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We consider QED on a two-dimensional Euclidean torus with f flavors of massless fermions and flavor-

dependent chemical potentials. The dependence of the partition function on the chemical potentials is

reduced to a (2f� 2)-dimensional theta function. At zero temperature, the system can exist in an infinite

number of phases characterized by certain values of traceless particle numbers and separated by first-order

phase transitions. Furthermore, there exist many points in the (f� 1)-dimensional space of traceless

chemical potentials where two or three phases can coexist for f ¼ 3 and two, three, four, or six phases

can coexist for f ¼ 4. We conjecture that the maximal number of coexisting phases grows exponentially

with increasing f.
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I. INTRODUCTION AND SUMMARY

QED in two dimensions is a useful toy model to gain
an understanding of the theory at finite temperature and
chemical potential [1–3]. In particular, the physics at zero
temperature is interesting since one can study a system that
can exist in several phases. The theory at zero temperature
is governed by 2 degrees of freedom often referred to as the
toron variables in a Hodge decomposition of the U(1)
gauge field on a l� � torus where l is the circumference
of the spatial circle and � is the inverse temperature.
Integrating over the toron fields projects onto a state with
net zero charge [4] and therefore there is no dependence on
a flavor-independent chemical potential [5]. The depen-
dence on the isospin chemical potential for the two flavor
case was studied in [6] and we extend this result to the case
of f flavors in this paper. After integrating out the toron
variables, the dependence on the (f� 1) traceless1 chemi-
cal potential variables and the dimensionless temperature
� ¼ l

� can be written in the form of a (2f� 2)-dimensional

theta function (see [7] for an overview on multidimen-
sional theta functions). The (2f� 2) dimensional theta
function has a nontrivial Riemann matrix and this is a
consequence of the same gauge field (toron variables, in
particular) that couples to all flavors. The resulting phase
structure is quite intricate since it involves minimization
of a quasiperiodic function over a set of integers. We will
explicitly show:

(1) Three flavors.—The two-dimensional plane de-
fined by the two traceless chemical potentials is
filled by hexagonal cells (cf. Fig. 4 in this paper)
with the system having a specific value of the
two traceless particle numbers in each cell and

neighboring cells being separated by first-order
phase transitions at zero temperature. The verti-
ces of the hexagon are shared by three cells and
therefore two or three different phases can coexist
at zero temperature.

(2) Four flavors.—The three-dimensional space defined
by the three traceless chemical potentials is filled
by two types of cells (cf. Fig. 8 in this paper). One of
them can be viewed as a cube with the edges cut off.
We then stack many of these cells such that they join
at the square faces. The remaining space is filled by
the second type of cell. All edges of either one of the
cells are shared by three cells but we have two types
of vertices—one type shared by four cells and an-
other shared by six cells. At zero temperature, each
cell can be identified by a unique value for the three
different traceless particle numbers and neighboring
cells are separated by first-order phase transitions.
Therefore, two, three, four, or six phases can coexist
at zero temperature.

One can use the multidimensional theta function to study
the phase structure when f > 4 but visualization of the cell
structure becomes difficult. Nevertheless, it is possible to
provide examples of the coexistence of many phases. We
conjecture that the maximal number of coexisting phases is

given by ( f
bf=2c ), increasing exponentially for large f.

The organization of the paper is as follows. We derive
the dependence of the partition function on the (f� 1)
traceless chemical potentials and the dimensionless tem-
perature � in Sec. II. We briefly show the connection to the
two flavor case discussed in [6] and focus in detail on the
three and four flavor cases in Sec. III. We then conclude
the paper with a discussion of some examples when f > 4.

II. THE PARTITION FUNCTION

Consider f-flavored massless QED on a finite torus with
spatial length l and dimensionaless temperature �. All
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flavors have the same gauge coupling e
l where e is dimen-

sionless. Let

�t ¼ �1 �2 � � � �f

� �
(1)

be the flavor-dependent chemical potential vector. The
partition function is [3,6]

Zð�; �; eÞ ¼ Zbð�; eÞZtð�; �Þ; (2)

where the bosonic part is given by

Zbð�;eÞ¼ 1

�2fði�Þ
Y1

k1;k2¼�1

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k22þ 1

�2
k21

��
k22þ 1

�2

h
k21þ fe2

4�3

i�r

(3)

[with k1 ¼ k2 ¼ 0 excluded from the product and �ði�Þ
being the Dedekind eta function] and the toronic part reads

Ztð�; �Þ ¼
Z 1

2

�1
2

dh2
Z 1

2

�1
2

dh1
Yf
i¼1

gðh1; h2; �; �iÞ;

gðh1; h2; �; �Þ ¼ X1
n;m¼�1

exp

�
���

��
nþ h2 � i

�

�

�
2

þ
�
mþ h2 � i

�

�

�
2
	
þ 2�ih1ðn�mÞ

	
:

(4)

We will only concern ourselves with the physics at zero
temperature and therefore focus on the toronic part and
perform the integration over the toronic variables, h1 and h2.

A. Multidimensional theta function

Statement.—The toronic part of the partition function
has a representation in the form of a (2f� 2)-dimensional
theta function:

Ztð�; �Þ ¼ 1ffiffiffiffiffiffiffiffi
2�f

p X1
n¼�1

exp

�
���

�
ntTt þ i

�
st
�

�
�� 0

0 ��

 !�
Tnþ i

�
s

�	
; (5)

where n is a (2f� 2)-dimensional vector of integers. The
ð2f� 2Þ � ð2f� 2Þ transformation matrix T is

T¼

1 0 �� � 0 0

0 1 �� � 0 0

0 0 �� � 0 0

0 0 �� � 1 0

�1 �1 �� � �1 f

0
BBBBBBBB@

1
CCCCCCCCA
; T�1 ¼

1 0 � � � 0 0

0 1 � � � 0 0

0 0 � � � 0 0

0 0 � � � 1 0
1
f

1
f � � � 1

f
1
f

0
BBBBBBBB@

1
CCCCCCCCA
:

(6)

The ðf� 1Þ � ðf� 1Þ matrix �� is

��¼

1� 1
f � 1

f ��� � 1
f

� 1
f 1� 1

f ��� � 1
f

..

. ..
. . .

. ..
.

� 1
f � 1

f ��� 1� 1
f

0
BBBBBBBB@

1
CCCCCCCCA
; ���1¼

2 1 ��� 1

1 2 ��� 1

..

. ..
. . .
. ..

.

1 1 ��� 2

0
BBBBBB@

1
CCCCCCA
;

��¼R

1 0 ��� 0 0

0 1 ��� 0 0

..

. ..
. . .
. ..

. ..
.

0 0 ��� 1 0

0 0 ��� 0 1
f

0
BBBBBBBBB@

1
CCCCCCCCCA
Rt;

Rij¼

8>>>>>>>>><
>>>>>>>>>:

1ffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

p i� j< ðf�1Þ
� jffiffiffiffiffiffiffiffiffiffiffi

jðjþ1Þ
p i¼ jþ1�ðf�1Þ

0 i>jþ1�ðf�1Þ
1ffiffiffiffiffiffiffi
f�1

p j¼ðf�1Þ; 8 i

: (7)

The dependence on the chemical potentials comes from

st¼ ��2 ��3 ��� ��f � ��2 � ��3 ��� � ��f

� �
; (8)

where we have separated the chemical potentials into a
flavor-independent component and (f� 1) traceless com-
ponents using

��1

��2

..

.

��f

0
BBBBBB@

1
CCCCCCA
¼M�; M¼

1 1 1 ��� 1

1 �1 0 ��� 0

1 0 �1 ��� 0

..

. ..
. ..

. . .
. ..

.

1 0 0 ��� �1

0
BBBBBBBBB@

1
CCCCCCCCCA
: (9)

Proof.—Consider the sum

ata ¼ Xf
i¼1

aiai: (10)

Noting that

N ¼

1 1 1 � � � 1

1 �ðf� 1Þ 1 � � � 1

1 1 �ðf� 1Þ � � � 1

..

. ..
. ..

. . .
. ..

.

1 1 1 � � � �ðf� 1Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
;

NM ¼ f; (11)

it follows that

ata ¼ 1

f

Xf
i¼1

bi �ai with �a ¼ Ma; b ¼ Na: (12)
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Explicitly,

b1 ¼ �a1 and bi ¼ �a1 � fai ¼ f �ai �
Xf
j¼2

�aj;

i ¼ 2; . . . ; f;
(13)

where we have used the relation

fa1 ¼
Xf
i¼1

�ai: (14)

Therefore,

ata ¼ 1

f2
�atN2 �a ¼ 1

f
�a21 �

1

f

Xf
i;j¼2

�ai �aj þ
Xf
i¼2

�a2i : (15)

Setting

�n ¼ Mn; �m ¼ Mm; �� ¼ M� (16)

in (4) and using the relation (14) to rewrite �n1 and �m1, we
obtain

Ztð�;�Þ¼ X1
n1;m1;f �ni; �mig¼�1

Z 1
2

�1
2

dh2
Z 1

2

�1
2

dh1exp

�
2�ih1

�
fðn1�m1Þ�

Xf
i¼2

ð �ni� �miÞÞ
	
exp

�
���

�
1

f



fn1�

Xf
i¼2

�niþfh2�i
��1

�

�
2

þ1

f



fm1�

Xf
i¼2

�miþfh2�i
��1

�

�
2�1

f

Xf
i;j¼2


�
�ni�i

��i

�

��
�nj�i

��j

�

�
þ
�
�mi�i

��i

�

��
�mj�i

��j

�

��

þXf
i¼2


�
�ni�i

��i

�

�
2þ

�
�mi�i

��i

�

�
2
��	

; (17)

where n1, m1, �ni and �mi, i ¼ 2; . . . ; f, is the new set of summation variables. The integral over h1 results in

Ztð�; �Þ ¼ X1
n1;f �ni; �mig¼�1

0 Z 1
2

�1
2

dh2 exp

�
���

�
2

f



fn1 �

Xf
i¼2

�ni þ fh2 � i
��1

�

�
2

� 1

f

Xf
i;j¼2


�
�ni � i

��i

�

��
�nj � i

��j

�

�
þ
�
�mi � i

��i

�

��
�mj � i

��j

�

��
þXf

i¼2


�
�ni � i

��i

�

�
2 þ

�
�mi � i

��i

�

�
2
��	

; (18)

where the prime denotes that
Pf

i¼2ð �ni � �miÞ be a multiple of f. The integral over h2 along with the sum over n1 reduces to a
complete Gaussian integral and the result is

Ztð�; �Þ ¼ 1ffiffiffiffiffiffiffiffi
2�f

p X1
f �ni; �mig¼�1

0
exp

�
���

�Xf
i¼2


�
�ni � i

��i

�

�
2 þ

�
�mi � i

��i

�

�
2
�

� 1

f

Xf
i;j¼2


�
�ni � i

��i

�

��
�nj � i

��j

�

�
þ
�
�mi � i

��i

�

��
�mj � i

��j

�

���	
: (19)

The prime in the sum can be removed if we trade �nf for �k,
where

�nf ¼
Xf
i¼2

�mi �
Xf�1

i¼2

�ni þ �kf: (20)

We change �mi ! � �mi and define the (2f� 2)-
dimensional vector

nt ¼ �m2 �m3 � � � �mf �n2 �n3 � � � �nf�1
�k

� �
:

(21)

Then statement (5) follows from (19).

B. Particle number

We define particle numbers Ni corresponding to the
chemical potentials �i as

Nið�; �Þ ¼ �

4�

@

@�i

lnZtð�; �Þ: (22)

Analogously to Eq. (9), we set

�Nkð�; �Þ ¼ N1ð�; �Þ � Nkð�; �Þ for 2 � k � f: (23)

In the infinite-� limit, the infinite sums in Eq. (5) are
dominated by n ¼ 0 which results in

�Nkð�;1Þ ¼ ��k for 2 � k � f: (24)
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Since the partition function is independent of ��1,
�N1ð�; �Þ ¼ Pf

i¼1 Nið�; �Þ ¼ 0 for all �.

C. Zero-temperature limit

In order to study the physics at zero temperature (� ! 0)
we set

� ¼ Tt
�� 0

0 ��

 !
T; � ¼ 1

�
T�1: (25)

Then we can rewrite (5) using the Poisson summation
formula as

Ztð�;�Þ¼ 1ffiffiffiffiffiffiffiffi
2�f

p
�f�1

X1
k¼�1

exp

�
��

�
ðkt��1k�2ktT�1sÞ

	

(26)

with

1

�
¼

2 1 � � � 1 1 0 0 � � � 0 1

1 2 � � � 1 1 0 0 � � � 0 1

..

. ..
. . .

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

1 1 � � � 2 1 0 0 � � � 0 0 1

1 1 � � � 1 2 0 0 � � � 0 0 1

0 0 � � � 0 0 2 1 � � � 1 1

0 0 � � � 0 0 1 2 � � � 1 1

..

. ..
. . .

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 � � � 0 0 1 1 � � � 2 1

1 1 � � � 1 1 1 1 � � � 1 2� 2
f

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

;

(27)

where the block in the upper left corner has dimensions
ðf� 1Þ � ðf� 1Þ and the second block on the diagonal
has dimensions ðf� 2Þ � ðf� 2Þ.

For fixed ��k, the partition function in the zero-
temperature limit is determined by minimizing the term
kt��1k� 2ktT�1s in the exponent in Eq. (26). Assuming
in general that the minimum is M-fold degenerate, let

S ¼ fkðiÞgi¼1;...;M, k
ðiÞ 2 Z2f�2 label theseMminima. Then

�Njð�; 0Þ ¼ 1

2M

XM
i¼1

0
@Xf�1

l¼1

kðiÞl � X2f�3

l¼f

kðiÞl þ kðiÞj�1 � kðiÞfþj�2

1
A;

2 � j � f� 1; (28)

�Nfð�; 0Þ ¼ 1

2M

XM
i¼1

0
@Xf�1

l¼1

kðiÞl � X2f�3

l¼f

kðiÞl þ kðiÞf�1

1
A: (29)

If the minimum is nondegenerate [or if all kðiÞ individually
result in the same �Njð�; 0Þ’s], the particle numbers
�Njð�; 0Þ assume integer or half-integer values at zero

temperature. Since k 2 Z2f�2 and we only have (f� 1)
�Njð�; 0Þ [with �N1ð�; �Þ ¼ 0 for all �], there are in general

many possibilities to obtain identical particle numbers
from different k’s. The zero-temperature phase boundaries
in the (f� 1)-dimensional space of traceless chemical
potentials ��2;...;f are determined by those ��’s leading to

degenerate minima with different �N’s. As we will see later,
phases with different particle numbers will be separated by
first-order phase transitions.
One can numerically determine the phase boundaries as

follows: Having chosen one set for the traceless chemical
potentials, one finds the traceless particle numbers at zero
temperature (by numerically searching for the minimum) at
several points in the traceless chemical potential space close
to the initial one. We label the initial choice of chemical
potentials by the number of different values one obtains for
the traceless particle numbers in its small neighborhood and
this enables us to trace the phase boundaries. Whereas this
method works in general, it is possible to perform certain
orthogonal changes of variables in the space of traceless
chemical potentials and obtain expressions equivalent to
(26) that are easier to deal with when tracing the phase
boundaries. Such equivalent expressions for the case of f ¼
3 and f ¼ 4 are provided in the Appendix.
Consider the system at high temperature with a certain

choice of traceless chemical potentials which results in
average values for the traceless particle numbers equal to
the choice as per (24). The system will show typical thermal
fluctuations as one cools the system but the thermal fluctua-
tions will only die down and produce a uniform distribution
of traceless particle numbers if the initial choice of traceless
chemical potentials did not lie at a point in the phase
boundary. Tuning the traceless chemical potentials to lie at
a point in the phase boundary will result in a system at zero
temperature with several coexisting phases. In other words,
the system will exhibit spatial inhomogeneities. We will
demonstrate this for f ¼ 2, 3, 4 in Sec. III.

D. Quasiperiodicity

Consider the change of variables

s0 ¼ sþ T��1m (30)

withm 2 Z2f�2. Since s is of the special form (8), there is
a restriction on m. From Eq. (27), we find that m has to
satisfy

mf�1þk ¼ mf�1 �mk; 1 � k � f� 2;

m2f�2 ¼ � f

2
mf�1 2 Z:

(31)

This corresponds to

��0
kþ1 ¼ ��kþ1 þmk � f

2
mf�1 þ

Xf�1

i¼1

mi;

1 � k � f� 1;

(32)
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and

Ztð�0; �Þ ¼ Ztð�; �Þe�
�ðmt��1mþ2mtT�1sÞ: (33)

The particle numbers under this shift are related by

�Nkþ1ð�0; �Þ ¼ �Nkþ1ð�; �Þþmk�f

2
mf�1þ

Xf�1

i¼1

mi; (34)

which is the same as the shift in �� as defined in (32).

III. RESULTS

A. Phase structure for f ¼ 2

We reproduce the results in [6] in this subsection. The
condition on integer shifts in (31) reduces to m2 ¼ �m1

and the shift in chemical potential is given by ��0
2¼ ��2þm1.

From Eq. (26) for f ¼ 2, we obtain

�N2 ¼
P1

k¼�1 ke��
�ðk� ��2Þ2P1

k¼�1 e��
�ðk� ��2Þ2 ; (35)

and this is plotted in Fig. 1. The quasiperiodicity under ��0
2 ¼

��2 þm1 is evident. For small �, the dominating term in the
infinite sum is obtained when k assumes the integer value
closest to ��2. Therefore, �N2ð ��2Þ approaches a step function
in the zero-temperature limit (see Fig. 1). Taking into account
the first subleading term, we obtain (for noninteger ��2)

�N2 ¼ b ��2c þ 1

2

�
1þ tanh

�
�

�

�
��2 � b ��2c � 1

2

	�	
þ � � � :

(36)

At zero temperature, first-order phase transitions occur at all
half-integer values of ��2, separating phases which are char-
acterized by different (integer) values of �N2.
If a system at high temperature is described in the path-

integral formalism by fluctuations (as a function of the
two Euclidean spacetime coordinates) of �N2 around a
half-integer value, the corresponding system at zero tem-
perature will have two coexisting phases (fluctuations are
amplified when � is decreased). On the other hand, away
from the phase boundaries, the system will become uni-
form at zero temperature (fluctuations are damped when �
is decreased). Figure 2 shows spatial inhomogeneities
develop in a system with ��2 chosen at the phase boundary
as it is cooled and Fig. 3 shows thermal fluctuations dying
down in a system with ��2 chosen away from the phase
boundary. The square grid with many cells can either be
thought of as a Euclidean spacetime grid or a sampling of
several identical systems (in terms of the choice of ��2 and�).

B. Phase structure for f ¼ 3

We determine the phase boundaries, separating cells
with different ð �N2; �N3Þ as described in Sec. II C. As ex-
plained in Sec. II C, it is also instructive to use a different
coordinate system for the chemical potentials, obtained
from ð�1; �2; �3Þ by an orthonormal transformation:

0.5 1.0 1.5 2.0 2.5 3.0
2

0.5

1.0

1.5

2.0

2.5

3.0
N2

FIG. 1 (color online). For f ¼ 2, plot of �N2 as a function of ��2

for � ¼ 1:5 (red, dot-dashed), � ¼ 0:5 (green, dashed), � ¼ 0:2
(blue, dotted), and � ¼ 0:025 (black, solid).

N2 N2 0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2 (color online). For f ¼ 2, a spacetime grid with small fluctuations around �N2 ¼ 1=2 at large � (left panel) results in two
coexisting phases (characterized by �N2 ¼ 0 and �N2 ¼ 1) at zero temperature (right panel).
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~�1

~�2

~�3

0
BB@

1
CCA ¼

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

1ffiffi
2

p � 1ffiffi
2

p 0

1ffiffi
6

p 1ffiffi
6

p � 2ffiffi
6

p

0
BBBB@

1
CCCCA

�1

�2

�3

0
BB@

1
CCA; (37)

i.e., ~�2 ¼ ��2=
ffiffiffi
2

p
and ~�3 ¼ ð� ��2 þ 2 ��3Þ=

ffiffiffi
6

p
. We de-

note the corresponding particle numbers by ~N2 and ~N3.
An alternative representation of the partition function,
which simplifies the determination of vertices in terms
of the coordinates ~�i, is given in the Appendix. In these
coordinates, the phase structure is symmetric under rota-
tions by �=3 and composed of two types of hexagonal
cells, a central regular hexagon is surrounded by six
smaller nonregular hexagons, which are identical up to
rotations. Figure 4 shows the phase boundaries at zero
temperature in both coordinate systems.

The conditions on the integersm as given in (31) reduce
tom3 ¼ m2 �m1 andm4 ¼ � 3

2m2. Therefore, we require

m2 to be even and write it as 2l2. From Eq. (32) we see that
the boundaries in the ð ��2; ��3Þ plane are periodic under
shifts

��0
2

��0
3

 !
¼ ��2

��3

 !
þm1

2

1

 !
� l2

1

�1

 !
m1; l2 2 Z:

(38)

The shift symmetry (38) is obvious in Fig. 4.
All ��’s inside a given hexagonal cell result in identical

�N as � ! 0, given by the coordinates of the center of
the cell. For example, ��’s in the central hexagonal cell
lead to �N2;3 ¼ ð0; 0Þ at � ¼ 0, the six surrounding cells are
characterized by �N2;3 ¼ �ð1; 12Þ, �N2;3 ¼ �ð12 ; 1Þ, and
�N2;3 ¼ �ð� 1

2 ;
1
2Þ. Every vertex is common to three cells.

The coordinates of the vertices between the central cell and
the six surrounding cells are �ð23 ; 23Þ, �ð0; 23Þ, �ð23 ; 0Þ,
�ð1; 1Þ, �ð0; 1Þ, �ð1; 0Þ. All other vertices in the �� plane
can be generated by shifts of the form (38).
First-order phase transitions occur between neighboring

cells with different particle numbers �N2;3 at � ¼ 0. At the
edges of the hexagonal cells, two phases can coexist, and at
the vertices, three phases can coexist at zero temperature.
In analogy to the two flavor case (cf. Fig. 2), a high-

temperature system with small fluctuations (as a function
of Euclidean spacetime) of ��2;3 can result in two or three

phases coexisting or result in a pure state as � ! 0 depend-
ing on the choice of ��2;3 (see Fig. 5 for examples of all three

cases). Figure 6 shows the flow of ( ~N3ð�Þ, ~N2ð�Þ) from
�¼1 to �¼0 at fixed ð ~�3; ~�2Þ¼ð ~N3ð�¼1Þ; ~N2ð�¼1ÞÞ.
The zero-temperature limit ( ~N3ð0Þ, ~N2ð0Þ) is given by the
coordinates of the center of the respective hexagonal cell.

C. Phase structure for f ¼ 4

We use Eq. (26) to identify the phase structure in the
ð ��2; ��3; ��4Þ space, which is divided into three-
dimensional cells characterized by identical particle
numbers �N2;3;4 at zero temperature. At the boundaries of

N2 N2 0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3 (color online). For f ¼ 2, a spacetime grid with random
fluctuations around �N2 ¼ 2=5 at large � (left panel) results in a
uniform particle number ( �N2 ¼ 0) at � ¼ 0 (right panel).

2 1 1 2

2

1

1

2

2 1 1 2

2

1

1

2

2

32

3

FIG. 4. Phase boundaries at zero temperature for f ¼ 3 in the �� plane (left) and the ~� plane (right).

ROBERT LOHMAYER AND RAJAMANI NARAYANAN PHYSICAL REVIEW D 88, 105030 (2013)

105030-6



N 0 N 0 N 0

FIG. 5 (color online). The left panel shows, for f ¼ 3, the result of cooling a spacetime grid with random fluctuations around
�N � ð �N2; �N3Þ ¼ ð23 ; 23Þ at large � to � ¼ 0, where three phases coexist: �N ¼ ð0; 0Þ (red squares), �N ¼ ð12 ; 1Þ (dark-blue squares), and
�N ¼ ð1; 12Þ (light-green squares). The center panel shows the result starting from �N ¼ ð34 ; 34Þ at high �, which results in two coexisting

phases [ �N ¼ ð12 ; 1Þ and �N ¼ ð1; 12Þ] at � ¼ 0. The right panel shows results starting from �N ¼ ð12 ; 12Þ at high �, resulting in a single phase
[characterized by �N ¼ ð0; 0Þ] at � ¼ 0.

1.0 0.5 0.5 1.0 N3

1.0

0.5

0.5

1.0

N2

FIG. 6. Visualization of the ~N evolution with decreasing � starting from randomly scattered initial points at � ¼ 1 (indicated by dots
in the plot).
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these cells, multiple phases can coexist at zero temperature
(see Fig. 7 for examples). We find different types of
vertices (corners of the cells), where four and six phases
can coexist. At all edges, three phases can coexist.

We set l1 ¼ m1 þm2 �m3, l2 ¼ m1, and l3 ¼ m2.
From Eq. (32) for f ¼ 4, we see that the phase structure
is periodic under

��2

��3

��4

0
BB@

1
CCA !

��2

��3

��4

0
BB@

1
CCAþ l1

1

1

0

0
BB@

1
CCAþ l2

1

0

1

0
BB@

1
CCAþ l3

0

1

1

0
BB@

1
CCA

l1;2;3 2 Z:
(39)

As in the three flavor case, we observe that the phase
structure exhibits higher symmetry in coordinates ~� which
are related to � through an orthonormal transformation.
A particularly convenient choice for f ¼ 4 turns out to be
given by

~�1

~�2

~�3

~�4

0
BBBBB@

1
CCCCCA ¼ 1

2

1 1

1 �1

 !
� 1 1

1 �1

 ! �1

�2

�3

�4

0
BBBBB@

1
CCCCCA; (40)

since the phase structure becomes periodic under shifts
parallel to the coordinate axes:

~�2

~�3

~�4

0
BB@

1
CCA !

~�2

~�3

~�4

0
BB@

1
CCAþ l1

0

0

1

0
BB@

1
CCAþ l2

1

0

0

0
BB@

1
CCAþ l3

0

1

0

0
BB@

1
CCA

l1;2;3 2 Z
(41)

as obtained from Eq. (39). An alternative representation
of the partition function in these coordinates is given in

Eq. (A8). At zero temperature the ~�2;3;4 space is divided

into two types of cells which are characterized by identical
particle numbers (see Fig. 8 for visualizations). We can
think of the first type as a cube (centered at the origin, with
side lengths 1 and parallel to the coordinate axes) where all
the edges have been cut off symmetrically. The original
faces are reduced to smaller squares (perpendicular to the
coordinate axes) with corners at ~�2;3;4 ¼ ð� 1

2 ;� 1
4 ;� 1

4Þ
(permutations and sign choices generate the six faces).
This determines the coordinates of the remaining eight
corners to be located at ð� 3

8 ;� 3
8 ;� 3

8Þ. The shift symme-

try (41) tells us that these ‘‘cubic’’ cells are stacked
together face to face. The remaining space (around the
edges of the original cube) is filled by cells of the second
type (in the following referred to as ‘‘edge’’ cells), which
are identical in shape and are oriented parallel to the three
coordinate axes.
This leads to different kinds of vertices (at the corners

of the cells described above) where multiple phases can
coexist at zero temperature. There are corners which are
common points of two cubic and two edge cells [coex-
istence of four phases, for example at ð� 1

2 ;� 1
4 ;� 1

4Þ],
there are corners which are common points of one cubic
and three edge cells [coexistence of four phases, for
example at ð� 3

8 ;� 3
8 ;� 3

8Þ], and there are corners which

are common points of six edge cells [coexistence of six
phases, for example at ~�2;3;4 ¼ ð� 1

2 ;� 1
2 ;� 1

2Þ]. Any

edge between two of these vertices is common to three
cells.

D. Phase structure for f > 4

For f ¼ 3 and f ¼ 4, we find that the coordinates
ð ��2; . . . ; ��fÞ of all vertices (corners of the cells in the

�� space resulting in identical particle numbers at zero

N 0 N 0 N 0

FIG. 7 (color online). The left panel shows, for f ¼ 4, the result of cooling a spacetime grid with random fluctuations around
�N � ð �N2; �N3; �N4Þ ¼ ð34 ; 34 ; 34Þ at large � to � ¼ 0, where four phases coexist: �N ¼ ð0; 0; 0Þ, �N ¼ ð12 ; 12 ; 1Þ, �N ¼ ð12 ; 1; 12Þ, and �N ¼
ð1; 12 ; 12Þ. Different colors are assigned to different phases. The center panel shows the result starting from �N ¼ ð78 ; 78 ; 78Þ at high �, which
results in three coexisting phases [ �N ¼ ð12 ; 12 ; 1Þ, �N ¼ ð12 ; 1; 12Þ, and �N ¼ ð1; 12 ; 12Þ] at � ¼ 0. The right panel shows results starting from
�N ¼ ð1; 1; 1Þ at high �, resulting in six coexisting phases characterized by �N ¼ ð12 ; 12 ; 1Þ, �N ¼ ð12 ; 1; 12Þ, �N ¼ ð1; 12 ; 12Þ, �N ¼ ð32 ; 32 ; 1Þ,
�N ¼ ð32 ; 1; 32Þ, and �N ¼ ð1; 32 ; 32Þ.
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temperature) are multiples of 1
f . In general, two special

vertices are located at ��i ¼ 1 for all 2 � i � f and ��i ¼
1� 1

f for all 2 � i � f.

If ��i ¼ 1� 1
f for all 2 � i � f, we find that f phases

can coexist at zero temperature. These have particle num-
bers �N2;...;f ¼ ð0; . . . ; 0Þ and all (f� 1) distinct permuta-

tions of ð1; 12 ; . . . ; 12Þ.
If ��i ¼ 1 for all 2 � i � f, we find that ( f2 ) phases can

coexist at zero temperature. The corresponding particle
numbers are given by the (f� 1) distinct permutations

of ð1; 12 ; . . . ; 12Þ and the ( f�1
2 ) distinct permutations of

ð32 ; 32 ; 1; . . . ; 1Þ.
While for f ¼ 5, we find only up to ( 52 ) coexisting

phases, we find up to ( 63 ) coexisting phases for f ¼ 6

[for example at ��2;...;6 ¼ ð1; 12 ; 0; 0; 0Þ]. We also find up to

( 84 ) coexisting phases for f ¼ 8 [for example at ��2;...;8 ¼
ð1; 1; 1; 1; 1; 1; 0Þ]. This leads us to conjecture that the

maximal number of coexisting phases is given by ( f
bf=2c ),

increasing exponentially for large f.

IV. CONCLUSIONS

Multiflavor QED in two dimensions with flavor-
dependent chemical potentials exhibits a rich phase struc-
ture at zero temperature. We studied massless multiflavor
QED on a two-dimensional torus. The system is always in
a state with a net charge of zero in the Euclidean formalism
due to the integration over the toron variables. The toron
variables completely dominate the dependence on the
chemical potentials and the resulting partition function
has a representation in the form of a multidimensional
theta function. We explicitly worked out the two-
dimensional phase structure for the three flavor case and
the three-dimensional phase structure for the four flavor
case. The different phases at zero temperature are
characterized by certain values of the particle numbers

FIG. 8 (color online). Cells defining the zero-temperature phase structure for f ¼ 4 in the ~� coordinates as described in the text. The
top left figure shows the central cubic cell, the top right figure a single edge cell. The bottom right figure shows the cubic cell together
with all 12 attaching edge cells.
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and separated by first-order phase transitions. We showed
that two or three phases can coexist in the case of three
flavors. We also showed that two, three, four, and six
phases can coexist in the case of four flavors. Based on
our exhaustive studies of the three and four flavor case and
an exploratory investigation of the five, six, and eight

flavor case we conjecture that up to ( f
bf=2c ) phases can

coexist in a theory with f flavors.
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APPENDIX: ALTERNATIVE REPRESENTATIONS
OF THE PARTITION FUNCTION

There are many equivalent representations of the parti-
tion function Ztð�; �Þ, related by variable changes of the
integer summation variables in (4) and (5), or (26). Here we
present the result obtained by an orthonormal variable
change at the level of Eq. (4), splitting the chemical
potentials �1; . . . ; �f in one flavor-independent and

(f� 1) traceless components according to

~�1 ¼ 1ffiffiffi
f

p Xf
i¼1

�i; (A1)

~�j¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj�1Þp

0
@Xj�1

i¼1

�i�ðj�1Þ�j

1
A; 2� j�f: (A2)

The induced variable change in the 2f integer summation
variables in Eq. (4) is nontrivial and requires successive
transformations of the form

X1
k;l¼�1

fðk� l;Mkþ lÞ ¼ XM
q¼0

X1
m;n¼�1

fððMþ 1Þm

þ q; ðMþ 1Þn� qÞ;
M 2 Nþ: (A3)

In this way, it is possible to write the partition function as a
product of 2f� 2 one-dimensional theta functions, where
f� 1 factors are independent of the chemical potentials
and each one of the other f� 1 factors depends only on a
single traceless chemical potential ~�i (with 2 � i � f).
However, the arguments of the theta functions are not
independent since they involve a number of finite sum-
mation variables resulting from variable changes of the
form (A3) and the partition function does not factorize.
The final result reads

Ztð�;�Þ/
0
@Yf

j¼1

X1
kj¼0

1
A
0
@Yf

j¼2

Xj�1

qj¼0

Xj�1

pj¼0

1
A�0;ð2Pf

j¼2
pjþ

P
f

j¼1
kjÞmod2f

2
4Yf

j¼2

h2�jðj�1Þ

0
@ 1

jðj�1Þ
Xj�1

i¼2

qi�1

j
qjþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðj�1Þp
�~kj
2
� i

�
~�j

�1A
3
5

�
2
4Yf

j¼2

h2�jðj�1Þ

0
@ 1

jðj�1Þ
Xj�1

i¼2

pi�1

j
pjþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðj�1Þp ~kj
2

1
A
3
5; (A4)

where ~kj ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
jðj�1Þ

p ðPj�1
i¼1 ki � ðj� 1ÞkjÞ and

h�ðzÞ �
X1

n¼�1
e���ðnþzÞ2 : (A5)

Permuting indices in variable changes of the form (A2)
shows that the (f� 1)-dimensional finite sum

Q
j

P
pj
will

result in an expression that depends only on
Pf

j¼1 kj.

To study the zero-temperature properties, we can apply
the Poisson summation formula for each factor of h�ðzÞ in
Eq. (A4).

1. Explicit form for f ¼ 3

For f ¼ 3, the Poisson–resummed version of (A4) can
be simplified to

Ztð�; �Þ / X1
m1;m2;l1;l2¼�1

�0;ðm1þl2Þmod 2�0;ðm2þl1Þmod 2e
��

4�ððm1þm2Þ2þ3ðm1�m2Þ2þðl1þl2Þ2þ1
3ðl1�l2Þ2Þe�

�ððm1þm2Þ
ffiffi
2

p
~�2þðm1�m2Þ

ffiffi
6

p
~�3Þ:

(A6)

For � ! 0, the sums over l1;2 become trivial and we obtain

Ztð�; �Þ ! X1
m1;m2¼�1

e�
�
�ð14ðm1þm2Þ2þ3

4ðm1�m2Þ2�ðm1þm2Þ
ffiffi
2

p
~�2þðm1�m2Þ

ffiffi
6

p
~�3þ1

3ð1��0;m1mod 2�0;m2mod 2ÞÞ: (A7)
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The particle numbers ~N2 and ~N3 at zero temperature are
determined by those integer pairs ðm1; m2Þ dominating the
sum in Eq. (A7). Compared to the general expression in
Eq. (26), we have reduced the number of summation
variables from four to two, which simplifies the search
for vertices where multiple phases coexist. Furthermore,
there is a one-to-one map from ð ~N2; ~N3Þ to ðm1; m2Þ inside
any given cell in the zero-temperature phase structure. Once
we have located neighboring cells in terms of ðm1; m2Þ, we

can immediately read off the ~�2;3 coordinates of the corre-
sponding vertices/edges between them [by requiring that
the contributions to the sum (A7) are identical].

2. Explicit form for f ¼ 4

Following the general procedure described above, we
can write the partition function for f ¼ 4 in the coordinates
defined in Eq. (40) as

Ztð�; �Þ / X1
m2;m3;m4;n2;n3;n4¼�1

�0;ðm2þm3þm4Þmod2�0;ðm2þn2þn3Þmod2�0;ðm3þn3þn4Þmod2e
��

2�

P
4
j¼2

ðm2
jþn2j�4mj ~�jÞ: (A8)

Similarly to the three flavor case, the sum over n2;3;4 becomes trivial in the � ! 0 limit, depending only on m2 mod 2 and
m3 mod 2. The remaining summation variablesm2;3;4 directly determine the particle numbers in the different phases at zero
temperature and the vertices can be found analogously to the three flavor case.
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