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We investigate some peculiar aspects of the so-called Lee-Wick electrodynamics focusing on physical

effects produced by the presence of sources for the vector field. The interactions between stationary charge

distributions along parallel branes with arbitrary dimensions is investigated and the energy of a point

charge is discussed. Some physical phenomena produced in the vicinity of a Dirac string are also

investigated. We consider the Lee-Wick theory for the scalar field, where some interesting effects can

emerge with no counterpart for the vector gauge field theory.
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I. INTRODUCTION

From time to time, models with derivatives of superior
order in the field variables have been studied in the litera-
ture. As far as the authors know, one of the first models of
this kind was proposed by Podolsky [1–3] and Lee and
Wick [4,5], and some of its technical features are the fact
that, in 3þ 1 dimensions, the self-energy for a pointlike
electric charge is finite, and it exhibits gauge invariance as
well as a nonvanishing pole for the gauge field propagator
in momenta space. Nowadays, we can find vast literature
about those kinds of models usually referred to as
Lee-Wick models.

Recently, after the proposed so-called Lee-Wick
Standard Model (LWSM) [6], some interest in Lee-Wick-
type models has been aroused in many contexts. We can
cite, for instance, possible experimental signatures of
LWSM as well as experimental and/or theoretical con-
straints on its parameters [7–17]. Some effort has also
been spent in the theoretical aspects of the LWSM, as the
treatment of the ghosts states [18], possible minimal
LWSM [19], models with higher derivatives [20,21], the
renormalization of Lee-Wick gauge theories [22,23], and
finite-temperature Lee-Wick theories [24–26].

In what concerns Lee-Wick-type field theories with
higher degrees of freedom, the non-Abelian Lee-Wick
gauge theories [22,27–30] and peculiarities of Lee-Wick-
type theories for gravity [31–36] are long standing issues.
In this context, we would like to call attention to some
cosmological implications of the Lee-Wick scalar field
[37–39] and its use for describing the dark energy [40].

Many other interesting studies of Lee-Wick theories can
be found in the literature, among them we can cite, for
instance, the fact that Lee-Wick electrodynamics also leads

to a finite self-force for a pointlike electric charge [41,42],
the study of wave propagation in Lee-Wick theories [43],
the role of Lee-Wick models in dynamical breaking of chiral
symmetry [44], the quantization of Lee-Wick electrodynam-
ics [45–47], the connection between electrodynamics with
minimal length and Lee-Wick electrodynamics [48], theta
term generalization in connection with noncommutative
electrodynamics [49], formalism of second-order gauge
theories for Lee-Wick theories [50], first-order formalism
for Lee-Wick electrodynamics [51], generalizations with
auxiliary fields with higher derivatives [52], and so on.
One of the most fundamental questions one can have

about gauge field models with higher derivatives concerns
the physical phenomena produced by the presence of field
sources, mainly on the phenomena with no counterpart in
the standard theories with no superior derivatives [53].
This paper is devoted to this subject in the context of
Lee-Wick electrodynamics, where we search for effects
produced by the presence of field sources not present in the
Maxwell theory. For completeness, we consider also the
extension of the Lee-Wick electrodynamics for the massive
scalar field. This last model leads to interesting peculiar-
ities once we have two mass parameters.
In Sec. II we study the interaction between stationary

sources for the vector field in the Lee-Wick electrodynam-
ics. The sources are taken to be distributed along parallel
branes with arbitrary dimensions. We focus on the case
where the sources describe uniform and stationary distri-
butions of electric charges along the branes. For complete-
ness, we also discuss the case of sources which describe
uniform distributions of electric dipoles. From the com-
puted results, we investigate the behavior of the energy
between two electric charges when the distance between
them is small. The results indicate that, for spatial dimen-
sions higher than three, the self-energy of a pointlike
electric charge diverges in the Lee-Wick electrodynamics.
In Sec. III we investigate some peculiarities of Lee-Wick
electrodynamics (in comparison with the Maxwell theory)
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in the vicinity of one or two Dirac strings. In Sec. IV we
consider the massive Lee-Wick scalar field, mainly in what
pertains to the interaction between pointlike field sources.
Once we have two mass parameters, we can obtain results
with no counterpart in comparison with Klein-Gordon
theory. Section V is dedicated to the conclusions and final
remarks.

Throughout this paper, we work in Minkowski space-
time, with diagonal metric ��� ¼ ð1;�1; . . . ;�1Þ, Dþ d
spatial dimensions, and one time dimension. The time
coordinate shall be represented by x0 and the
(Dþ dþ 1)-vector position shall be designated by

x ¼ ðx0; x1; . . . ; xd; xdþ1; . . . ; xdþDÞ: (1)

We shall also use the following notations for spatial
coordinates perpendicular and parallel to the branes:

x? ¼ ðx1; . . . ; xdÞ; xk ¼ ðxdþ1; . . . ; xdþDÞ; (2)

and similar ones for the momentums p.

II. CHARGED STATIONARY BRANES

In this section we investigate some aspects of the inter-
actions between stationary sources for the vector field in
the Lee-Wick electrodynamics in an arbitrary number of
spatial dimensions. For simplicity, the sources are taken to
be concentrated along stationary parallel branes.

The Abelian Lee-Wick electrodynamics is described by
the Lagrangian density [4,5]

L ¼ � 1

4
F��F

�� � 1

4m2
F��@�@

�F�� � ð@�A�Þ2
2�

� J�A
�; (3)

where J� is the vector external source,

F�� ¼ @�A� � @�A� (4)

is the field strength, A� is the vector potential, and m is a
parameter with mass dimension. The third term on the
right-hand side of Eq. (3) was introduced in order to fix
the gauge, and � is a gauge-fixing parameter.

Neglecting surface terms, one can write

L ¼ 1

2
A�O��A� � J�A

�; (5)

where we defined the differential operator

O�� ¼ ���

�
1þ @�@�

m2

�
@�@� �

�
1� 1

�
þ @�@�

m2

�
@�@�:

(6)

The propagator D��ðx; yÞ is the inverse of the operator
O�� in the sense that

O��D��ðx; yÞ ¼ ��
��

4ðx� yÞ: (7)

One can get the propagator by using standard field
theory methods. Searching for a Fourier representation
for D��ðx; yÞ; one can show that

D��ðx; yÞ ¼
Z ddþDþ1p

ð2	ÞdþDþ1

�
1

p2 �m2
� 1

p2

��
��� �

p�p�

p2

�
�
1þ �

�
p2

m2
� 1

���
exp ½�ipðx� yÞ�: (8)

Once we have a quadratic Lagrangian in the field
variables A�, the energy of the system due to the presence
of the sources is given by [54]

E¼ lim
T!1

1

2T

Z
ddþDþ1xddþDþ1yJ�ðxÞD��ðx;yÞJ�ðyÞ: (9)

As discussed in Refs. [55,56], the presence of stationary
uniform distributions of charges along D-dimensional par-
allel branes can be described by the external source

J� ¼ ��0

XN
k¼1

�k�
dðx? � akÞ: (10)

In expression (10), N is the number of branes, �k is the
charge density for the kth brane (charge per unit of brane
area), ak designates the kth brane position, and x? are the
coordinates perpendicular to the branes. It is important
to notice that the vectors ak have only perpendicular coor-
dinates, i.e., ak ¼ ða1k; . . . ; adk; 0; 0; . . .Þ.
Substituting the source (10) into (9) and using the

propagator (8), identifying the area of a given brane LD ¼R
dDyk and neglecting the contributions due to the self-

interactions of each brane with itself (the self-energy of the
branes), we have for the energy per unit brane area

E ¼ E

LD

¼ XN
k¼1

XN
s¼1

�k�sð1� �k;sÞ 12
�Z ddp?

ð2	Þd
1

p2
?
exp ðip?:aksÞ

�
Z ddp?

ð2	Þd
1

p2
? þm2

exp ðip?:aksÞ
�
; (11)

where aks ¼ ak � as.
Notice that the energy splits into two contributions. The

first one comes from the massless sector of the model and
does not involve the parameter m. The other one comes
from the massive sector. The first contribution leads to a
Coulomb-like interaction, as discussed in Ref. [55], with
repulsive behavior (charges with the same signal repel each
other). The second contribution produces a Yukawa-like
interaction with attractive behavior. One can see this fact
by solving the integrals in Eq. (11). For this task we can use
the results of Ref. [55],

Z ddp?
ð2	Þd

1

p2
? þm2

exp ðip?:aÞ

¼ 1

ð2	Þd=2 m
d�2ðmaÞ1�ðd=2ÞKðd=2Þ�1ðmaÞ; (12)
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and

Z ddp?
ð2	Þd

1

p2
?
exp ðip?:aÞ ¼ 1

ð2	Þd=2 2
ðd=2Þ�2�

�
d

2
� 1

�
a2�dd � 2; (13)

where K stands for the K-Bessel function [57], � is the gamma function, and a ¼ jaj.
When d ¼ 2 and m ¼ 0, we insert a regulator parameter, �, with mass dimension, as follows:

Z d2p?
ð2	Þ2

1

p2
?
exp ðip?:aÞ ¼ lim

�!0

Z d2p?
ð2	Þ2

1

p2
? þ�2

exp ðip?:aÞ ¼ 1

ð2	ÞK0ð�aÞ

¼ � 1

ð2	Þ
�
ln

�
ma

2

�
þ 


�
þ 1

ð2	Þ ln
�
m

�

�

! � 1

ð2	Þ
�
ln

�
ma

2

�
þ 


�
; (14)

where in the second line we used the expansion K0ðzÞ!z!0 � ln ðz=2Þ � 
 (
 stands for the Euler constant), and in the third
line we discarded an a-independent term, which does not contribute to the interaction energy between the branes and so to
the force between them.

Now, using Eqs. (14), (13), and (12) in (11), so

E ¼ 1

2

X
k�s

�k�s

8>>><
>>>:

1

ð2	Þd2

h
2ðd2�2Þ�

�
d
2 � 1

�
ðaksÞ2�d �md�2ðmaksÞ1�ðd=2ÞKðd=2Þ�1ðmaksÞ

i
d � 2

1
ð2	Þ

h
� ln

�
maks
2

�
� 
� K0ðmaksÞ

i
d ¼ 2:

(15)

When we have two pointlike branes in 3þ 1 dimensions,
we must takeD ¼ 0 and d ¼ 3 in Eq. (15). In this case, we
have the well-known result obtained previously in the
literature (see, for instance, Ref. [53]),

EðD ¼ 0; d ¼ 3Þ ¼ �1�2

4	

1� exp ð�maÞ
a

: (16)

The force density on the brane a (force per unit of brane
area) can be obtained by differentiation of Eq. (15) as
follows:

F a ¼ �X
b�a

�
@E
@aab

�
aab
aab

; aab ¼ aa � ab; (17)

which leads to a single and general expression

F a ¼ X
b�a

�a�b

ð2	Þd2ðaabÞd�1

�
�
2ðd2�1Þ�

�
d

2

�
� ðmaabÞd2Kd

2
ðmaabÞ

�
aab
aab

d ¼ 1; 2; 3; . . . (18)

The results (15) and (18) show that the interaction
between the sources are given by a Coulomb-like contri-
bution with repulsive behavior (charges with the same
signal repel each other) due to the massless modes and a
Yukawa-like contribution with attractive behavior.

For completeness, we point out that the interaction
between dipole distributions along parallel D-dimensional
branes can be obtained by using the same methods
employed to compute Eq. (15). As discussed in Ref. [55],
the source which describes this kind of dipole distribution is
given by

J� ¼ ��0

XN
k¼1

V�
ðkÞ@�½�dðx? � akÞ�; (19)

where the vectors V�
ðkÞ are taken to be constant and uniform

in the reference frame we are performing the calculations.
Substituting Eq. (19) in Eq. (9) and performing the

calculations analogously to the previous ones, one can
show that

E¼ E

LD

¼XN
k¼1

XN
s¼1

2ðd2�2Þ�ðd2Þ
ð2	Þd2adks

�
d

�
Vk?:aks

aks

��
Vs?:aks

aks

�
�Vk?:Vs?

�

� md

ð2	Þd2 ½ðmaksÞ�d
2Kd

2
ðmaksÞðVk?:Vs?Þ

�ðmaksÞ�1�d
2K1þd

2
ðmaksÞðVk?:ðmaksÞÞðVs?:ðmaksÞÞ�:

(20)
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To conclude this section, we study the interaction energy
between two pointlike branes (which corresponds to
D ¼ 0) at small distances and for higher dimensions.

Taking the space-time dimensions as 1þ 1, 2þ1, 3þ1,
4þ1, or 5þ 1, we have, respectively,

Eðd ¼ 1Þ ¼ ��1�2

�
1

2m
þm

4
a2 þOða3Þ

�
;

Eðd ¼ 2Þ ¼ �1�2

16	

�
ln

�
ma

2

�
þ ð
� 1Þ

�
ðmaÞ2

þO½a4 ln ðmaÞ�;
Eðd ¼ 3Þ ¼ �1�2

m

4	

�
1� 1

2
maþOða2Þ

�
;

Eðd ¼ 4Þ ¼ ��1�2

m2

16	2

�
2 ln

�
ma

2

�
þ ð2
� 1Þ

�

þO½a2 ln ðmaÞ�;

Eðd ¼ 5Þ ¼ �1�2

�
m2

16	2

1

a
� m3

24	2
þ m4

64	2
aþOða2Þ

�
:

(21)

Notice that for d ¼ 1, 2, 3, the energies (21) are finite
for a ¼ 0. For d ¼ 4, 5, we have a divergent behavior for
a ¼ 0, which is a general feature for d � 4. It is worth
mentioning that the limit a ¼ 0 of the interaction energy
between two point charges can be related to the self-
energy of a given pointlike electric charge. This subject
is not trivial and is under investigation [58]. Some
preliminary results indicate that, for higher dimensions,
the self-energy of a point charge may be rendered finite,
via dimensional regularization, only for an odd number of
spatial dimensions.

III. DIRAC STRING IN THE LEE-WICK
ELECTRODYNAMICS

In this section we investigate the field strength produced
by a Dirac string in the Lee-Wick electrodynamics. For
this task, we start by considering the field configuration
of a Dirac string lying on the z axis, with magnetic flux
� (positive along the ẑ direction) in the Maxwell electro-
dynamics

A�
DiracðMÞðxÞ ¼

�

2	ðx2 þ y2Þ ð0;�y; x; 0Þ; (22)

whose Fourier transform is [59]

~A�
DiracðMÞðpÞ ¼ ð2	Þ2�ðp0Þ�ðp3Þ i�

p2
?
ð0; py;�px; 0Þ; (23)

where we defined the spatial perpendicular momentum to
the string p? ¼ ðpx; py; 0Þ, and the subindex M stands for

quantities related to the Maxwell theory.
One can show that the external source of a Dirac string

J�DiracðxÞ, which produces the field (23), has the Fourier

transform [59,60]

~J�DiracðpÞ ¼ �p2 ~A�
Dirac;MðpÞ: (24)

The vector field produced by the Dirac string source (24)
in the Lee-Wick electrodynamics is given by

A�
DiracðxÞ ¼

Z
d4yD�

�ðx; yÞJ�DiracðyÞ

¼
Z d4p

ð2	Þ4
~D�

�ðpÞ~J�DiracðpÞe�ipx; (25)

where the Lee-Wick propagator D��ðx; yÞ as well as its
Fourier counterpart ~D��ðpÞ can be obtained from Eq. (8).
Taking the gauge parameter � ¼ 1, we have

~D��ðpÞ ¼
�

1

p2 �m2
� 1

p2

��
��� �

p�p�

m2

�
: (26)

Using Eqs. (26), (24), and (23), one can show that
Eq. (25) leads to

A
�
Diracðx?Þ ¼ i�

Z d2p?
ð2	Þ2

�
1

p?
2
� 1

p?
2 þm2

�

� ð0; py;�px; 0Þ exp ðip?:x?Þ: (27)

The first integral in Eq. (27) is the vector potential pro-
duced by a Dirac string in Maxwell electrodynamics (22),
which can be verified with Eq. (23). So, taking into account
that the vector potential (27) has only spatial components,
we can write

ADiracðx?Þ ¼ ADiracðMÞðx?Þ þ�ðẑ� ~rÞ

�
Z d2p?

ð2	Þ2
1

p?
2 þm2

exp ðip?:x?Þ: (28)

From Eq. (12), one can get the result of the above integral
and write

ADiracðx?Þ¼ADiracðMÞðx?Þþ �

2	
ðẑ� ~rÞK0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q �

¼ADiracðMÞðx?Þ
�
1�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
K1

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q ��
;

(29)

where, in the second line, we performed some simple
manipulations.
Taking the rotational operator of Eq. (29), we have the

magnetic field produced by a Dirac string in the Lee-Wick
electrodynamics1

BDiracðx?Þ ¼ �

2	
mK0

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q �
ẑ: (30)

It is interesting to notice that magnetic field (30) points
in the same direction of the magnetic flux inside the Dirac

1We are neglecting the contribution for the magnetic field
which comes from ADiracðMÞðx?Þ. This contribution is divergent
on the z axis and vanishes in any other point of space.

F. A. BARONE, G. FLORES-HIDALGO, AND A.A. NOGUEIRA PHYSICAL REVIEW D 88, 105031 (2013)

105031-4



string. It diverges on the Dirac string and falls down
quickly as we move away from it as

BDiracðx?Þ ffi �m

2ð2	Þ1=2
exp

�
�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �
�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �
1=2

ẑ;

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
� 1

�
;

(31)

where we used the fact that K0ðxÞ ffi ½ð2	Þ1=2=2��
exp ð�xÞ=x1=2 for x � 1.
Once we have an exterior magnetic field to the string, it

is natural to search for effects with no counterpart in the
Maxwell theory. Let us start by taking two distinct Dirac
strings. To simplify, we restrict to the case where they are
parallel each other. One of them is taken to be lying on the
z axis, and the other one is parallel to the z axis a distance a
apart. This system is described by the sources

J�Diracð1ÞðxÞ ¼
Z d4p

ð2	Þ4
~J�DiracðpÞe�ipx;

J
�
Diracð2ÞðxÞ ¼

Z d4p

ð2	Þ4
~J
�
DiracðpÞe�ipxeip?�a;

(32)

where a ¼ ðax; ay; 0Þ is a space vector for the string

position and ~J
�
DiracðpÞ is defined in Eq. (24).

Using the same arguments exposed in Sec. II, one can
show that the interaction energy between the two sources
(32) is given by

E ¼ 1

T

Z
d4xd4yJ�Diracð1ÞðxÞD��ðx; yÞJ�Diracð2ÞðyÞ; (33)

where we discarded contributions due to self-interactions
of the branes and used the fact that D��ðx; yÞ ¼ D��ðy; xÞ.

It is more convenient to work in the momenta space.
For this task we substitute Eqs. (32) and (8) with the gauge
� ¼ 1 in Eq. (33) and use definitions (26), (24), and (23),
which leads to

E ¼ L�1�2

Z d2p

ð2	Þ2
�

1

p2
? þm2

� 1

p2
?

�
p2
?e

ip?�a

¼ �L�1�2
~r2
a

Z d2p

ð2	Þ2
�

1

p2
? þm2

� 1

p2
?

�
eip?�a; (34)

where L ¼ R
dx3 is the string length and we defined the

differential operator ~r2
a ¼ @2

@a2x
þ @2

@a2y
.

The above integrals are performed in Eqs. (13) and (14).
So, the energy (34), after some simple manipulations, reads

E

L
¼ �m2�1�2

ð2	Þ2 K0ðmaÞ: (35)

The corresponding force between the two solenoids is
given by

F ¼ �dE

da
¼ �L

�1�2

ð2	Þ2 m
3K1ðmaÞ: (36)

The force above is attractive if the two magnetic fluxes
flow in the same direction, and repulsive otherwise. It is
important to point out that this force falls down as fast as
the distance between the solenoids a increases. This fact
can be verified if one takes into account that the Bessel

function K1ðxÞ behaves like K1ðxÞ ffi exp ð�xÞ=x1=2 for
large x.

IV. LEE-WICK-LIKE SCALAR MODEL

For completeness, in this section we investigate some
classical properties of a Lee-Wick-like model for the scalar
field. To simplify, we restrict to 3þ 1 dimensions. The
corresponding Lagrangian density is

L ¼ 1

2
@��@��þ 1

2
@��

@
@



m2
@��� 1

2
M2�2 þ J�;

(37)

with the corresponding propagator

Dðx; yÞ ¼
Z d4p

ð2	Þ4
m2

p4 �m2p2 þM2m2
exp ½�ipðx� yÞ�;

(38)

and dynamical equation�
1þ @
@




m2

�
@�@

��þM2� ¼ J: (39)

In Eq. (37),� is the scalar field and J is an external source.
From Eq. (38), one can show that this model exhibits

two massive poles for momentum square, namely,

m2	 ¼ m2

2

0
@1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

m2

s 1
A: (40)

In order to avoid tachyonic modes, one must take the
restriction

0 
 4M2

m2

 1: (41)

IfM ¼ 0, we have a theory similar to the one studied in the
previous section for the electromagnetic field with one
massive mode with mass m, and a massless one. This
case is very similar to the one studied previously and has
no novel physical properties.
If 0< 4M2=m2 < 1, we have two field modes with

different nonvanishing masses mþ and m�, both of them
lower than m and M. In this case, the propagator can be
rewritten in the form

Dðx; yÞ ¼
Z d4p

ð2	Þ4
�

1

p2 �m2þ
� 1

p2 �m2�

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4M2

m2

q
� exp ½�ipðx� yÞ�: (42)
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It is interesting to consider the interaction energy
between two time-independent Dirac deltalike sources
for the field concentrated at distinct points of space. This
setup is described by taking JðxÞ ¼ �1�

3ðx� a1Þ þ
�2�

3ðx� a2Þ, where �1 and �2 are constants which, in
some sense, stand for some kind of pointlike charge for
the scalar field. If one proceeds as in the previous section,
one can show that the interaction energy between the
sources is given by an attractive Yukawa-like potential
with mass mþ plus a repulsive Yukawa-like potential with
mass m�,

E ¼ �1�2

4	

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

m2

q
�
exp ð�mþaÞ

a
� exp ð�m�aÞ

a

�
: (43)

Once m� <mþ, the energy (43) is always negative for
a � 0 and the interaction between the sources exhibits
an attractive behavior, similar to the Klein-Gordon field
[55], for which charges with the same signal attract each
other. Notice that in the limit a ! 0, the energy (43) is
finite.

When 4M2 ¼ m2, we have two massive poles
for the momentum square at m2=2. The propagator now
reads

Dðx; yÞ ¼
Z d4p

ð2	Þ4
m2

½p2 � ðm2=2Þ�2 exp ½�ipðx� yÞ�;

(44)

and the interaction energy between the pointlike sources is
given by

E ¼ ��1�2

4	

mffiffiffi
2

p exp ð�ma=
ffiffiffi
2

p Þ: (45)

Regarding the above result, we notice two interesting
points. The first one is the fact that the energy (45) domi-
nates for large distances in comparison with the single
Yukawa potential, which would be obtained if we had
used only one mass parameter in the model (37), m or
M. The second point is the attractive behavior of the
interaction energy (45); i.e, charges with the same signal
�1 and �2 attract each other.

V. CONCLUSIONS AND FINAL REMARKS

In this paper we investigated some aspects of the
interactions between stationary sources for fields in
Lee-Wick-like Abelian models. We studied the inter-
actions between sources distributed along parallel
branes with arbitrary dimension in the Lee-Wick elec-
trodynamics in a space-time with an arbitrary number

of spatial dimensions. We argued that, for pointlike
branes, the energy between them is finite when they
are arbitrarily close to each other just for one, two,
and three space dimensions. The obtained results in-
dicate that for higher dimensions this energy diverges
for charges infinitely close to each other. This fact
deserves more investigations, and it is an indication
that the self-energy of a pointlike charge is finite in
Lee-Wick electrodynamics only for dimensions up to
3þ 1.
Also, in the context of Lee-Wick electrodynamics, we

showed that a Dirac string in 3þ 1 dimensions produces
a magnetic field throughout the space which points in the
same direction as its internal magnetic field flows. As an
immediate consequence, we showed that two parallel
stationary Dirac strings in the Lee-Wick electrodynam-
ics attract each other if their magnetic fluxes are in the
same direction, and repel otherwise. The existence of a
magnetic field exterior to the solenoid, as far as the
authors know, were not explored in the literature until
now. This fact can lead to other physical phenomena,
like corrections to the Aharonov-Bohm effect, for in-
stance, and is a subject which might be explored in other
contexts.
We studied a Lee-Wick-like model for the scalar field

with two independent mass parameters. For simplicity, we
considered only a 3þ 1 space-time, but the results can be
generalized to an arbitrary number of spatial dimensions.
By choosing conveniently the mass parameters, the inter-
actions between pointlike sources for the field can exhibit
two distinct behaviors: a (double) Yukawa behavior or a
single attractive exponential behavior, which falls down
slower with the distance in comparison with the Yukawa
interaction. In both cases, the attractive behavior of the
interactions still remains (scalar charges with the same
signal attract each other), and the energy is finite if the
distance between the charges is taken to be zero. These
results may be important mainly in the context of the
Lee-Wick Standard Model [6], in what concerns the
Higgs field sector [9,21], and in the use of scalar
Lee-Wick field in cosmological models [37–40].
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