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We study temperature and finite-size effects on the spontaneous symmetry breaking/restoration for a

scalar field model under the influence of an external magnetic field, at finite chemical potential. We use the

two-particle irreducible formalism and consider the large-N limit. We find that there is a minimal size of

the system to sustain the broken phase, which diminishes as the applied field increases but is independent

of the chemical potential. We analyze the critical curves and show that the magnetic field enhances the

broken-phase regions, while increasing the chemical potential leads to a diminishment of the critical

temperature.
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I. INTRODUCTION

Field theories defined on spaces with some of its
dimensions compactified is interesting for several branches
of theoretical physics. They can be related, for instance, to
studies of finite-size scaling in phase transitions, to string
theories or to phenomena involving extra dimensions in
high and low energy physics [1–9]. For a Euclidean
D-dimensional space, compactification of some coordi-
nates means that its topology is of the type �d

D ¼ ðS1Þd �
RD�d, with 1 � d � D, d being the number of compacti-
fied dimensions. Each of these compactified dimensions
has the topology of a circle S1. We refer to �d

D as a toroidal
topology. Mathematical foundations to deal with quantum
field theories on toroidal topologies are consolidated in
recent developments [10,11]. This provides a general
framework for results from earlier works as for instance
in [12–18].

Here, in the framework of the two-particle irreducible
(2PI) formalism [19,20] in the Hartree-Fock approxima-
tion, we perform a study of magnetic effects for a field
theory defined on a toroidal topology. The main interest of
field theories defined on spaces with such a topology is that
the simultaneous introduction of temperature and finite-
size effects is allowed in a natural way, leading to size-
dependent phase diagrams. We are particularly interested
in how a magnetic background affects the size-dependent
phase structure of the system; we present magnetic effects
on spontaneous symmetry restoration induced by both
temperature and spatial boundaries, at finite chemical
potential. We will consider the system with a fixed squared
mass parameter; within the toroidal formalism, the model
is valid for the whole domain of temperatures, 0 � T <1.

II. THE 2PI FORMALISM

We consider the model described by the Lagrangian
density

L ¼ 1

2
@�’

�
a@

�’a þ 1

2
m2

0’
�
a’a þ u

4!
ð’�

a’aÞ2 (1)

in a Euclidean D-dimensional spacetime, where m0 and u
are, respectively, the zero-temperature mass and the cou-
pling constant in the absence of boundaries, of an external
magnetic field and at zero chemical potential. We consider
the large-N regime where N ! 1 and u ! 0 but with Nu
finite and fixed. To simplify the notation, we drop out a
indices, summation over them being understood in field
products. We proceed to approach symmetry restoration
for this model following first the 2PI formalism [19,20] in
the absence of an external field. In this case, the stationary
condition for the effective action, in the Hartree-Fock
approximation, leads to the gap equation

G�1ðx;x0Þ ¼ D�1ðx;x0Þ þ u

2
Gðx;xÞ�Dðx� x0Þ; (2)

with x, x0 2 RD. The Fourier-transformed propagators,
DðkÞ and GðkÞ, are given by

DðkÞ ¼ 1

k2 þm2
0 þ u

2�
2
; GðkÞ ¼ 1

k2 þM2
: (3)

Here, � ¼ h0j ffiffiffiffiffiffiffiffiffiffi
’�’

p j0i is the vacuum expectation value
of the quantum field ’ andM is a momentum-independent
effective mass.
In the 2PI formalism, the gap equation corresponds to

the stationary condition, and as such the effective mass
depends on � and conveys all daisy and superdaisy graphs
contributing to GðkÞ [19,20]. Nevertheless, to investigate
symmetry restoration, we can take instead a particular
constant value M in the spontaneously broken phase.
Renormalization of the mass and of the coupling constant
can be performed with the procedure described in
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Ref. [20]. Then, defining the effective renormalized mass
by �m2ð�Þ ¼ �m2

R þ ðuR=2Þ�2, where mR and uR are,
respectively, the renormalized mass and the renormalized
coupling constant, at both zero temperature and zero
chemical potential, we can write the gap equation, in
momentum space, in the large-N limit as [18,20]

�m2ð�Þ ¼ M2 � �R

2

1

ð2�ÞD
Z

dDk
1

k2 þM2
; (4)

where

�R ¼ lim
N!1;uR!0

ðNuRÞ: (5)

In the following, wewill generalize this equation to include
effects of an external magnetic field as well as temperature,
chemical potential and size effects. We shall consider the
constant �R as the physical renormalized coupling constant
and focus only on the correction of the mass.

III. TWO-POINT FUNCTION IN THE PRESENCE
OF A MAGNETIC FIELD

In the presence of an external magnetic field, the
Lagrangian density in Eq. (1) becomes

L ¼ 1

2
Dy

�’
�D�’þ 1

2
m2

0’
�’þ u

4!
ð’�’Þ2; (6)

whereD� ¼ @� � ieA� is the covariant derivative and A�

is the potential of the external gauge field. We consider a
uniform applied magnetic fieldH and choose a gauge such
that A ¼ ð0; x1H; 0; 0; . . .Þ. In this case, the part of the
Hamiltonian quadratic in ’ becomes, after an integration
by parts, �R

dDr’�D’, where we have the differential

operator [21]

D ¼ r2 � 2i!x1@x2 �!2x21 �m2
0; (7)

with! ¼ eH being the cyclotron frequency. Thus the natu-
ral basis to expand the field operators is the set of the
normalized eigenfunctions of the operator D, the Landau
basis. Then, the free propagator can be written as [21]

Gðx;x0Þ ¼
Z dD�2qd�

ð2�ÞD�1

X1
‘¼0

!�‘;�;qðxÞ��
‘;�;qðx0Þ

q2 þ ð2‘þ 1Þ!þm2
0

; (8)

with the Landau eigenfunctions given by

�‘;�;qðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2‘‘!

p
�
!

�

�1
4
eiq�zei!�x2e�1

2!ðx1��2Þ

�H‘ð
ffiffiffiffi
!

p ðx1 � �ÞÞ; (9)

where H‘ denote the Hermite polynomials, with Cartesian
coordinates, x ¼ ðx1; x2; zÞ and q the (D� 2)-dimensional
momentum associated with the vector z in the gauge we
choose.

Following Ref. [21], we can extract the non-translational-
invariant phase of the propagator (8) and write

Gðx;x0Þ ¼ ei!ðx1þx0
1
Þðx2�x0

2
Þ=2 �Gðx� x0Þ; (10)

where

�Gðx� x0Þ ¼
Z dD�2qd�

ð2�ÞD�1

X1
‘¼0

!eiq�ðz�z0Þ

q2 þ ð2‘þ 1Þ!þm2
0

� 1

2‘‘!

ffiffiffiffi
!

�

r
ei!�ðx2�x0

2
Þe�1

4½ðx1�x0
1
Þ2þ4��

�H‘

� ffiffiffiffi
!

p �
1

2
ðx1 � x01Þ � �

��

�H‘

� ffiffiffiffi
!

p �
� 1

2
ðx1 � x01Þ � �

��

¼
Z dDk

ð2�ÞD eik�ðx�x0Þ ~Gðk; !Þ: (11)

Taking the coincidence limit, x ¼ x0, and using the ortho-
normality relations for the Hermite polynomials, we find

~Gðk; !Þ ¼ 2��ðk1Þ�ðk2Þ
X1
‘¼0

!

k2 þ ð2‘þ 1Þ!þm2
0

: (12)

As a consequence, to introduce temperature and finite-size
effects in the gap equation we are restricted to perform
compactifications in the remaining D� 2 coordinates;
thus, to consider both effects we have to consider a space-
time with dimension D � 4.

IV. MASS CORRECTIONS IN ATOROIDAL SPACE
IN THE PRESENCE OFAN EXTERNAL FIELD

To take into account finite-size and chemical-potential
effects, we consider first the changes introduced by the
external field, given in Eq. (12). To this end, let us remem-
ber that the parameter M is an effective mass taken as a
constant. In such a case, the changes due to the external
applied constant magnetic field are introduced via the
minimal coupling, @� ! D� ¼ @� � ieA�, and we adopt

the approximation of neglecting the corrections arising
from the vertices involving the classical field �. This
means that the integral

R
dDkðk2 þM2Þ�1 in Eq. (4)

should incorporate the magnetic field as dictated by
Eq. (12), in such a way that Eq. (4) takes the form

�m2ð�;!Þ¼M2�!�R

2

X1
‘¼0

Z dD�2q

ð2�ÞD�2

1

q2þM2
‘ð!Þ ; (13)

where �m2ð�;!Þ is the!-dependent effective renormalized
mass and M2

‘ð!Þ ¼ M2 þ ð2‘þ 1Þ!.

In the sequel we will obtain the generalization of
Eq. (13) in such a way as to include the toroidal topology
as well as the chemical potential. Restoration of the sym-
metry will occur at the set of points in the toroidal space
where �m2 ¼ 0.
We now proceed to generalize Eq. (13) to a theory defined

on a space with a toroidal topology. In the (D� 2)-
dimensional system in thermal equilibrium at temperature
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��1 andwith a compactification ofd� 1 spatial coordinates
(compactification lengths Lj, j ¼ 2; 3; . . . ; d), we have

z ¼ ð	; z2; . . . ; zd;wÞ, where 	 corresponds to imaginary
time and w is a (D� 2� d)-dimensional vector; the corre-
sponding momentum is q ¼ ðq	; q2; . . . ; qd;pÞ, p being a
(D� 2� d)-dimensional vector in momentum space. We
consider the simpler situation of d ¼ 2, the system at
temperature ��1 and one compactified spatial coordinate
(z2 � z) with a compactification length L2 � L. Then the
Feynman rules should be modified according to [10,11]

Z dq	dqz
ð2�Þ2 fðq	; qz;pÞ ! 1

�L

X1
n	;nz¼�1

f!n	 ;!nz
ðpÞ; (14)

where the function f!n	 ;!nz
ðpÞ is obtained from fðq	; qz;pÞ

by the replacementsq	 ! 2n	�=�� i� andqz!2nz�=L,
where � is the chemical potential. In this case, using
Eq. (14), we can perform a suitable generalization of the
procedure in [20], to take into account finite-size, thermal
and boundary effects in Eq. (13). The integral over the
(D� 2)-dimensional momentum in Eq. (13) becomes a
double sum over n	 and nz together with a (D� 4)-
dimensional integral over the remaining momentum p.

Then, following steps similar to those in [12] and using
dimensional regularization to perform the integral, the
renormalized ðT; L;�;!Þ-dependent mass in the large-N
limit can be written in the form

�m2ðT; L;�;!Þ ¼ M2 ��ðT; L;�;!Þ: (15)

We introduce dimensionless parameters,

t ¼ 1

M�
; 
 ¼ 1

ML
;

� ¼ �

M
; � ¼ !

M2
;

� ¼ �R

M4�D
;

(16)

and the notation M2
‘ð!Þ � M2

‘ð�Þ ¼ M2c2‘ð�Þ, where

c‘ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2‘þ 1Þ�

p
: (17)

Then in terms of the dimensionless quantities we have

�ðt; 
; �; �Þ
M2

¼ �t
�
�ðD�4Þ=2

8�2

�ðs� D�4
2 Þ

�ðsÞ
� X1

‘¼0

Z
h2
‘

2

�
s�D� 4

2
; t2; 
2; b; 0

���������s¼1
;

(18)

where we define b ¼ i�=2�t and Zh2

2 ð�; fag; fbgÞ ¼P1
n;l¼�1½a1ðn� b1Þ2 þ a2ðl� b2Þ2 þ h2��� is an inho-

mogeneous Epstein-Hurwitz zeta function [22], with
h2‘ ¼ ð2�Þ�1c2‘ð�Þ.
The Epstein-Hurwitz zeta functions have representa-

tions in the whole complex s plane in terms of modified
Bessel functions of the second kind K� [22]; however, the
first term of the Epstein-Hurwitz function in this represen-
tation implies that the first term in the correction to the
mass is proportional to �ðð4�DÞ=2Þ, which is divergent
for even dimensions D � 4 [12]. This term is suppressed
by a minimal subtraction, leading to a finite effective
renormalized mass; notice that we call the quantities ob-
tained after subtraction of this polar term renormalized
quantities, in the sense of finite quantities, even if it is
not a perturbative renormalization. For the sake of uni-
formity, this polar term is also subtracted for other dimen-
sions, where no singularity exists, corresponding to a finite
renormalization. Notice also that the polar term that is
subtracted does not depend on �, L, � and !.
This leads to the mass equation, written in terms of the

above dimensionless parameters,

�m2ðt; 
;!; �Þ
M2

¼ �1þ �
1

�ð2�ÞD�2
2

X1
‘¼0

2
64X1

n¼1

cosh

�
�n

t

��
t

nc‘ð�Þ
�D�4

2
KD�4

2

�
n

t
c‘ð�Þ

�
þ X1

n¼1

�



nc‘ð�Þ
�D�4

2
KD�4

2

�
n



c‘ð�Þ

�

þ 2
X1
n;r¼1

cosh

�
�n

t

�0B@ 1

c‘ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

t2
þ r2


2

q
1
CA

D�4
2

KD�4
2

0
@c‘ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

t2
þ r2


2

s 1
A
3
75: (19)

V. DISCUSSION

Now we analyze the effects of the finite-size and external
magnetic field on the thermodynamic behavior of the
system. In the general situation, the resulting equation
does not allow an algebraic solution, and numerical evalu-
ations are needed. For numerical evaluations, we fix the
value � ¼ 1:0 and take several values of the dimensionless
parameters t, 
, �, and �.

In Fig. 1, the behavior of the effective corrected mass �m

defined in Eq. (19) for some values of the reduced magnetic

field is illustrated, as a function of the reduced temperature

t or the reduced inverse size 
, at vanishing chemical

potential. As it can be noted, the behavior of �mwith respect

to the quantities t and 
 are similar for � ¼ 0. The effec-

tive corrected mass decreases as t, 
 increase in the same

way. We see that for a given size, the critical temperature
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is higher for larger values of the applied field. Conversely,

the minimal size sustaining the broken phase is smaller for

higher values of the applied field.
To explore the results discussed above in more detail, we

analyze the critical behavior of the system. Criticality is
attained for �m2ðt; 
;�; �Þ ¼ 0 in Eq. (19). The reduced
critical temperature (tc) versus the reduced inverse size of
the system is plotted in Fig. 2, for different values of the
reduced chemical potential and a fixed value of the reduced
applied field. The symmetry-breaking regions are below
each curve. We notice that the critical temperature dimin-
ishes as the inverse size of the system increases; i.e. the
broken phase is inhibited as the size of the system de-
creases. Besides, this figure strongly suggests that there is a
minimal size of the system, L0 (corresponding to a maxi-
mum allowed value of 
, 
0), which is independent of the
chemical potential, below which the symmetry breaking
disappears. Also, the critical temperature depends on the

0 1 2 3 4 5
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1

2

3

4

5

t c

FIG. 2. Plot of tc versus 
 for � ¼ 0:0, 0.5, 1.0 (respectively,
full, dashed and dotted lines). We fix � ¼ 1:0 and � ¼ 1:0.
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t c

FIG. 3. Plot of tc versus 
 for � ¼ 0:01, 0.5, 1.5 (respectively,
full, dashed and dotted lines). We fix � ¼ 0:5 and � ¼ 1:0.
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FIG. 4. Plot of tc versus � for � ¼ 0:01, 0.5, 1.5 (respectively,
full, dashed and dotted lines). We fix 
 ¼ 0:5 and � ¼ 1:0.
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1.0

m

t,

FIG. 1 (color online). Plot of �m in Eq. (19) in units of M as a
function of t (
), for � ¼ 0:01, 0.5, 1.5 (full, dashed and dotted
lines, respectively). We fix � ¼ 0:0, 
ðtÞ ¼ 0:001 and � ¼ 1:0.
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FIG. 5. Plot of tc versus � for 
 ¼ 1:0, 1.5, 
 ¼ 2:0 (respec-
tively, full, dashed, and dotted lines). We fix � ¼ 0:1 and
� ¼ 1:0.
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density, in such a way that, for fixed values of the thickness
and of the applied field, it is smaller for higher values of the
chemical potential.

In Fig. 3, the plot tc � 
 is shown for different values of
the reduced applied field and a fixed value of the reduced
chemical potential. This figure shows that for higher ap-
plied fields the minimal thickness of the system for which
the transition exists is smaller. In addition, we also see that
the critical temperature is higher for a higher applied field.
It means that the broken phase for a thinner system is
favored as the magnetic field is increased; the magnetic
field drives the system to the broken phase.

Another interesting result can be seen in Fig. 4, which
shows the reduced critical temperature versus the reduced
chemical potential, for three values of the reduced applied
field and a fixed value of the reduced size. It suggests that
the critical temperature decreases as the chemical potential
increases and, as in Fig. 3, the broken phase is strengthened
for stronger values of the applied field.

Finally, in Fig. 5 tc � � is plotted again, but for three
values of the reduced inverse size and a fixed value of the
reduced applied field. We find that the broken phase is
inhibited for smaller sizes.
In summary, we have investigated how a magnetic

background affects the size-dependent phase structure of
the scalar field theory in the framework of 2PI formalism,
in the Hartree-Fock approximation, considering the
large-N limit. We have found that the broken phase is
strengthened for stronger values of the applied field.
Also, the minimal size of the system, below which there
is no phase transition, is smaller for greater values of the
applied field. We thus conclude that the magnetic field
drives the system to the broken phase.
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