter Higgs with Y ¼
2 belongs to an SUð3Þ sextet. Wewill consider only the two
triplets which couple to quarks, and assume that one of the
scalar mass eigenstates has a mass consistent with the
recent results from the LHC, m1 ¼ 125 GeV [16] and a
pseudoscalar with massmA. We use some FCNC processes
to get constraints on MZ0 , Ux1, Vx1 (x ¼ �, �), and mA.

IV. �F ¼ 2 PROCESSES

In 3-3-1 models, �F ¼ 2 transitions (F ¼ S, B, C) at
tree and loop level arise. In this section, we will consider

only the strange and beauty cases. The D0 � �D0 will be
considered in Sec. V. The main contributions to these
processes are those at the tree level, and they are mediated
by Z0 and neutral (pseudo)scalars.

A. �MK

In the SM context, the�MK mass difference in the neutral
kaon system is given by �MSM

K ¼ �SMsd h �K0jð �sdÞ2V�AjK0i,
where using only the c-quark contribution, we have

�SMsd ¼G2
Fm

2
c

16�2
½ðVCKMÞ�cdðVCKMÞcs�2	10�14 GeV�2; (16)

and we have neglected QCD corrections, and in the vacuum
insertion approximation we have h �K0jð�sdÞ2V�AjK0i ¼
1
3MKf

2
K [29].

Let us consider first the contributions of the extra neutral
vector boson. From Eq. (8), the effective Z0 interaction
Hamiltonian inducing the K0 ! �K0 transition at the tree
level is given by

H �S¼2
eff jZ0 ¼ g2

4c2WM
2
Z0
½�sLðKD

L Þsd
�dL�2; (17)

and we obtain the following extra contribution to �MK:

�MKjZ0 ¼ 2Reh �K0jH �S¼2
eff jZ0 jK0i

¼ Re�Z
0

sdh �K0jð�sdÞ2V�AjK0i; (18)

where

Re�Z
0

sd ¼ Re
GF

2
ffiffiffi
2

p
c2W

M2
W

M2
Z0
½ðKD

L Þds�2 ¼
M2

W

M2
Z0
10�11 GeV�2;

(19)

since, from Eq. (12), we have ðKd
LÞsd ¼ �1:4� 10�3. If

this were the only contribution to �MK, and imposing

�Z
0

sd < �SMsd , we must have that MZ0 > 2:5 TeV.
Next, let us consider the scalar contributions to �MK.

From Eq. (13), the scalar interactions between the d and s
quarks mediated by h0i are given by

�Ldsh ¼ 1ffiffiffi
2

p X
i

½ðIiKÞds �sLdRh0i þ ðIi�K Þsd �dLsRh0i þ H:c:�

¼ 1

2
ffiffiffi
2

p X
i

½ðIiþK Þdsð �dsÞ þ ðIi�K Þdsð �d
5sÞ�h0i þ H:c:;

(20)

where ðIiKÞq1q2 ¼ ðKDÞq1q2Uxi with x ¼ �, � and q1, q2 ¼
d, s for the real scalars and quarks, respectively. i runs over
the neutral scalar mass eigenstates, and the matrix KD is
defined in Eq. (15). In the second line of Eq. (20), we have
defined ðIi�K Þds ¼ ðIiKÞds � ðIi�K Þsd. For CP-odd fields, the
Lagrangian is similar to that in Eq. (20) but with h0i ! A0

i

and ðIiKÞq1q2 ! ðIiKÞAq1q2 ¼ ðKDÞq1q2Vxi. For the definition

of Uxi and Vxi, see the discussion below Eq. (14). Then,
using the numbers in Eq. (15), we have
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ðIiKÞds 	 10�4U�i � 10�5U�i;

ðIiKÞsd 	 10�6U�i þ 10�4U�i:
(21)

The pseudoscalar contributions ðIiKÞA are the same as in
Eq. (21) but with U�i ! V�i and U�i ! V�i.

The effective Hamiltonian induced by Eq. (20) and the
respective contribution of the pseudoscalar A0

1 to the K
0 $

�K0 transition is

H �S¼2
eff jhþA

¼ X
i

1

8m2
i

½ðIiþK Þ2dsð�sdÞ2 þ ðIi�K Þ2dsð�s
5dÞ2�

�X
i

1

8m2
A

½½ðIiþK ÞAds�2ð�sdÞ2 þ ½ðIi�K ÞAds�2ð �s
5dÞ2:

(22)

Defining as usual

�MKjh;A ¼ 2h �K0jH �S¼2
eff jh;AjK0i

¼ Re�h;Asd h �K0jð�sdÞ2V�AjK0i; (23)

and using the matrix elements [29]

h �K0jð�sdÞð�sdÞjK0i ¼ � 1

4

�
1� M2

K

ðms þmdÞ2
�

�h �K0jð�sdÞ2V�AjK0i;

h �K0jð�s
5dÞð�s
5dÞjK0i ¼ 1

4

�
1� 11

M2
K

ðms þmdÞ2
�

�h �K0jð�sdÞ2V�AjK0i;

(24)

we find

Re�hds ¼ Re
X
i

1

32m2
i

�
�ðIiþK Þ2ds

�
1� M2

K

ðms þmdÞ2
�

þ ðIi�K Þ2ds
�
1� 11M2

K

ðms þmdÞ2
��

GeV�2; (25)

and

ðIi�K Þ2ds 	 ½ð10U�
�i � 2U�

�iÞU�
�i � ð10U�

�i �U�
�iÞU�i

þ 10ðU�iÞ2� � 10�9: (26)

Then, Eq. (25) becomes

Re�hds ¼ Re
X
i

1

32m2
i

½24½ð10U�
�i � 2U�

�iÞU�
�i

þ ð10U�
�i �U�

�iÞU�i þ 10ðU�iÞ2�
� 272½ð10U�

�i � 2U�
�iÞU�

�i � ð10U�
�i �U�

�iÞU�i

þ 10ðU�iÞ2� � 10�9 GeV�2: (27)

We have similar expressions for the pseudoscalar con-
tributions by making in Eq. (27) Ii�K ! ðIi�ÞAK, withU�1 !
V�1, U�1 ! V�1, and mi ! mAi. Thus, the �MK in the

present model includes Z0 and neutral scalar and pseudo-
scalar contributions,

�MKj331 	 �MSM
K þ �MKjZ0 þ �MKjh þ �MKjA

� �331h �K0jð�sdÞ2V�AjK0i; (28)

with �331 ¼ �SMds þ �Z
0

ds þ �hds þ �Ads, and we impose that

�Z
0

ds þ �hds þ �Ads < �SMds , hence,

Reð�Z0
ds þ �hds þ �AdsÞ< 10�14 GeV�2: (29)

Using Eqs. (19) and (27) in Eq. (29), and assuming that
only one of the SM-like neutral Higgs (pseudo)scalar con-
tributes, say, h01 and A

0
1 (the others are considered too heavy

and their contributions can be neglected), Eq. (29) becomes

10�2M
2
W

M2
Z0
þRe

1

32m2
1

f24ð½ð10U�
�1�2U�

�1ÞU�
�1

þð10U�
�1�U�

�1ÞU�1þ10ðU�1Þ2
�272½ð10U�

�1�2U�
�1ÞU�

�1

�ð10U�
�1�U�

�1ÞU�1þ10ðU�1Þ2�g�A<10�5 GeV�2;

(30)

whereA is the amplitude induced by the pseudoscalar A0
1,

which is similar to the scalar one in Eq. (30) but withm1 !
mA, U�1 ! V�1, and U�1 ! V�1. Once we are considering

a SM-like neutral scalar, its mass m1 is fixed in 125 GeV
and mA is free. Hence, in Eq. (30) the only free parameters
are the masses of Z0 and A0

1 and the matrix elements U�1,

U�1 and V�1, V�1.

First, we will not consider in Eq. (30) the pseudoscalar
A0
1, assuming that U�1 and U�1 are real and within the

interval ½�1; 1�. Next, we will keep U�1 fixed, and varying

U�1 we obtain the corresponding Z0 mass which satisfies

Eq. (30) that runs from GeVs to a few TeVs. See the curves
in Figs. 1–3 and the discussion in Sec. VII.
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FIG. 1 (color online). Z0 mass values satisfying Eqs. (30) and
(42), simultaneously, but not including the pseudoscalar contri-
bution, for a fixed value of the element U�1 (U�1) and the other

U�1 (U�1) running in the range ½�1; 1�.
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In the next subsection, we will consider FCNC
processes as in the previous one but now involving the b
quark.

B. �MB

We can also consider the B0
d � �B0

d mass difference

�MSM
B ¼ �SMbd h �B0jð�sdÞ2V�AjB0i, where h �B0jð �bdÞ2V�AjB0i ¼

MBf
2
B=3 [30], and, as before, we factorized the model-

independent factors

�SMbd ¼ G2
FM

2
W

12�2
S0ðxtÞ½ðVCKMÞ�tdðVCKMÞtb�2

	 1:0329� 10�12 GeV�2; (31)

where xt ¼ m2
t =M

2
W and we have used S0ðxÞ 	 0:784x0:76t

[31].
From Eqs. (8)–(11), the effective Hamiltonian contrib-

uting to the B0
d $ �B0

d transition is given by

H �B¼2
eff jZ0 ¼ g2

4c2WM
2
Z0
½ �bLðKD

L Þbd
�dL�2; (32)

and we obtain the following extra contributions to �MBd
,

using here and below, appropriate matrix elements as in
Eq. (24) for the kaon system,

�MBd
jZ0 ¼ 2Reh �B0jH �B¼2

eff jZ0 jB0i
¼ Re�Z

0
bdh �B0jð �bdÞ2V�AjB0i; (33)

where we have not considered the QCD corrections and the
bag parameter BB ¼ 1. We obtain

Re�Z
0

bd ¼ Re
GF

2
ffiffiffi
2

p
c2W

M2
W

M2
Z0
½ðKD

L Þbd�2 ¼ 10�9 M
2
W

M2
Z0

GeV�2;

(34)

where we have used Eq. (12), i.e., ðKD
L Þbd ¼ �8:3� 10�3.

Similarly, we have the scalar contributions in the B0
q �

�B0
q system (q ¼ d, s). From Eqs. (13) and (15), the scalar

interactions between the b, d quarks mediated by the
scalars h0i are given by

�Lbqh ¼ 1ffiffiffi
2

p X
i

½ðIiBd
Þbq �bLdR þ ðI0iBd

Þbq �dLbR�h0i þ H:c:

¼ 1

2
ffiffiffi
2

p X
i

½ðIiþBd
Þbqð �bdÞ þ ðIi�Bd

Þbqð �b
5dÞ�h0i þ H:c:;

(35)

where ðIiBd
Þq1q2 ¼ ðKDÞq1q2U�i, � ¼ �, �, and qi, q2 ¼ b,

d. The respective entries of the matrixKD can be obtained
from Eq. (15). We have defined ðIi�B Þbq ¼ ðI0iBd

Þbq �
ðIi�Bd

Þqb. For the case when q ¼ d, we obtain

ðIiBd
Þbd 	 10�6U�i � 10�5U�i;

ðIiBd
Þdb 	 �10�4U�i þ 10�5U�i:

(36)

The contributions of the pseudoscalar fields are similar to
those of the scalar h0i but making h01 ! A0

i in Eq. (35) and

U�i ! V�i and U�i ! V�i in Eq. (36).

The effective Hamiltonian induced by Eq. (35) contrib-
uting to the B0

d $ �B0
d transitions is

H �B¼2
eff jhþA ¼ X

i

1

8m2
i

½ðIiþB Þ2bqð �bqÞ2 þ ðIi�B Þ2bqð �b
5qÞ2�

�X
i

1

8m2
A

½½ðIiþB ÞAbq�2ð �bqÞ2

þ ½ðIi�B ÞAbq�2ð �b
5qÞ2�; (37)

and as usual, we define

�MBd
jh;A ¼ 2Reh �B0jH �B¼2

eff jhjB0i
¼ Re�hbdh �B0jð �bdÞ2V�AjB0i; (38)

where
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FIG. 2 (color online). Same as Fig. 1 but now with U�1 ¼ 0:42
(the value that ensures that the coupling of h01 with the top quark

is equal to the SM) and U�1 running in the interval ½�1; 1�.
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FIG. 3 (color online). Considering Eq. (30) with the contribu-
tion of the pseudoscalar. The allowed region for the Z0 mass and
the pseudoscalar mass Ma were obtained by setting values for
U�1 ¼ V�1. The smallest value to the Z0 mass is when U�1 ¼
V�1 ¼ 0:2 and the biggest when U�1 ¼ V�1 ¼ �0:2.
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Re�hbd ¼ Re
X
i

1

32m2
i

½0:6ðIiþBd
Þ2bd � 16:5ðIi�Bd

Þ2bd� GeV�2;

(39)

and

ðIi�Bd
Þ2bd¼½ðU�i�0:2U�

�iÞU�i�0:2U�iU�i��10�8; (40)

then

Re�hbd ¼Re
X
i

1

32m2
i

f0:6ððU�i�0:2U�
�iÞU�iþ0:2U�iU�iÞÞ

�16:5ððU�i�0:2U�
�iÞU�i�0:2U�iU�iÞg�10�8:

(41)

Assuming that only one of the scalars contributes in
Eq. (25), we obtain a constraint on the contributions of
Z0, one scalar h01 and one pseudoscalar A

0
1 to�MB, like that

in Eq. (30) for the kaon system:

10�1 M
2
W

M2
Z0
þ 1

32m2
1

f0:6½ðU�1 � 0:2U�
�1ÞU�1 þ 0:2U�1U�1�

� 16:5½ðU�1 � 0:2U�
�1ÞU�1 � 0:2U�1U�1� �A0g

< 10�4 GeV�2; (42)

where A0 is the pseudoscalar contribution which is also
similar to that of the scalar one in Eq. (41) but with
m1 ! mA and U�1 ! V�1 and U�1 ! V�1. The analysis

of the Bs � �Bs system follows the same procedure.
As can be seen from Figs. 1, 2, and 4, the constraints

coming from Bd� �Bd are stronger than those in theK
0� �K0

and Bs � �Bs. Moreover, in the Bd system the interference
of the Z0 with the pseudoscalar is what matters, although
this is not as important as in the kaon system. See Sec. VII
for discussions. We will see in the next section that the
interference is more dramatic in the �MD case.

V. WHAT HIGGS BOSON IS THIS?

We have assumed that the mass of the lightest scalar is
equal to that of the resonance found at the LHC [16]. We see
from Fig. 1 that the values of the MZ0 allowed by �F ¼ 2
processes depend on theU�1 andU�1 matrix elements in the

neutral scalar sector. The other factor denoted by �KUx
q1q2 has

already been fixed. Assuming that the production processes
are the same as those of the SM (new sources should be
suppressed by themasses of the extra particles of themodel),
the neutral scalar h01 must couple to fermions, at least to the

top quark, with a similar strength to that in the SM, in order
to have a compatible Higgs boson production rate. The latter
point is important since the new resonance discovery at the
LHC [16] is still compatible with the SM expectation, and it
has couplings to fermion and vector bosons compatible with
the SM Higgs [32]. In the d-type quark sector, we have
already seen that only the b quark has a coupling to that
resonance that can be smaller than the SM one.
From Eqs. (13) and (14), the u-type quark-neutral-scalar

couplings are

KU 	
0:0099�0 � 10�6�0 0:00340�0 � 10�5�0 0:0109�0 � 10�5�0

�0:13846�0 þ 10�7�0 0:0556�0 þ 10�6�0 �0:1521�0 � 10�6�0

1:9228�0 � 10�11�0 0:8656�0 � 10�10�0 2:3569�0 � 10�10�0

0
BB@

1
CCA: (43)

A. �MD

Let us now consider a �C ¼ 2 process: the mass differ-
ence between charmed neutral mesons, �MD. We use the
numbers in Eqs. (12) and (43) for the transition D0 $ �D0.
ðKU

L Þuc � 8:9� 10�2 and ðI1�Þuc ¼ ½0:0034� 0:138�U�1,

that is, ðI1þÞuc ¼ �0:057 and ðI1�Þuc ¼ 0:06. Hence, we
obtain

�MD ¼
�
1:3

M2
W

M2
Z0
� 4:05

�
� 10�9 GeV; (44)

and we see that MZ0 > 43 GeV gives agreement with the
experimental value already, but with the Z0 alone, we
would obtain MZ0 > 27 TeV.

B. Higgs-u-quark couplings

The Yukawa couplings in the SM are yu ¼ 1:3� 10�5,
yc ¼ 7:3� 10�3, and yt ¼ 0:997. In the present model,
these values correspond to the diagonal entries in the
matrix (43). From the latter, we see that the couplings of
the u, c quarks are dominated by the neutral scalar �0, and
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FIG. 4 (color online). Considering Eq. (42) with the contribu-
tions of the pseudoscalar. The allowed region for the Z0 mass and
the pseudoscalar mass Ma were obtained by setting values for
U�1 ¼ V�1. The smallest value to the Z0 mass is when U�1 ¼
V�1 ¼ �0:2 and the biggest when U�1 ¼ V�1 ¼ 0:2.
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it may be compatible with the SM values depending of the
values of U�1. From Eq. (43), we see that the larger

coupling of h01 is with the top quark and can be numerically

equal to the coupling in the SM if U�1 ¼ 0:42, regardless

the value ofU�1, i.e., ð �KU�ÞttU�1 ¼
ffiffiffi
2

p
mt=v� 0:9974. In

this case, we have that ð �KU�ÞuuU�1 ¼ 0:0042 and

ð �KU�ÞccU�1 ¼ 0:0233. These values are larger than the

respective ones in the SM. However, this is not a problem
now. With the present data, it is not possible to measure yc
directly.

Nevertheless, this may not be the full history. In 3-3-1
models, there are extra heavy quarks, and hence, the gluon
fusion can produce the SM-like Higgs throughout new
diagrams involving the extra quarks. These exotic quarks
are singlet nonquiral quarks under the gauge symmetry of
the SM. However, they are quiral quarks under the 3-3-1
symmetry and couple to the neutral scalar �0, which is a
singlet under the SM gauge symmetries and has a projec-
tion on the SM-like neutral scalar given by U�1. Hence,

gg ! h01 may have contributions from these exotic quarks

that are proportional to U2
�1, but independent of the exotic

quark masses, they would be smaller than U�1 and U�1

since the �0 must have its main projection on a heavy
neutral scalar. These parameters together can still mimic
the SM Higgs production unless the exotic quarks are too
heavy or U�1 is very small, as we are assuming here.

However, if the exotic quarks are not too heavy or U�1 is

larger than we thought, these quarks will contribute sig-
nificantly to the h01 production, but, since at the same time

the rates will be reduced, it is possible that some observ-
ables will not change. In the latter case, we could consider
U�1 again as a free parameter and the h01 does not neces-

sarily is the SM-like Higgs. It can be one of the extra Higgs
in the model; i.e., it is not the resonance that was discov-
ered at the LHC.

As we said before, the couplings of the 125 GeV Higgs
boson to W, Z and fermions may have strength that can be
smaller than the respective couplings in the SM [24] since
these couplings are modified by the matrix elements like
U�1 and U�1. However, the Yukawa couplings, as in

Eqs. (15) and (43), may be larger or smaller than the SM
couplings [33]. For instance, the top quark decay t ! ch01
is now possible, and written the respective couplings by
�cðaþ i
5bÞt, we have from Eq. (42) that a ¼ ½ðKUÞct þ
ðKUÞ�tc�ðU�1=2Þ and b ¼ ½ðKUÞct � ðKUÞ�tc�ðU�1=2Þ.
Using the numerical values in Eq. (42), we see that a 	
0:15 and b 	 0:21. The value of ðaþ bÞ=2 	 0:18 may be
considered consistent with the recent upper limit for the
coupling of the vertex �cth01 obtained by the ATLAS

Collaboration: a < 0:17 [34]. Having fixed the values of
U�1 and allowingU�1 to run over the range ½�0:2; 0:2� and
the other numbers in Eq. (43), we do not have any freedom
with the �MD observable. In this case, the interference
between the neutral scalar and the Z0 contributions are

more dramatic. Only the Z0 implies MZ0 > 27 TeV, and
the scalar contributions alone give a large contribution;
however, both imply MZ0 > 42:5 GeV. Here we have not
considered the pseudoscalar contributions to �MD. Once
again, we would like to emphasize that all of this is at
� ¼ MZ.
In the next, section we consider the j�Fj ¼ 1 forbidden

processes.

VI. �F ¼ 1 PROCESSES

Concerning the j�Fj ¼ 1, F ¼ S, B processes, we con-
sider as an illustration the leptonic decays of neutral me-
sons, M0, i.e., M0 ! lþl0�, with l, l0 ¼ e, �, and M0 a
strange or a beauty meson. We recall that these processes at
the tree level involve only one vertex in the quark sector,
and the Z0 has natural flavor conservation in the lepton
sector. When a (pseudo)scalar is exchanged, the other
vertex involves the interactions of the charged leptons
that do not conserve the lepton flavor. This is parametrized
by the arbitrary matrix Ull0 as discussed below.
In the m3-3-1 model, the partial width of the decay

M0ðq1 �q2Þ ! lþl0� where M0 ¼ K, Bd;s has contributions

at tree level, which are given by

B331
M!lþl0�

¼
�
GFM

2
W

16
ffiffiffi
2

p
c2W

jðKD
L Þq1q2 j2

f2MM
2
Mm

2
l

M4
Z0

þ M6
Mf

2
M

2ðmq1 þmq2Þ2

�
���������

ðIMÞq1q2Ull0

m4
h1

��������
2þ

��������
ðIMÞAq1q2UA

ll0

m4
A

��������
2
�

� ð ffiffiffi
2

p
GFM

2
WÞ12

64cW

M4
Mf

2
Mml

ðmq1 þmq2ÞM2
Z0M2

h1

� ðKD
L Þq1q2ðIMÞ�q1q2U�

ll0

� 	1� 4m2
l

M2
M


3
2
M

16�MM

; (45)

where 
M is the meson M0 half-life, MM its mass, and we
have used the meson matrix elements

h0j �qf
�
5qijM0i ¼ ifMp
�
M;

h0j �qf
5qijM0i ¼ �ifM
M2

M

mqf þmqi

;

(46)

and pM ¼ p1 þ p2.
The matrix Ull0 in Eq. (45) arises as follows. The three

lepton generations transform under the 3-3-1 symmetry as
�a ¼ ð�alal

cÞTL � ð1; 3; 0Þ, and we do not introduce right-
handed neutrinos. The Yukawa interactions in the lepton
sector are

�L�lH ¼ �ijkð�iaÞcG�
ab�jb�kþð�iaÞcGS

ab�jbS
�
jkþH:c:;

(47)

where a, b are generations indices, i, j, k are SUð3Þ indices,
and G� (GS) is an antisymmetric (symmetric) matrix. In
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Eq. (47), � is the same triplet which couples to quarks, and
S is a sextet S� ð1; 6; 0Þ which does not couple to quarks.
Under SUð2ÞL �Uð1ÞY , the sextet transforms as S ¼ 1þ
2þ 3, and we see that there is a doublet and a non-
Hermitian triplet which gives mass to charged leptons
and active left-handed neutrinos, respectively. However,
although the sextet is enough to give to neutrinos a
Majorana mass and a Dirac mass to the charged leptons,

it does not give a PMNS matrix VPMNS ¼ Uly
L U�

L, since
when only the sextet is the source of lepton masses we have
that Ul

L ¼ U�. Hence, the interaction with the � triplet is
mandatory. In this case, the mass matrices of the neutrinos
and charge leptons are

�L�
M ¼ ð�aLÞcGS

ab�bL

v	1ffiffiffi
2

p þ H:c:;

Ll
M ¼ �liaL

�
G

�
ab

v�ffiffiffi
2

p þGS
ab

v	2ffiffiffi
2

p
�
ljbR þ H:c:;

(48)

where 	0
1 and 	0

2 are the neutral components of the triplet

and doublet in the sextet, respectively. In terms of the mass
eigenstates, we have Re	0

1 ¼
P

iUSih
0
i , Re	

0
2 ¼

P
iUDih

0
i ,

Im	0
1 ¼

P
iVSih

0
i , and Im	0

2 ¼
P

iVDih
0
i .

We have M�
ab ¼ GS

ab

v	1ffiffi
2

p and Ml
ab ¼ G

�
ab

v�ffiffi
2

p þGS
ab

v	2ffiffi
2

p .

These mass matrices are diagonalized as follows: M̂� ¼
U�T

L M�U�
L and M̂l ¼ Ul

LM
lUy

R, and the relation between
symmetry eigenstates (primed) and mass (unprimed) fields
are l0L;R ¼ Ul

L;RlL;R and �0
L ¼ U�

L�L, where l0L;R ¼
ðe0; �0; 
0ÞTL;R, lL;R ¼ ðe;�; 
ÞTL;R and �0

L ¼ ð�e���
ÞTL
and �L ¼ ð�1�2�3ÞL.

The interactions of the neutral scalars and pseudoscalars
with the leptons are

�Lleptons ¼
X

i;n¼1;2;3

ð�nLÞc �nL

ffiffiffi
2

p
m�n

v	1

ðUSih
0
i þ iVSiA

0
i Þ

þ X
i;l;l0

�lLU
ly
L f½G�

ll0U�i þGS
ll0USi�h0i

þ i½G�
ll0V�i þGS

ll0VDi�A0
i ÞgUl

Rl
0
R þ H:c:; (49)

where l, l0 ¼ e, �, 
. For one scalar h01 and one pseudo-

scalar A0
1, we have

Ull0 ¼ Uly
L ½G�

ll0U�1 þGS
ll0UD1�Ul

R;

UA
ll0 ¼ Uly

L ½G�
ll0V�1 þGS

ll0VD1�Ul
R;

(50)

respectively. To be consistent with our previous analysis,
UD1 and VD1 have to be smaller than the other entries of the
U and V matrices and can be neglected. It is the arbitrary
matrix in Eq. (50) which appears in Eq. (45). Notice that it
is the sum of two products involving four matrices each.
The FCNC effects in the charged lepton sector can be

avoided only by fine-tuning as G
�
e�

v�

2 þGS
e�

v	2

2 ¼ 0, etc.

Otherwise, we have processes like l ! l0
, l ! �l0l0l00,
where l ¼ �, 
 and l0, l00 ¼ e, �. For instance, experimen-
tally it is found B�!eþ
 < 5:7� 10�13 [35], a value still

well above the SM prediction �10�52 [36]. In the present
model, this decay occurs at the one-loop level, too. On the
other hand, decays like �þ ! eþe�eþ with branching
ratio<1012 [37] occur at the tree level mediated by neutral
scalars, in particular, by the h01. The branching ratio of this
decay in the m3-3-1 model is proportional to
ð1=G2

Fm
4
1ÞjUeeUe�j2 � 3� 10�3jUe�j2 and constrains

mainly the nondiagonal matrix element Ue�, which we

recall is the arbitrary matrix defined in Eq. (50). Since
Uee < 10�2 with the larger values corresponding to the
case when we consider also the pseudoscalar (see Fig. 11),
we have that jUe�j2 < 10�5. We can see from the defini-

tion of the U matrix in Eq. (50) that it is not a too-strong
constraint since this matrix is the sum of two products of
four matrices with two of them being ðG�;GSÞ arbitrary
ones. Decays like h01 ! �þ
� can be observed at the LHC
[38]. More details on this will appear elsewhere.
It is worth calling attention to the fact that the m3-3-1

does not need the introduction of singlet right-handed
neutrinos for having massive (light) active Majorana neu-
trinos and also accommodated the PMNSmixing matrix. If
we add right-handed neutrinos and avoid by an appropriate

symmetry the coupling of � to leptons, we have M�
ab ¼

G�
ab

v�ffiffi
2

p þGS
ab

v	1ffiffi
2

p andMl
ab ¼ GS

ab

v	2ffiffi
2

p , and the FCNC arises

in the neutrino sector. In the most general case, the FCNC
occurs in both sectors. The 3-3-1 model with right-handed
neutrinos transforming nontrivially under SUð3ÞL was first
put forward by Montero et al. in Ref. [3]. If sterile right-
handed neutrinos (with respect to the SM interactions) do
exist, they can be accommodated in an SUð4ÞL �Uð1ÞX0

model, see Ref. [39]. Summarizing, the m3-3-1 model
ought to have a FCNC in the scalar-charged lepton inter-
actions if no right-handed neutrinos [transforming as sin-
glets under SUð3ÞL] are added to the matter content of the
model.
Now, we are able to discuss the leptonic decay of neutral

mesons.

A. KL ! lþl�

The experimental data are BKL!eþe� < 10�12 and

BKL!�þ�� ¼ ð6:84� 0:11Þ � 10�9 [21]. Using q1 ¼ s

and q2 ¼ d, MM ¼ MK, fM ¼ fK, we obtain from
Eq. (45) that the decay into electrons imposes a strong
bond on the values of U�1 but not onMZ0 . This is shown in

Fig. 5 for the KL ! eþe� decay. We have an additional
free parameter Uee that weakens this bond, see Fig. 6. For
the KL ! �þ�� decay, see Fig. 7. On the other hand, the
bound from the two muon decay on the Z0 mass is less
restrictive than KL ! eþe�. See also the discussion in
Sec. VII.

B. Bs;d ! �þ��

Next we consider the�B ¼ 1 processes. Recently, it has
been observed the branching ratioBB0

s!�þ�� ¼3:2�10�9
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and BB0
d
!�þ�� ¼ 8� 10�10 [40]. In both cases, there is

not a constraint in U��; however, U�1 has the biggest

constraint from the BB0
d
!�þ�� decay, as can be seen in

Fig. 8 (the solid gray curve), with the allowed interval
around ½�0:5; 0:5�. The constraint on MZ0 for both cases
is weaker than those coming from the other processes. In
fact, these decays allow a rather light Z0 as is shown in
Fig. 9. In the latter figure, we show also the constraint
coming from the KL decays and �MK.
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0.2

0.3

MZ' GeV

U
1

Uee 0.001
Uee 0.0005
Uee 0.0001

FIG. 6 (color online). Same as Fig. 5 but now showing the
dependence on Uee. The red (continuous) line is with Uee ¼
10�4, Uee ¼ 5� 10�4 black (thin dashed) line, and Uee ¼ 10�3

green (thick green) line. The allowed region is always to the right
and bounded by the curves.
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0.1

0.2

MZ' GeV

U
1

B KL Total

B KL Z'

FIG. 7 (color online). Constraints on MZ0 and U�1 from the
KL ! �� decay fixed U�� ¼ 0:01 using Eq. (45) with l ¼ l0 ¼
� and M ¼ K. The allowed regions are those to the right of the
curves for MZ0 and U�1. The red (solid) vertical line is the

contributions of the Z0 only. The blue (dashed) curved line is
the total contribution to the decay. We consider only the Z0 and
the scalar contributions.
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FIG. 8 (color online). Same as Fig. 7 but now for Bd ! �þ��
and Bs ! �þ�� decays.
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FIG. 5 (color online). Allowed region for MZ0 and U�1 for
fixed Uee ¼ 10�4 by the KL ! ee decay using Eq. (45) with l ¼
l0 ¼ e and M ¼ K. The red (dashed) vertical line is the con-
tribution of Z0 only, and the allowed range is to the right of the
curve. The region within the blue (dashed) horizontal lines is the
allowed region for the scalar contribution only. The total con-
tribution is given by the green (continuous) curve, and the
allowed region is the area within this curve. Notice that we are
not considering the pseudoscalar yet.
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FIG. 9 (color online). This figure summarizes all the previous
results for K0 � �K0, B0 � �B0 mass differences and the K0, Bs,
and Bd decays.
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VII. RESULTS

Here we will discuss in more details the constraints on
the Z0 mass taking into account both the scalar and pseu-
doscalar contributions to the processes discussed above.
First, let us consider the �MM,M ¼ K, Bd;s cases. In each

case, we first consider only the scalar h01 contribution by

considering the pseudoscalar to be very heavy (mA ! 1).
In practice, we have usedmA ¼ 100 TeV when we want to
decouple the pseudoscalar A0

1 from Eqs. (30), (42), and

(45). For the sake of simplicity, we consider that the mixing
matrix elements in the scalar and pseudoscalar sector have
the same numerical values, i.e., U�1 ¼ V�1 and U�1 ¼
V�1. We are also assuming that the other scalars and

pseudoscalars in the model, even if their projections on
h01, A

0
1 are large, are heavy enough to give no observable

effects in the processes considered above. It implies that
even if we use U�1 ¼ V�1 ¼ 0:42, U�1 and V�1 are still

free parameters, but we will consider them to be equal, i.e.,
U�1 ¼ V�1, just for simplicity. We would like to recall that

all our results are consequences of the mixing matrices

VU;D
L;R obtained in Sec. II.

The scalar contribution (when the pseudoscalar is con-
sidered too heavy) to the�MM mass differences is shown in
Fig. 1. In this figure, we show the values ofMZ0 as a function
of U�1 (U�1) for fixed U�1 (U�1), which are allowed by

solving simultaneously Eqs. (30) and (42). In principle, both
U�1 and U�1 are allowed to vary in the interval ð�1; 1Þ. We

see from this figure that a large range for the Z0 mass values
is allowed by K mesons but not by the Bs and Bd mesons.
Notice also that under our conditions in Sec. II, �MBs

does

not constrain mZ0 at all. However, �MBd
does: mZ0 >

2:5 TeV. On the other hand, by demanding that �0 be
equivalent to the SM Higgs, implies from Eq. (43) that
U�1 ¼ 0:42, see Sec. V. In this case, the only variable is

U�1, and the Z0 mass can still be of the order of the

electroweak scale or even lower. Figure 2 shows the same
as Fig. 1 but now with U�1 ¼ 0:42. There is negative

interference in the K-mesons system between the Z0 and
h01 amplitudes: Without the scalar contribution, �MK im-

plies also mZ0 > 2:5 TeV. In the Bd;s systems, the interfer-

ence is not important. If we allow the A0
1’s mass to be a free

parameter, we show in Figs. 3 and 4 the effects of this
pseudoscalar in the K and Bd;s systems. Those figures

show the allowed values for the masses mA and mZ0 . U�1

versus mZ0 . For obtaining Figs. 3 and 4, we have assumed
that U�1 ¼ V�1 and U�1 ¼ V�1 ¼ 0:42. Notice that now

there is negative interference between Z0 and the pseudo-
scalar A0

1 implying a smaller lower bound on mZ0 in the Bd

system: mZ0 > 2:3 TeV. In the case of the Bs system, the
scalar and pseudoscalar are not important, and the constraint
on the Z0 mass is weaker than in the other mesons.

From Fig. 5 we see that in the case of the KL ! eþe�
decay, the interference between Z0 and h01 is constructive,

assuming the contribution of the A0
1 is negligible. We use

Eq. (45) with l ¼ l0 ¼ e andM0 ¼ K. The value of theMZ0

mass change, from 440 GeV when only the Z0 contribution
is consider, to 460 GeV when both the Z0 and h01 contribu-
tions are taken into account. The pseudoscalar contribution
is omitted in this figure. The figure shows the allowed
values for MZ0 and U�1 for fixed Uee ¼ 10�4 [see

Eq. (50)] by this decay. The red (dashed) vertical line is
the contribution of Z0 only, and the allowed range is to the
right of the curve. The minimal value allowed by this decay
is around 445 GeV. The blue (dashed) horizontal lines are
the contributions of the scalar only and the allowed range
for U�1, i.e., �0:2<U�1 < 0:2 for any value of MZ0 . The

total contribution is given by the green (continuous) curve,
the allowed region is inside that curve, and the minimal
value for MZ0 has moved to 500 GeV. Figure 6 shows the
total contribution (the green curve in Fig. 5) for several
values of Uee. Notice that U�1 is constrained, jU�1j< 0:2.

For the decay KL ! ��, we use Eq. (45) with l ¼ l0 ¼
� andM ¼ K. In Fig. 7, as in Fig. 5, the red (solid) vertical
line is the contribution of the Z0 only, and the lower bound
on the Z0 mass is around 705 GeV. As can be seen from
Fig. 8, the scalar contribution does not constrain U�1. The

total contribution is given by the blue (dashed) curved line
andMZ0 > 740 GeV. Notice from Fig. 7 that this decay has
a destructive interference for 0:01<U�1 < 0:1 and con-

structive for U�1 outside this region. Finally, see from

Fig. 8 that the decay Bs ! �� does not constrain these
parameters anymore. In Fig. 9, we summarize all con-
straints when only Z0 and h01 are considered.
The pseudoscalar effects in the leptonic meson decays

are shown in Figs. 10 and 11 under the assumption
that Ull0 ¼ UA

ll0 in Eq. (45), i.e., that V�1 ¼ U�1 and

V�1 ¼ U�1 ¼ 0:42 in Eq. (50). From the latter equation,
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0.0
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U
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B KL Z' U 0.1

B KL e e Z' Uee 0.01

B Bs Z' U 0.1

B Bd Z' U 0.1

FIG. 10 (color online). Here we consider the contribution of
the pseudoscalar to the semileptonic decays. We are assuming
that U�1 ¼ V�1 and U�1 ¼ V�1, which implies Uee ¼ UA

ee and

U�� ¼ UA
�� in Eq. (45). The allowed region for the Z0 mass and

U�1 for fixed values to the pseudoscalar mass at mA ¼ 80 GeV.

The allowed region is always to the right and bounded by the
curves and the biggest constraint comes from KL ! �þ��.
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we see that this is not the more general case, but we used it
just for the sake of simplicity.

When the nontrivial SM limit discussed in Sec. III is
satisfied, Z and Z0 decouple; i.e., the respective mixing
angle, say, �, is zero at the tree level. In this case, the
masses of the neutral vector bosons are given by

M2
1 ¼

g2

4c2W
v2
W � M2

Z;

M2
2 ¼

g2

2c2W

ð1� 2s2WÞð4þ �v2
WÞ þ s4Wð4� �v4

WÞ
1� 4s2W

v2
� � M2

Z0 ;

(51)

where v2
W ¼ v2

� þ v2
� þ 2v2

S, �vW ¼ vW=v�, and vS is the

VEVof the sextet that we can neglect here. A lower limit of
2.3 TeV for MZ0 implies v� > 1:6 TeV from Eq. (51). On

the other hand, since the mass of the charged vector bosons
W�

� , V
�
� , U

��
� are given by

M2
W ¼ g2

4
v2
W; M2

V ¼ g2

4
ðv2

� þ 2v2
S þ v2

�Þ;

M2
U ¼ g2

4
ðv2

� þ 2v2
S þ v2

�Þ;
(52)

with v� > 1:6 TeV, we have MV > 532 GeV and MU >

527 GeV using g2 ¼ 4��ðZÞ. These values satisfy the
upper bound [20]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

V �M2
U

q
MW


 ffiffiffi
3

p
tan�W; (53)

and not MV ¼ MU, as is the case when we assume v� �
v�, v� from the very start. Notice that the exotic charged

quarks, whose masses are of the formmj ¼ gjv�=
ffiffiffi
2

p
, may

have masses of the order of 200–300 GeV for reasonable
values of the dimensionless Yukawa couplings gj.

VIII. CONCLUSIONS

Here we have considered constraints coming from
FCNC processes, �MK;B;D, KL ! ee, �� and Bd;s !
��, on the mass of the Z0 neutral vector boson in the
m3-3-1 model, taking into account, besides the Z0, the
contributions of the lightest scalar field h01, which we

assumed had a mass of 125 GeV and a pseudoscalar with
arbitrary mass, mA. We first calculated all entries of the

VU;D
L;R matrices which modified the Yukawa couplings in

the quarks sector. Next, the matrix elements that related the
symmetry and mass eigenstates in the (pseudo)scalar sec-
tor ðV�1; V�1Þ U�1, U�1 were fixed by imposing the agree-

ment with the measured mass differences and branching
ratios on the assumption that V�1 ¼ U�1 and V�1 ¼ U�1.

We also have assumed that the couplings of the scalar h01 to
the top quark were numerically equal to the coupling of the
Higgs and the top quark in the SM and that the production
mechanism was, for all practical purposes, the same as that
of the SM Higgs as it was discussed in Sec. V. In most
multi-Higgs models, the couplings of h01 to other fermions

and to W and Z are not all full strength (i.e., the SM ones)
because of the mixing among all the scalar fields (for an
exception see Ref. [33]). In the present model, some of
these couplings may be larger and other smaller than the
respective SM values, at least at � ¼ MZ.
The amplitude of some of the neutral scalars interferes

sometimes destructively, as in �MK;D, and sometimes

constructively, as in the KL ! ll decay. If only Z0 is
considered, the lower bound on MZ0 from �MK is MZ0 >
2:5 TeV and>27 TeV in�MD. When the neutral scalar is
considered as well, the constraint is weaker, allowing a
rather light Z0, see Secs. IVA, IVB, and VA. The strongest
constraint on the Z0 mass comes from �Bd, which is
insensible to the scalar contributions and implies mZ0 >
2:5 TeV, but when one pseudoscalar is considered, it be-
comes mZ0 > 2:3 TeV if the pseudoscalar has a mass of
around 180 GeV and under the conditions defined above.
However, the latter upper limit depends on the conditions
V�1 ¼ U�1 and V�1 ¼ U�1. If this is not the case, i.e., if

V�1 and V�1 are considered free parameters, a smaller

bound on the Z0 mass is obtained: MZ0 > 1:8 TeV, as can
be seen in Fig. 12, which implies v� > 1:27 TeV, MV >

412 GeV, and MU > 419 GeV. The leptonic kaon decay
into two leptons implies a lower bound for this mass of
740 GeV, see Sec. VI for a discussion.
A final remark is in order here. From Eqs. (13), (15), and

(43), we see that the constraints depend on the matrix
elements of Vq

L;R given in Eqs. (5) and (7). These matrices

have to diagonalize the quark mass matrices, and hence,

they depend on the input parametersG,G, ~G, ~F, and VEVs
in these mass matrices. In this work, we found a set of
parameters that was compatible with the quark masses at
� ¼ MZ and the CKM matrix. There could exist a differ-
ent set, i.e., a different quark mass matrix, showing the
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FIG. 11 (color online). Considering the meson semileptonic
decays including now the contribution of the pseudoscalar, the
allowed region for the Z0, and the pseudoscalar A0

1 masses for a

fixed value of U�1 ¼ V�1 ¼ 0:1 and U�1 ¼ V�1 ¼ 0:42. The

allowed region is always to the right and bounded by the curves
and the biggest constraint came from KL ! �þ��.
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same compatibility, which will be diagonalized by differ-
ent Vq

L;R matrices and, therefore, resulting in different

values for the Z0 mass constraint. The set we found is
shown below Eq. (7). We tried to find a different one
without success. It seems that finding another set is not a
trivial task, but it can, in principle, exist. There may be
solutions with a heavy Z0 when there is no destructive
interference in the �MK amplitude but there is in �MBd

,

and so on. The main result of our work is that the interfer-
ence between Z0 and (pseudo)scalar fields exists in some
range of the parameters. Hence, the effects considered here
may be at work in Z0 searches at the LHC as well, but the
interference will be with heavy (pseudo)scalars, different
from h01.

It is well known that the magnetic dipole transitions b !
sþ 
 or b ! dþ 
 have branching ratios of the order of
10�4 and are in agreement with the SM predictions [41].

For a recent analysis, see Ref. [42]. In the present model,
this sort of decay and CP violation also arise at the one-
loop order through penguin and box diagrams. However, in
the present case there are contributions of the singly and
doubly charged scalars, exotic quarks, and singly and
doubly charged vector bosons present in the model. The
same happens with the �F ¼ 2 processes since there are
box diagrams involving singly and doubly charged scalar
and vector bosons and exotic quarks as well. These con-
tributions to j�Fj ¼ 1, 2 will be considered elsewhere.
The search for a Z0-like resonance has been done at the

LHC. However, as in previous searches, the results are
usually obtained in the context of a given model. For
instance, in a top color assisted spontaneous symmetry
breaking scenario, this sort of (leptophobic) resonance has
been excluded for MZ0 < 1:3 TeV if �Z0 ¼0:012MZ0 , and
MZ0 <1:9TeV, if �Z0 ¼0:10MZ0 [43]. Notwithstanding,
the application of these bounds to the model considered
here is not straightforward and has to be done in a separate
work.
Last but not least, we would like to say that the m3-3-1

solution that we have presented here can be falsifiable in
the near future: When the strength of the VVh01, V ¼ W, Z
where measured, given at least upper limits for U�1 and

U�1, then we can check if all the couplings of the 125 GeV

Higgs boson with the gauge bosons and all the fermions,
when measured with sufficient precision, agree or not with
those in Eqs. (15) and (43) when �0 and �0 are projected
on h01.
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