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We study novel types of contributions to the entropy of the Maxwell system defined on a

compact manifold such as a torus. These new terms are not related to the physical propagating

photons. Rather, these novel contributions emerge as a result of tunneling events when transitions occur

between topologically different but physically identical vacuum winding states. We compute two new

(topologically protected) types of contributions to the entropy in this system resulting from this dynamics.

The first contribution has a negative sign, expressed in terms of the magnetic susceptibility, and it is

similar in spirit to topological entanglement entropy discussed in condensed matter systems. The second

contribution with a positive sign results from the emergent degeneracy which occurs when the system is

placed into a background of external magnetic field. This degeneracy resembles a similar effect that

occurs at � ¼ � in topological insulators. Based on these computations we claim that the Maxwell system

defined on the four torus behaves in many respects as a topologically ordered system.
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I. INTRODUCTION: MOTIVATION

The main motivation for the present studies is as follows.
It has been recently argued [1] that if the Maxwell theory is
defined on a small compact manifold then some novel terms
in the partition function will emerge. These terms are not
related to the propagating photons with two transverse
physical polarizations. Rather, these novel terms occur as
a result of tunneling events between topologically different
but physically identical states. These states play no role
when the system is defined in Minkowski space-time R1;3.

But these states become important when the system is
defined on a finite compact manifold such as torus T4.

In particular, it has been explicitly shown in [1] that these
novel terms lead to fundamentally new contributions to the
Casimir vacuum pressure, which cannot be expressed in
terms of conventional propagating physical degrees of free-
dom. Instead, the new contributions appear as a result of
tunneling events between different topological sectors jki.
Mathematically, these sectors emerge as a result of non-
triviality of the fundamental group �1½Uð1Þ� ffi Z when the
system is defined on a torus.

The crucial observation for the present studies is as
follows. While the Maxwell electrodynamics is the theory
of massless particles (photons), the topological portion of
the system decouples from dynamics of these massless
propagating photons. Indeed, as we discuss below, the total
partition function Z can be represented as a product Z ¼
Z0 �Ztop. The conventional partition functionZ0 describ-

ing physical photons is not sensitive to the topological
sectors jki of the system, which itself is described by
Ztop. The topological portion of the partition function

Ztop behaves very much as a topological quantum field

theory (TQFT) as we argue below. Furthermore, it demon-
strates many features of topologically ordered systems,
which were initially introduced in the context of condensed

matter systems (see original papers [2–5] and recent
reviews [6–8]).
As a result of these similarities, the key question ad-

dressed in the present work is as follows. It has been known
since [9,10] that the topologically ordered systems can be
characterized by the so-called topological entanglement
entropy (TEE). While the TEE is a subleading contribution
to the entanglement entropy, it is nevertheless a topologi-
cally protected universal constant of the system which can
serve as a probe of the topological order.
We formulate a similar question for the Maxwell system

defined on a nontrivial compact manifold: is there a similar
universal contribution to the entropy that is topologically
protected and that can serve as a probe of the topological
order? Our ultimate answer is ‘‘yes,’’ as our explicit com-
putations below show. Furthermore, this universal constant
contribution to the entropy cannot be expressed in terms of
physical propagating photons. Instead, it is formulated in
terms of the magnetic susceptibility, which itself is a
topologically protected object, and which is saturated by
the ‘‘instantons,’’ rather than by propagating degrees of
freedom. In many respects this object is similar to well-
known topological susceptibility in QCD. As we shall see
below this object does not vanish exclusively as a result of
the dynamics of the topological sectors described by Ztop.

The second question we address in this work can be
formulated as follows. It is known that the main feature of a
topologically ordered system is the presence of a degener-
acy of the ground state which cannot be described in terms
of any local observables. We formulate a similar question
for the Maxwell system defined on a nontrivial compact
manifold: is there a similar degeneracy that can be de-
scribed by some global, rather than local, characteristics?
Our ultimate answer is ‘‘yes’’ again, as our explicit com-
putations below show. This degeneracy resembles a similar
feature that occurs at � ¼ � in topological insulators.
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One may wonder at this point what went wrong with the
standard and generically accepted arguments suggesting
that all physical effects in Maxwell theory can be formu-
lated in terms of physical propagating photons that are
completely described by conventional Z0. Yet all the
effects discussed in the present work are formulated in
fundamentally different terms coded by Ztop. The point is

that the standard description is not quite complete when
four-dimensional Maxwell theory is formulated on a non-
simply connected, compact manifold. The standard
‘‘naive’’ argument neglects the topological sectors, which
are indeed absent when the theory is formulated in the
topologically trivial Minkowski space-time. However,
these topological sectors become important when the
theory is formulated on a nontrivial manifold.

When one attempts to remove all unphysical degrees of
freedom by a gauge fixing, the physics related to pure
gauge configurations describing the topological sectors of
the theory does not go away; instead, this physics reappears
in a much more complicated form where the so-called
Gribov’s ambiguities [11] emerge in the Maxwell system
formulated on a compact manifold [12–15] (see some
comments on this matter in concluding Sec. V). In this
work we opt to keep some gauge freedom and study these
topological sectors explicitly, rather than deal with a
(technically complicated) analysis of the Gribov’s copies.

The structure of our presentation is as follows. In Sec. II,
we review the relevant parts of the two-dimensional
Maxwell ‘‘empty’’ theory which does not have any physi-
cal propagating degrees of freedom. Still, it demonstrates a
number of very nontrivial topological features present in
the system. In Sec. III we generalize our computations for
four-dimensional Maxwell theory defined on the four to-
rus. We find two types of novel contributions to the entropy
in this system. The first contribution with a negative sign is
very similar to topological entanglement entropy well
studied in topologically ordered condensed matter systems.
The second contribution with a positive sign results from
emergent degeneracy, which occurs when the system is
placed into a background of external magnetic field that
resembles a behavior of topological insulators with � ¼ �.

II. MAXWELL THEORY IN TWO DIMENSIONS
AS TOPOLOGICAL QFT

The two-dimensional Maxwell model has been solved
numerous times using very different techniques (see, e.g.,
[16–18]). It is known that this is an ‘‘empty’’ theory in the
sense that it does not support any propagating degrees
of freedom in the bulk of space-time. It is also known
that this model can be treated as a conventional TQFT. In
particular, this model can be formulated in terms of the so-
called background field (BF) action involving no metric.
Furthermore, this model exhibits many other features such
as fractional edge observables that are typical for TQFT
(see, e.g., [17]). We emphasize these properties of the

two-dimensional Maxwell theory because the topological
portion of the partition function Ztop in our description of

the four-dimensional Maxwell system, given in Sec. III, is
identically the same as the partition function of the two-
dimensional Maxwell system. As we already mentioned,
such a relation between the two different systems is a result
of decoupling of physical propagating photons from the
topological sectors in the four-dimensional system.
Our goal here is to review this ‘‘empty’’ two-dimensional

Maxwell theory with nontrivial dynamics of the topological
sectors when conventional propagating degrees of freedom
are not supported by this system.

A. Partition function

We consider the two-dimensional Maxwell theory de-
fined on the Euclidean torus S1 � S1 with lengths L and �,
respectively. In the Hamiltonian framework we choose a
A0 ¼ 0 gauge along with @1A1 ¼ 0. This implies that A1ðtÞ
is the only dynamical variable of the system with E ¼ _A1.
The spectrum for � vacua is well known [16] and it

is given by Enð�Þ ¼ 1
2 ðnþ �

2�Þ2e2L, such that the corre-

sponding partition function takes the form

Z ðV; �Þ ¼ X
n2Z

e�e2V
2 ðnþ �

2�Þ2 ; (1)

where V ¼ �L is the two-volume of the system.
We want to reproduce Eq. (1) using a different approach

based on Euclidean path integral computations because it
can be easily generalized to similar computations defined
by four-dimensional Maxwell theory on the four torus. Our
goal here is to understand the physical meaning of Eq. (1)
in terms of the path integral computations.
To proceed with path integral computations, one

considers the ‘‘instanton’’ configurations on the two-
dimensional Euclidean torus with total area V ¼ L�
described as follows [18],Z

d2xQðxÞ ¼ k; eEðkÞ ¼ 2�k

V
; (2)

whereQ ¼ e
2�E is the topological charge density and k is the

integer-valued topological charge in the two-dimensional
Uð1Þ gauge theory, and EðxÞ ¼ @0A1 � @1A0 is the field
strength. The action of this classical configuration is

1

2

Z
d2xE2 ¼ 2�2k2

e2V
: (3)

This configuration corresponds to the topological charge k as
defined by (2). The next step is to compute the partition
function defined as follows,

Zð�Þ ¼ X
k2Z

Z
DAðkÞe�

1
2

R
d2xE2þ

R
d2xL� ; (4)

where � is the standard theta parameter that defines the j�i
ground state and that enters the action with topological
density operator
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L� ¼ i�
Z

d2xQðxÞ ¼ i�
e

2�

Z
d2xEðxÞ: (5)

All integrals in this partition function are Gaussian and can
be easily evaluated using the technique developed in [18].
The result is

ZðV; �Þ ¼
ffiffiffiffiffiffiffiffiffi
2�

e2V

s X
k2Z

e
�2�2k2

e2V
þik�

; (6)

where the expression in the exponent represents the classical
instanton configurations with action (3) and topological
charge (2), while the factor in front is due to the fluctuations
(see [1] with some technical details and relevant references).
While expressions (1) and (6) look different, they are actually
identically the same, as the Poisson summation formula
states,

Zð�Þ ¼ X
n2Z

e�e2V
2 ðnþ �

2�Þ2 ¼
ffiffiffiffiffiffiffiffiffi
2�

e2V

s X
k2Z

e
�2�2k2

e2V
þik�

: (7)

Therefore, we reproduce the original expression (1) using the
path integral approach.

The crucial observation for our present study is that this
naively ‘‘empty’’ theory, which has no physical propagat-
ing degrees of freedom, nevertheless shows some very
nontrivial features of the ground state related to the
topological properties of the theory. These new properties
are formulated in terms of different topological vacuum
sectors of the system jki, which have identical physical
properties as they are connected to each other by large
gauge transformation operator T commuting with the
Hamiltonian ½T ; H� ¼ 0. As explained in detail in [1],
the corresponding dynamics of this ‘‘empty’’ theory rep-
resented by partition function (7) should be interpreted as a
result of tunneling events between these ‘‘degenerate’’
winding jki states, which correspond to one and the same
physical state.

It is known that this model can be treated as TQFT; e.g.,
it supports edge observables that may assume the fractional
values and shows many other features that are typical for a
TQFT (see [17] and references therein). The presence of
the topological features of the model can be easily under-
stood from observation that the entire dynamics of the
system is due to the transitions between the topological
sectors, which themselves are determined by the behavior
of surface integrals at infinity

H
A�dx

�. These sectors are

classified by integer numbers and they are not sensitive to
specific details of the system such as the geometrical shape
of the system. Therefore, it is not really a surprise that the
system is not sensitive to specific geometrical details and
can be treated as TQFT.

The important point we would like to make is that our
analysis of the topological portion Ztop of the partition

function for the four-dimensional Maxwell system defined
on T4 assumes exactly the same form (7) as a result of the
decoupling of propagating photons from the topological

part of the partition function, as will be discussed in
Sec. III. As a result of this decoupling, the topological
portion of the four-dimensional Maxwell system behaves
in very much the same way as the two-dimensional
‘‘empty’’ theory. Therefore, one should not be very sur-
prised that this four-dimensional system also demonstrates
some topological features, similar to the two-dimensional
system reviewed in this section.
Before we proceed with computations of the topological

entropy, we make a short detour on properties of the
topological susceptibility in this model, as it plays an
important role in our discussions of the entropy.

B. Topological susceptibility

The topological susceptibility � is defined as follows,

� � lim
k!0

Z
d2x eikxhTQðxÞQð0Þi; (8)

where Q is the topological charge density operator normal-
ized according to Eq. (2). The � measures response of the
free energy to the introduction of a source term defined by
Eq. (5). The computations of � in this simple ‘‘empty’’
model can be easily carried out as the partition function
Zð�Þ defined by (4) is known exactly (7). To compute � we
should simply differentiate the partition function twice with
respect to �. It leads to the following well-known expression
for �, which is finite in the infinite volume limit [18,19],

�ðV ! 1Þ ¼ � 1

V
� @

2 lnZð�Þ
@�2

���������¼0
¼ e2

4�2
: (9)

A typical value of the topological charge k which saturates
the topological susceptibility � in the large volume limit is

very large, k� ffiffiffiffiffiffiffiffiffi
e2V

p � 1.
A few comments are in order. First, any physical state

contributes to � with a negative sign,

�dispersive � lim
k!0

X
n

h0j e
2�Ejnihnj e

2�Ej0i
�k2 �m2

n

< 0; (10)

while (9) has a positive sign. Therefore, this nondispersive
(contact) term (9) cannot be identified according to (10)
with any contribution from any asymptotic state even when
physical degrees of freedom, such as fermions, are
included into the system. This term has a fundamentally
different, nondispersive nature. In fact it is ultimately
related to different topological sectors as our computation
(9) shows. Second, the integrand for the topological
susceptibility (8) demonstrates a singular behavior,

hQðxÞQð0Þi ¼ e2

4�2
�2ðxÞ; (11)

which is not a specific property of this ‘‘empty’’ theory, but
in fact a very generic feature that is present in many gauge
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theories; it represents the contact term, which is not related
to any propagating degrees of freedom. In particular, such
singular behavior (11) is known to occur in QCD and its
modifications and is well supported by the QCD lattice
Monte Carlo simulations (see [19] for the details and
related references).

The �2ðxÞ function in (11) should be understood as the
total divergence related to the infrared (IR) physics, rather
than to the ultraviolet (UV) behavior. Indeed,

� ¼ e2

4�2

Z
�2ðxÞd2x ¼ e2

4�2

Z
d2x@�

�
x�

2�x2

�

¼ e2

4�2

I
S1

dl�

�
x�

2�x2

�
: (12)

In other words, the nondispersive contact term with the
‘‘wrong’’ sign (11) is determined by IR physics at arbitrary
large distances rather than UV physics, which can be
erroneously assumed to be a source of �2ðxÞ behavior in
(11). Our computations in terms of the delocalized instan-
tons (2) explicitly show that all observables in this system
are originated from the IR physics.

Our final comment here is that the same contact term (9)
and its local expression (11) can also be computed using
the auxiliary ghost field, the so-called Kogut-Susskind
(KS) ghost, as has been done originally in Ref. [20] (see
also [19] for relevant discussions in the present context).
This auxiliary KS ghost field provides the required
‘‘wrong’’ sign (9) as a consequence of the negative sign
of the kinetic term in the corresponding effective
Lagrangian [20]. This unphysical ghost field does not
violate unitarity or any other important properties of the
theory as a consequence of the Gupta-Bleuler–like condi-
tion on the physical Hilbert space [19,20]. This description
in terms of the KS ghost implicitly takes into account
the presence of topological sectors in the system. The
same property is explicitly reflected by summation over
topological sectors k 2 Z in direct computations (4) and
(6) without introducing any auxiliary fields.

It is interesting to note that a similar structure also
emerges in other gauge theories, e.g., in the so-called
‘‘deformed QCD.’’ In that case the topological sectors
also produce the �ðxÞ function behavior for the topological
susceptibility, similar to Eq. (11). Furthermore, this contact
term in that model can also be described by a ghost, which
turns out to be an auxiliary topological field described by
the Chern-Simons topological action [21].

In the next section we shall see that a similar contact
term with �ðxÞ function behavior also emerges in the
four-dimensional Maxwell system defined on a compact
manifold. Furthermore, this contact term in the four-
dimensional system can be understood in terms of auxil-
iary topological fields in BF formulation as discussed
in Sec. IVB. The corresponding auxiliary nonpropa-
gating fields play the same role as KS ghost fields in

two-dimensional QED [19,20] and topological Chern-
Simons fields in ‘‘deformed QCD’’ as presented in [21].

C. Entropy in the two-dimensional Maxwell system

The partition function (1), (6), and (7) computed above
allows us to compute the entropy of the system. However,
before we proceed, we want to make a short historical
detour on the entropy studies in this ‘‘empty’’ model.
It has been claimed [22] that using the so-called conical

method, the black hole entropy is equal to the entropy of
entanglement for spins zero and one-half fields (at least at
one loop level). However, for gauge Maxwell field, the
entropy has an extra term describing the contact interac-
tion with the horizon. While the entropy is a positively
defined entity, the Kabat contact term is negative [22].
Furthermore, this term being a total divergence can be
represented as a surface integral determined by the behav-
ior of the theory at arbitrarily large distances; i.e., it
obviously has an infrared (IR) origin. More recently, it
has been conjectured [19] that the Kabat contact term is
originated from the same topological gauge sectors and
tunneling transitions that cannot be associated with any
physical degrees of freedom as there are none in the
‘‘empty’’ two-dimensional theory. The next step in this
development was explicit demonstration [23] that the com-
putation of the entropy in the two-dimensional Maxwell
system is highly sensitive to the IR physics. Therefore,
the IR regularization should be treated very carefully.
Appropriate treatment has been suggested in [23] by defin-
ing the system in a large box size V. With this regulariza-
tion the computation for the entropy can be easily
performed, as the corresponding partition function for the
two-dimensional Maxwell system defined in a box is
known (1), (6), and (7). The conical entropy with this
regularization coincides with conventional thermodynam-
ical entropy since the volume of the Euclidean manifold is
linear in the deficit angle,

SðVÞ ¼ @

@T
ðT lnZÞ ¼

�
1� V

@

@V

�
lnZðVÞ; (13)

such that the final expression for SðVÞ can be represented in
the following form [23] (see also [24,25] with related
discussions):

SðVÞ ¼
�
lnZðVÞ þ 1

2

�
� 1

2

�
4�2

e2

�
�ðVÞ: (14)

In this formula, �ðVÞ is the topological susceptibility (8)
and ZðVÞ is the partition function determined by (1), (6),
and (7) at � ¼ 0 (see Sec. IID for generalization on � � 0Þ.
A few comments are in order. First, the entropy SðVÞ!0

approaches zero in the large volume limit V ! 1 as it
should since there are no propagating degrees of freedom
present in the system. However, entropy vanishes in a
quite nontrivial way: a conventional contribution from
(14) � lnZ approaches zero as Z ! 1 according to (1).
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At the same time, the negative contribution due to the
topological term [which is determined by its asymptotic
value � ! e2=4�2, see Eq. (9)] exactly cancels with the
positive contribution 1=2 originated from the quantum
fluctuations. Second, one can explicitly see from (14)
that the gauge-invariant negative contribution is indeed
present in this expression for the entropy. This term with
the ‘‘wrong’’ sign in Eq. (14) is exactly proportional to the
topological susceptibility (8) in agreement with conjecture
[19]. Third, this term can be represented as a surface
integral because Q ¼ e

2�E entering (8) is the topological

charge density operator which is a total divergence. Fourth,
while the term ��ðVÞ in Eq. (14) can be represented as a
surface integral, the entropy itself does not possess such a
surface representation. Nevertheless, both these entities
(S and �) are separately gauge-invariant observables.

Furthermore, the entropy (14) is obviously a positively
defined function at any finite V and can be interpreted as
the entanglement entropy [23]. Indeed, the only local
observable is E, which is constant over space. It implies
that the measurements of E will be perfectly correlated on
the opposite sides of the system. We interpret the same
feature of entanglement in a different way. Our interpreta-
tion is based on Euclidean formulation of the system when
the partition function (4) and (6) can be interpreted as a
probability of tunneling events between different topologi-
cal sectors jki in volume V. Once a tunneling event hap-
pens, the corresponding boundary conditions of the gauge
filed are entangled on opposite sides of the system as
topological charge (2) is unambiguously determined by
these boundary conditions.

Finally, we want to emphasize that the presence of the
topologically protected term in Eq. (14) proportional to the
topological susceptibility (8) is correlated with the fact that
this ‘‘empty’’ system, in fact, is the topological quantum
field theory. We shall see that a similar correlation also
holds for the four-dimensional Maxwell system which also
shows a number of other manifestations being typical for
topologically ordered systems.

We conclude this subsection with the following short
comment on terminology. The term ‘‘entanglement
entropy’’ is normally used to describe the entangled prop-
erties of physical propagating degrees of freedom. Our
entropy (14) in ‘‘empty’’ theory has fundamentally differ-
ent nature as it does not correspond to any propagating
states. Rather, entropy (14) results from topologically dif-
ferent but physically identical quantum winding states jki
and their dynamics (tunneling transitions between them).
Therefore, it is more appropriate to coin this entropy as
‘‘homotopical entropy’’ as corresponding expression (14)
is in fact a direct consequence of nontrivial homotopy of
the gauge group �1½Uð1Þ� ¼ Z in two-dimensional QED.
It can only emerge in gauge systems with nontrivial topo-
logical features. In particular, it cannot occur in scalar field
theories. To simplify terminology we shall refer to (14) as

topological entropy1 (TE). Our ultimate goal of this work is
to compute the TE in four dimensional QED defined on the
four torus, similar to Eq. (14) describing two-dimensional
QED. As we shall see in Sec. III, the corresponding prop-
erties of the TE are fundamentally different from conven-
tional thermodynamical entropy. In fact, the TE more
resembles the topological entanglement entropy introduced
in condensed matter literature to study the topologically
ordered systems rather than conventional thermodynamical
entropy describing propagating degrees of freedom.

D. Topological entropy at � � 0

Now we want to generalize the results of Sec. II C to
include � � 0. We want to see how the system varies
when � � 0 and how the topological entropy reflects
the corresponding variations. This generalization for
� � 0 will play an important role in our discussions of
four-dimensional Maxwell system in Sec. III.
First of all, it has been known for many years [26] that a

nonvanishing � � 0 is equivalent to the uniform electric
field present in the system. The simplest way to see this in
the Hamiltonian approach is to observe that � � 0 pro-
duces the shift of the electric field n ! ðnþ �=2�Þ in
formula (1), i.e., a nonvanishing � corresponds to the
background electric field

hEiMink ¼ e�

2�
: (15)

The same result can be easily reproduced in Euclidean path
integral approach by differentiating partition function
Zð�; VÞ with respect to � according to the definition (4)
and (5). Assuming that j�j<� (� ¼ � requires a special
treatment, and will be presented at the end of the section)
we get:

hiQiEucl ¼
�
ieE

2�

�
Eucl

¼ @ lnZð�; VÞ
V@�

��������V!1
¼ � �e2

4�2
;

(16)

1We define the TE as conventional thermodynamical entropy
(13) with the only difference is that the partition function Z in
(13) describes the dynamics of degenerate winding states rather
than the dynamics of real degrees of freedom. In two-
dimensional QED this is the only dynamics which is present
in the system such that TE identically coincides with the con-
ventional thermodynamical entropy. In four-dimensional QED
discussed in next section the conventional contribution �Z0 due
to physical photons decouple from the topological contribution
Ztop, i.e., Z ¼ Z0 �Ztop. Therefore, the TE derived from Ztop
normally represents a small correction to conventional thermo-
dynamical entropy (which is typically proportional to the volume
of the system) derived from Z0. However, the main point of this
work is that while the TE is a parametrically small portion in
terms of a magnitude, it produces a topologically protected
contribution to the entropy, similar to analogous feature of the
topological entanglement entropy computed for topologically
ordered condensed matter systems (see Sec. III C with more
comments).
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which coincides with (15) when written in Minkowski
notations. As a consequence of nonzero background field
(15) and (16) in the system the expression for the topo-
logical entropy for � � 0 is slightly modified in compari-
son with (14). Now it can be written in the following form

Sð�; VÞ ¼
�
lnZð�; VÞ þ 1

2

�

� 1

2

�
4�2

e2

�
�ð�; VÞ � 1

2

�
4�2

e2

�
� V � hQi � hQi;

(17)

where new term appears as a result of nonvanishing back-
ground field. In this formula hQi and � are defined as
before [see Eqs. (9) and (16) in terms of first and second
derivatives of lnZð�Þ with respect to � correspondingly],
i.e.,

hiQi¼ 1

V

@ lnZð�Þ
@�

; �ð�;VÞ¼� 1

V

@2 lnZð�Þ
@�2

: (18)

The topological entropy (17) approaches zero in large
volume limit as it should. But this vanishing result is
realized quite differently when the background field (16)
is present in the system. Indeed, the partition function
(1) in large volume limit, up to exponentially small
corrections, can be approximated as

lnZð�; V ! 1Þ ’ � e2V�2

8�2
; (19)

which leads to the following asymptotic expressions
for background field and topological susceptibility after
differentiation according to definitions (18),

hQiEuclð�; V ! 1Þ ¼ i
�e2

4�2
; �ð�; V ! 1Þ ¼ e2

4�2
:

(20)

By substituting (19) and (20) to Eq. (17) one can verify that
the entropy indeed vanishes (with exception of a single
degenerate point � ¼ �þ 2�n, see below) in infinite vol-
ume limit at arbitrary � as it should. The entropy Sð�; VÞ
approaches zero from above in this case as a result of
cancellation between two terms proportional to the vol-
ume: conventional lnZ contribution (19) cancels the back-
ground field contribution which is also proportional to the
volume (17). It is instructive to represent the same formula
(17) in somewhat different way

Sð�; VÞ ¼
�
lnZð�; VÞ þ 1

2

�
� 1

2

�
4�2

e2

�

�
Z

d2xhQtotðxÞ; Qtotð0Þi; (21)

where Qtot ¼ hQi þQ represents the total topological
density operator including its background portion (16)
proportional to the constant electric field. One should

note that the correlation function which appears in (21)
cannot be represented as second derivative of lnZð�Þ with
respect to the � as defined by Eq. (18). Instead, this term
can be represented as second derivative of Z itself,

Z
d2xhQtotðxÞ; Qtotð0Þi ¼ � 1

VZð�Þ
@2Zð�Þ
@�2

: (22)

To conclude this section we want to mention that the
physics is perfectly 2� periodic with respect to � as
partition function (1) and (6) is obviously a 2� periodic
function. In particular � ¼ 2� is identically the same as
� ¼ 0 state. At the same time at � ¼ � the double degen-
erate states appear in the system. This time this degeneracy
corresponds to physical degeneracy when two distinct
vacuum states have equal energies. One can see the emer-
gence of this degeneracy by approaching � ¼ � point from
opposite sides, i.e., � ¼ �	 � with � ! 0. These two
degenerate states are classified by different directions of
the electric field characterizing the system as we computed
above,

hQiEucl ¼ 	 i�e2

4�2
; hEiMink ¼ 	 e�

2�
¼ 	 e

2
: (23)

One should mention that similar formulas for degenerate
states with � ¼ � in this model were also recently dis-
cussed in [27] in context of topological insulators.
The expression for topological entropy (17) receives a

crucial modification as partition function (1) has two iden-
tical terms for � ¼ � which correspond to the physical
degeneracy mentioned above. Indeed, in large volume limit
the partition function at � ¼ �	 � can be approximated as

Zð� ¼ �	 �Þ ’ ½e�e2V
2 ð�	�

2� Þ2 þ e�e2V
2 ð1��	�

2� Þ2�; (24)

such that two terms contribute with equal weight at � ¼ �.
As a consequence, the entropy which can be easily com-
puted by substituting the corresponding expressions to
general formula (17) does not vanish at � ¼ �, but rather
assumes the following value:

Sð� ¼ �Þ ¼ ln 2: (25)

The interpretation of this result is amazingly simple and
straightforward. While our system is indeed ‘‘empty’’ and
does not support any propagating degrees of freedom in the
bulk, the ground state is in fact degenerate, and it is
characterized by the vacuum expectation value of electric
field (23). Furthermore, this degeneracy which leads to
extra term in the topological entropy (25) is, in fact, a
volume independent phenomenon. Indeed, one can easily
see that every term in the partition function (1) has its
identical partner at � ¼ � at arbitrary volume V, which
eventually leads to extra factor ln 2 in expression (25).
Therefore, the emergence of nonvanishing entropy (25)
in this ‘‘empty’’ system is obviously a pure topological
effect which reflects the two-fold vacuum degeneracy (23)
present in the system. Conventional thermodynamical
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entropy must vanish at T ¼ 0 which is obviously not the
case for TE in thermodynamical limit at zero temperature
given by Eq. (25).

III. TOPOLOGICAL ENTROPY IN MAXWELL
THEORY IN FOUR DIMENSIONS

The main goal of this section is to derive formulas for
the topological entropy in Maxwell theory defined on the
four-dimensional torus, similar to (14) and (17) derived for
the two-dimensional system. The corresponding expres-
sions will be entirely due to the tunneling events similar
to analysis of ‘‘empty’’ two-dimensional system. The
interpretation of the corresponding formulas will be also
very similar to our discussions of the two-dimensional
system. Namely, we will interpret the corresponding cor-
rections to the entropy as topological entropy, similar
to our discussions in Sec. II C, because the relevant topo-
logical configurations describe the tunneling events are
uniquely determined by the properties of the topological
configurations, similar to two-dimensional analysis.

The crucial difference with two-dimensional studies
is, of course, that Maxwell theory in four dimensions
describes real physical photons with two transverse
polarizations in contrast with our studies of ‘‘empty’’
two-dimensional theory in Sec. II. However, as we discuss
below the propagating degrees of freedom with nonzero
momentum completely decouple from topological contri-
butions such that the partition function can be represented
in the form Z ¼ Z0 �Ztop.

The conventional, topologically trivial portion of en-
tropy related to Z0 is well known for the Maxwell system.
It is an extensive entity and it produces the vanishing
entropy for zero temperature. The entanglement entropy
for Maxwell theory is also known (see recent paper [24]
with many references on previous works therein). The
corresponding contribution to the entanglement entropy
is entirely determined by two transverse photon’s polar-
izations and proportional to the area, similar to scalar field
theories,

S� Að�Þðd� 2Þ; (26)

where Að�Þ is the area of surface � and (d� 2) is the
number of the on-shell physical propagating degrees of
freedom in d dimensional space. This leading term is
related to physical propagating degrees of freedom. The
conventional thermodynamical entropy S� VT3 and en-
tanglement entropy (26) are not subject of the present work
as they completely decouple from topological contribu-
tions related to Ztop, which is the main subject of our

present studies. To avoid confusion with terminology we
also emphasize that these entropies (conventional thermo-
dynamical entropy as well as entanglement entropy) do not
depend on topological jki sectors of the system due to
linearity of the Maxwell theory (see details below).

Therefore, they cannot depend on jki, nor they can carry
any information about topological features of the system.
In the rest of this section wewill concentrate on behavior

ofZtop and the expression for TE which follows fromZtop.

In other words, our goal here is to study the corrections to
the thermodynamical entropy due to topological configu-
rations describing the tunneling events, rather than contri-
butions related to the physical propagating photons, similar
to our analysis of the ‘‘empty’’ theory in Sec. II. For these
computations we use the same definition (13) for the
thermodynamical entropy we have been using before in
our studies of the two dimensional system.

A. Topological partition function Ztop

Our goal here is to define the Maxwell system on a
Euclidean four torus with sizes L1 � L2 � L3 � � in the
respective directions. It provides the IR regularization
of the system. As we discussed in Sec. II C this IR regu-
larization plays a key role in proper treatment of the
contact topological term which is related to tunneling
events rather than the propagation of the physical photons
with transverse polarizations.
We follow [1] in our construction of the partition func-

tion Ztop where it was employed for computation of the

corrections to the Casimir effect due to these novel type of
topological fluctuations. The crucial point is that we impose
the periodic boundary conditions on gauge A� field up to a
large gauge transformation. In what follows we simplify our
analysis by considering a clear case with winding topologi-
cal sectors jki in the z direction only. The classical configu-
ration in Euclidean space which describes the corresponding
tunneling transitions can be represented as follows:

~Btop ¼ ~r� ~Atop ¼
�
0; 0;

2�k

eL1L2

�
;

� ¼ e
Z

dx1dx2B
z
top ¼ 2�k

(27)

in close analogy with the two-dimensional case (2).
The Euclidean action of the system is quadratic and has

the following form

1

2

Z
d4xf ~E2 þ ð ~Bþ ~BtopÞ2g; (28)

where ~E and ~B are the dynamical quantum fluctuations of
the gauge field. The key point is that the classical topo-
logical portion of the action decouples from quantum
fluctuations, such that the quantum fluctuations do not
depend on topological sector k and can be computed in
topologically trivial sector k ¼ 0. Indeed, the cross termZ

d4x ~B � ~Btop ¼ 2�k

eL1L2

Z
d4xBz ¼ 0 (29)

vanishes because the magnetic portion of quantum fluc-
tuations in the z-direction, represented by Bz ¼ @xAy �
@yAx, is a periodic function as ~A is periodic over the
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domain of integration. This technical remark in fact
greatly simplifies our analysis as the contribution of the
physical propagating photons is not sensitive to the topo-
logical sectors k. This is, of course, a specific feature of
quadratic action (28), in contrast with non-Abelian and
nonlinear gauge field theories where quantum fluctuations
of course depend on topological k sectors. The authors of
Ref. [27] arrived to the same conclusion (on decoupling
of the topological terms from conventional fluctuating
photons with nonzero momentum), though in a different
context of topological insulators in the presence of the
� ¼ � term.

The classical action for configuration (27) takes the form

1

2

Z
d4x ~B2

top ¼ 2�2k2�L3

e2L1L2

: (30)

To simplify our analysis further in computing Ztop we

consider a geometry where L1, L2 � L3, � similar to
construction relevant for the Casimir effect [1]. In this
case our system is closely related to two-dimensional
Maxwell theory by dimensional reduction: taking a slice
of the four-dimensional system in the xy plane will yield
precisely the topological features of the two-dimensional
torus considered in Sec. II. Furthermore, with this
geometry our simplification (27) when we consider
exclusively the magnetic fluxes in z direction is justified
as the corresponding classical action (30) assumes a
minimal possible values.2 With this assumption we can
consider very small temperature, but still we cannot take
a formal limit � ! 1 in our final expressions as a result
of our technical constraints in the system.

With these additional simplifications the topological
partition function becomes [1]:

Ztop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��L3

e2L1L2

s X
k2Z

e
�2�2k2�L3

e2L1L2 ; (31)

which is essentially the dimensionally reduced expression
for the topological partition function (6) for the two-
dimensional Maxwell theory analyzed in Sec. II.
One should note that the dimensional reduction which is

employed here is not the most generic one. In fact, one can
impose a nontrivial boundary condition on every slice in
the four-dimensional torus (see comments in footnote 2
and Ref. [15] for most generic construction). However, the
main goal of this work is not a generic classification.
Rather, we wish to discuss the contact term, topological
entropy, degeneracy and other nontrivial features by con-
sidering the simplest possible setup (27) when physics can
be easily understood and analyzed. In other words, we wish
to consider a nontrivial BC imposed on a single slice, while
keeping the trivial periodic BC for other slices.
We follow [1] and introduce the dimensionless

parameter

� � 2�L3=e
2L1L2 (32)

such that the partition function Ztop can be written in the

dual form:

Ztopð�Þ ¼
ffiffiffiffiffiffiffi
��

p X
k2Z

e��2�k2 ¼ X
n2Z

e�n2

� ; (33)

where the Poisson summation formula (7) is used again.
Our normalization of the partition functionZtop is such that

in the limit L1L2 ! 1ð� ! 0Þ the topological portion of
the partition function Ztop ! 1 as one can see from the

dual representation (33). In this limit the dimensional
reduction is justified and we recover the conventional
physics which is encoded in Z0. This is a result of the
same decoupling of the topological transitions from phys-
ics related to propagating photons, as we discussed above
when Z ¼ Z0 �Ztop and Ztop ! 1 in this limit. One

should note that the normalization factor
ffiffiffiffiffiffiffi
��

p
which

appears in Eq. (31) does not depend on topological sector
k, and essentially it represents our convention of the
normalization Ztop ! 1 in the limit L1L2 ! 1.

B. Topological entropy and magnetic susceptibility
in the four-dimensional Maxwell system

We are in position now to compute the TE associated
with Ztop. As we mentioned previously, we shall use

the same definition for the entropy we used previously in
two-dimensional studies (13), i.e.,

Stopð�Þ ¼
�
1� �

@

@�

�
lnZtopð�Þ

¼ lnZtopð�Þ � 1

�
� 1

Ztopð�Þ �
X
n2Z

n2e�n2

� ; (34)

2There are also electric fluxes �E in the system in description
of the Euclidean path integral. The corresponding electric fluxes
are originated from the requirement that the electromagnetic

potential ~A satisfies the periodic boundary conditions up to the
large gauge transformations, i.e., A3ð�Þ ¼ A3ð0Þ þ 2�l

eL3
which

corresponds to the electric flux with uniform electric field E3 ¼
2�l
e�L3

. The Euclidean action for corresponding configurations is

parametrically (L1L2=�L3) larger than the magnetic classical
action (30), and therefore it is consistently neglected in our
analysis. One should also note that the electric field in the
Euclidean classical action must not be confused with electric
field in the Hamiltonian formulation where it is a constant of
motion [see, e.g., [27,28] where the electric fluxes emerge in
Hamiltonian description in quite different context (the Uð1Þ spin
liquid and topological insulators correspondingly)]. The corre-
sponding electric fields in these two descriptions (Euclidean path
integral approach vs Hamiltonian approach) are in fact related by
the duality transformation, similar to the two-dimensional analy-
sis in Sec. II where electric field in Hamiltonian formulation
enters formula (1), while electric flux in Euclidean path integral
formulation enters Eqs. (2) and (6) [see [1] for more details and
references].
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where we use the dual representation (33) for the partition
function Ztopð�Þ.

Our next step is to represent the second term in (34) in a
form, similar to expression for the entropy (14) in terms of
the topological susceptibility in two dimensional theory. To
achieve this goal we formally introduce �eff into the dual
representation (33) for the partition function as follows

Ztopð�; �effÞ ¼
X
n2Z

e�n2

� þin�eff : (35)

One should emphasize that the �eff parameter introduced in
(35) is not a fundamental � parameter normally introduced

into the Lagrangian in front of ~E � ~B operator. Furthermore,
integer number n which appears in front of �eff in (35) is
not the magnetic flux k defined by Eq. (27) which enters
original partition function (31). Rather, integer n appears in
the dual form (33) for this partition function. Nevertheless,
as we discuss in Sec. III D the parameter �eff has a perfect
physical meaning related to the external magnetic flux
through the xy-plane applied to the system,

�eff ¼ Bext
z L1L2e: (36)

Now, the second term in (34) can be formally represented
as the second derivative ofZtopð�; �effÞ with respect to �eff .
Indeed, using identity

1

Ztopð�Þ �
X
n2Z

n2e�n2

� ¼ �@2 lnZtopð�; �effÞ
@�2eff

���������eff¼0
(37)

one can rewrite the expression for entropy (34) in the
following form

Stopð�Þ ¼ lnZtopð�Þ � 1

2
�magð�Þ;

�magð�Þ � � 2

�

@2 lnZtopð�; �effÞ
@�2eff

���������eff¼0
:

(38)

Significance of this representation is that �magð�Þ entering
the expression (38) has many features similar to the topo-
logical susceptibility entering (14) in two dimensional
theory. In particular, �magð�Þ can be represented as a

surface integral and it assumes a finite value in the ther-
modynamical limit. Furthermore, �magð�Þ is not sensitive
to any specific details in the bulk of the system, nor its
boundary’s geometrical shape. Rather it is only sensitive
to the boundary conditions which globally classify the
topological sectors of the system.

Furthermore, as we shall see in a moment �magð�Þ is in
fact the conventional magnetic susceptibility which mea-
sures response of the free energy to the introduction of
arbitrary small external magnetic field. This is because the
formal parameter �eff entering (35) is related to the physi-
cal external field Bext

z as Eq. (36) states. As a result of this
relation, the differentiation of lnZtopð�; �effÞ with respect

to �eff is equivalent to differentiation with respect to

external field Bext
z which is, by definition, the conventional

magnetic susceptibility,

�magð�Þ ¼ � 2

�

@2 lnZtopð�; �effÞ
@�2eff

���������eff¼0

¼ � 1

�V

@2 lnZtop

@B2
ext

��������Bext¼0
¼

Z
d4xhBzðxÞ; Bzð0Þi:

(39)

Representation (39) for �magð�Þ entering the expression

for the entropy (38) obviously implies that this term is a
total divergence, as Bi ¼ �ijk@jAk. In other words, this

topological contribution to the entropy is determined by
the behavior of the gauge fields at arbitrary large distances,
similar to our studies of the entropy in Sec. II in two-
dimensional ‘‘empty’’ theory with relation (14) being a
precise analog of Eq. (38).
The crucial difference between these two cases is, of

course, that the four-dimensional Maxwell system de-
scribes real physical massless photons, in contrast with
‘‘empty’’ two-dimensional theory. However, the topologi-
cal contribution, which is main subject of the present work,
behaves in Maxwell theory formulated on the four-
dimensional torus very much in the same way as in the
two-dimensional case. Furthermore, the interpretation of
these topological terms in the four-dimensional theory is
also very much the same as in the two-dimensional case.
To be more specific, we interpret (38) as TE (which is a
subleading contribution to the thermodynamical entropy)
resulting from tunneling processes. This term is always
much smaller than the leading term S� VT3 originating
from conventional propagating physical photons with two
transverse polarizations.
To get some feeling on numerical (un)importance of the

topological terms (38) in comparison with conventional
leading term we consider � parameter defined by Eq. (32)
to be very large � � 1 assuming the thermodynamical limit
at very low (but nonvanishing) temperature.3 In this case

Ztopð� � 1Þ ! ffiffiffiffiffiffiffi
��

p
; (40)

while the topological entropy assumes the following
asymptotic value

Stopð� � 1Þ !
�
1

2
ln ð��Þ � 1

2

�
: (41)

The magnetic susceptibility asymptotically approaches
unity in this limit,

3One should note that large � � 1 is consistent with our
‘‘technical’’ simplification related to the dimensional reduction
employed in (31). In particular, � � 1 can always be arranged
by considering very small e ! 0 in Eq. (32) before considering
the dimensional reduction employed in (31). Still, we cannot put
�� � ¼ 1 because our simplified computations based on di-
mensional reduction require L1L2 � �L3.
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�magð� � 1Þ ! 1: (42)

It is very instructive to compare the behavior (41) with
similar formula (14) in the two-dimensional case. In both
cases the topologically protected nondispersive contact
contribution (a contribution which cannot be expressed in
terms of physical propagating degrees of freedom)
approaches one and the same constant (�1=2). In the
two-dimensional case this contact term is related to the
topological susceptibility (9) while in the four-dimensional
case, the contact terms is formulated in terms of the mag-
netic susceptibility (39). In the two-dimensional case this
term cancels with another positive contribution as the total
entropy is determined by one and the same partition func-
tion Z (see Sec. II C). In the four-dimensional case, the
same factor (�1=2) remains untouched and stays in
Eq. (41) as it represents only the topological portion of
the entropy, not the total entropy. One can argue that the
total entropy in the limit � ! 1 also vanishes [15], similar
to the two-dimensional case. However, in the four-
dimensional case it vanishes as a result of cancellation of
the topological term (41) with the conventional contribution
computed on the four torus and related to the physical
propagating photons described by Z0.

One can argue that �mag from (42) is saturated by a

nondispersive contact term which cannot be associated
with any physical propagating degrees of freedom, similar
to the two-dimensional expression (11). To be more
precise, the integrand for �mag is expected to have the

following structure

hBzðxÞ;Bzð0Þi¼�2ðxÞ
L3�

; �mag¼
Z
T4

�2ðxÞd4x
L3�

¼1; (43)

where �2ðxÞ should be understood as the discretized
version of the delta function defined on the torus

�2ðxÞ ¼ 1

L1L2

X
n1n2

e
2�iðn1x1L1

þn2x2
L2

Þ
: (44)

Our argument supporting �2ðxÞ function behavior in
Eq. (43) is based on observation that the magnetic suscep-
tibility has nondispersive nature. Indeed, �mag is derived

from topological partition function Ztopð�Þ which com-

pletely decouples from Z0 describing propagating photons
with physical transverse polarizations. Therefore, any non-
vanishing correlation function, including (43) must be
expressed in terms of a contact term with structure (43)
similar to the contact term (11) in the two-dimensional
system. Explicit computations in terms of the auxiliary
fields using the so called ‘‘BF’’ formulation in Sec. IVB
also supports the structure (43). Furthermore, one can
argue that the nondispersive contact term (43) is related
to the IR physics at large distances rather than UV physics,
in close analogy to our discussions of the two-dimensional
case (12).

Does it make any sense to keep this subleading term
(�1=2) in Eq. (41) in the presence of much greater
conventional contribution S� VT3 and ln ð��Þ also
entering (41)? Our ultimate answer is ‘‘yes’’ as this con-
stant factor proportional to the magnetic susceptibility
�1=2�mag has some universal topological properties as

we shall argue below.

C. Similarities and differences between TE
and topological entanglement entropy

in CM systems

Before we proceed with our arguments we want to make
a short detour on topological entanglement entropy in the
three-dimensional as well as in the four-dimensional cases
in condensed matter (CM) systems.4 The main purpose for
this detour is to present some analogies and similarities
between these two very different entities: TE discussed
in last section vs topological entanglement entropy
introduced in Refs. [9,10].
The entanglement entropy in arbitrary number of dimen-

sions is proportional to the surface area of the boundary.
In the four-dimensional case it corresponds to the area law
(26). In the three-dimensional system, the leading term is
proportional to the length L. We shall not discuss this
leading term in the present work. A portion of the entan-
glement entropy which is important for our discussions is
in fact a subleading term which may emerge in some
systems. A well-known example is a three-dimensional
system in a topologically ordered phase, where the first
subleading term is universal constant, the so-called TEE
and independent of the size or shape of L as argued in
Refs. [9,10], i.e.,

S ¼ aL� lnD; (45)

where a is a nonuniversal and cutoff-dependent coefficient,
while D is the so-called total quantum dimension of the
topological phase, and it is universal constant [9,10]. In
other words, any small variations of the system do not
change D. It has been argued that the presence of such
term is potentially very useful probe of a topological phase
(see, e.g., original papers [2–6] and recent reviews [7,8,29]
with large number of original references therein). Similar
studies in four dimensions had received much less attention
in the past. Still, it is known that a constant term similar to
lnD in (45) can appear in a four-dimensional system even
for a nontopologically ordered phase. However, when the
system is defined on flat space-time (e.g., has the topology
of a torus, which is precisely our case) the constant term in

4not to be confused with conventional CM notations, where it
is a customary to count the spatial number of dimensions, rather
than total number of dimensions, such that our four-dimensional
system corresponds to (Dþ 1) Maxwell theory with D ¼ 3 in
CM notations.
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the entropy would signal that the system is in fact in
topologically ordered phase [30].

After this short detour we return to our Maxwell system
in four dimensions. The topological part of the system
characterized by partition function (31) and (33) obviously
describes some sort of entanglement, similar to the two-
dimensional ‘‘empty’’ theory as discussed in Sec. II and
Ref. [23]. This is because the fluxes that saturate the
partition function (31) and (33) are constant over space,
which means that the measurement of the field will be
perfectly correlated on the opposite sides of the system,
similar to arguments of Ref. [23] presented for two-
dimensional ‘‘empty’’ theory. However, this is not a con-
ventional entanglement describing physical propagating
degrees of freedom in CM systems. Rather, our system is
formulated in terms of ‘‘instantons’’ (instead of propagat-
ing quasiparticles in CM systems) in Euclidean space-time
with action (30). These pseudoparticles saturate the topo-
logical portion of the partition function (31) and (33).
Such topological fluctuations occur even when no
propagating degrees of freedom exist in the system as the
two-dimensional example from Sec. II shows.

As a result of this difference we cannot use many
standard tools which normally would detect the topological
order. For example, we cannot compute the braiding phases
of charges and vortices which are normally used in CM
systems simply because our system does not support such
kind of excitations. Furthermore, the ‘‘degeneracy’’ in our
system is related to degenerate of winding states jki which
are connected to each other by large gauge transformation,
and therefore must be identified as they correspond to the
same physical state. It is very different from conventional
term ‘‘degeneracy’’ in topologically ordered CM systems
when distinct degenerate states are present in the system as
a result of formulation of a theory on a topologically non-
trivial manifold such as torus. Finally, our system supports
conventional massless photons with physical polarizations,
in contrast with conventional topologically ordered phases
characterized by a gap. However, these massless degrees of
freedom completely decouple from our topological fluctu-
ations according to Eq. (29). Formally, this decoupling is
expressed as Z ¼ Z0 �Ztop as discussed after Eq. (29).

Therefore, these massless physical photons can be
completely ignored in our discussions of the topological
properties of the partition function Ztop. In this respect it is

very similar to topologically ordered superconductors [5]
when massless phonons always exist in the system,
but nevertheless, they completely decouple from relevant
dynamics, and can be ignored in discussions of the
topological features of the model.

In spite of the differences mentioned above, it is very
instructive to compare the topological portions of the TE
given by coefficient �1=2 in Eq. (41) for Maxwell system
and � lnD in Eq. (45) for CM system. In both cases
these terms are topologically protected, i.e., they are not

sensitive to any specific details in the bulk of the system,
nor the boundary’s geometrical shapes. Rather these terms
are determined by the global properties of the systems.
Indeed, in the case of the four-dimensional Maxwell
system, the coefficient �1=2 in Eq. (41) is expressed in
terms of the magnetic susceptibility (42) which itself is
represented by a surface integral, while in CM systems the
topological protection was advocated in Refs. [9,10].
Furthermore, in both cases these topological contributions,
being the subleading terms, have a negative sign in
comparison with the leading terms.
Therefore, the TE behaves very much in the sameway as

topological entanglement entropy does, though TE cannot
be interpreted in terms of the quantum dimensionD enter-
ing (45) as in CM systems. This is because, as we already
mentioned, the quasiparticles which can propagate simply
do not exist in this Euclidean Maxwell system.
Nevertheless, if we equalize � lnD from Eq. (45) and
�1=2 from (41), we arrive to a formal relation

� lnD ¼ ��magð� � 1Þ
2

¼ � 1

2
! D ¼ ffiffiffi

e
p

; (46)

which should be compared with conventionalD ¼ ffiffiffiffi
m

p
for

a Laughlin state in a fractional quantum Hall system with
filling factor 	 ¼ 1=m, orD ¼ 2 for pþ ip superconduc-
tor, or any other similar systems (see recent reviews [7,8]
for the details and original references). The emergence of

the exponential function e1=2 in (46) instead of m1=2 hints
that TE in our system is originated from tunneling transi-
tions rather than from dynamics of quasiparticles in the
system described by quantum dimensions D. This inter-
pretation is obviously consistent with our construction of
the partition function Ztopð�Þ describing the tunneling

events between topologically different but physically iden-
tical jki states. Still, these different entities � lnD in
Eq. (45) and � 1

2�magð�Þ in (38) in very different systems

behave very similarly under small variations of the sys-
tems, which justifies our comparison in form of equalizing
these two different things represented by Eq. (46).
The main message of this subsection is as follows. We

observe that a subleading correction �1=2�magð�Þ in (38)

to thermodynamical entropy S� VT3 is topologically pro-
tected in the same way as TEE is protected in CM systems
(45). Therefore, this subleading term might be signalling
that our system behaves as a topologically ordered CM
system.5 Furthermore, our system demonstrates a property
of physical degeneracy of the ground state when �eff ¼ �,
similar to the two-dimensional case (23), as we shall dis-
cuss below. The emergence of such degeneracy in a system

5This is in spite of the fact that our system of course supports
massless photons in contrast with fully gapped CM systems.
However, as explained above the conventional massless degrees
of freedom completely decouple from topological contributions
as Eq. (29) states.
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is a typical manifestation of a topological order in CM
systems. In Sec. IVB we will reformulate the same
Maxwell system in terms of the so-called ‘‘BF’’ action.
A similar ‘‘BF’’ structure in CM systems is known to
describe a large distance behavior in a topologically or-
dered phases. Therefore, such a BF representation of the
Maxwell system in Sec. IVB is an additional argument
supporting our claim that the Maxwell system defined on a
compact torus belongs to a topologically ordered phase.

D. Topological entropy in the background
of a magnetic field

In this section we want to generalize our results on TE
for Euclidean Maxwell system in the presence of the
external magnetic field. Normally, in the conventional
quantization of electromagnetic fields in Minkowski space,
there is no direct coupling between fluctuating vacuum
photons and an external magnetic field as a consequence
of linearity of the Maxwell system. The coupling with
fermions generates a negligible effect �
2B2

ext=m
4
e as the

nonlinear Euler-Heisenberg Effective Lagrangian suggests
(see [1] for the details). The interaction of the external
magnetic field with topological fluctuations (27), in con-
trast with coupling with conventional photons, will lead to
the effects of order of unity as a result of interference of the
external magnetic field with fluxes-instantons.

The corresponding partition function can be easily con-
structed for external magnetic field Bext

z pointing along z
direction, as the crucial technical element on decoupling of
the background fields from quantum fluctuations assumes
the same form (29). In other words, the physical propagat-
ing photons with nonvanishing momenta are not sensitive
to the topological k sectors, nor to the external uniform
magnetic field, similar to our discussions after (29).

The classical action for configuration in the presence of
the uniform external magnetic field Bext

z therefore takes
the form

1

2

Z
d4xð ~Bext þ ~BtopÞ2 ¼ �2�

�
kþ �eff

2�

�
2
; (47)

where � is defined by (32) and the effective theta parameter
�eff is expressed in terms of the original external magnetic
field (36). Therefore, the partition function in the presence
of the uniform magnetic field can be reconstructed from
(31) and it is given by [1],

Ztopð�; �effÞ ¼
ffiffiffiffiffiffiffi
��

p X
k2Z

exp

�
��2�

�
kþ �eff

2�

�
2
�
: (48)

The dual representation for this partition function is
obtained by applying the Poisson summation formula (7),

Ztopð�; �effÞ ¼
ffiffiffiffiffiffiffi
��

p X
k2Z

exp

�
��2�

�
kþ �eff

2�

�
2
�

¼ X
n2Z

exp

�
�n2

�
þ in � �eff

�
; (49)

which justifies our notation for the effective theta parame-
ter �eff as it enters the partition function in combination
with integer number n. One should emphasize that integer
number n in the dual representation (49) is not the integer
magnetic flux k defined by Eq. (27) which enters original
partition function (31). Furthermore, the �eff parameter
which enters (48) and (49) is not a fundamental � parame-
ter which is normally introduced into the Lagrangian in

front of ~E � ~B operator. Rather, this parameter �eff should
be understood as an effective parameter representing the
construction of the �eff state for each slice in four dimen-
sional system. In fact, there are three such �eff parameters
representing different slices and corresponding external
magnetic fluxes. There are similar three �i parameters
representing the external electric fluxes [15]. This problem
of classification shall not be elaborated in the present work,
as our goal here is to understand and analyze the simplest
possible topological configurations. We leave the corre-
sponding classification problem which would include a
combination of different BC imposed on different slices
for future studies.
Nowwe are in position to compute the TE for our system

in case of nonvanishing external field. The corresponding
generalization of formula (38) is given by

Stopð�; �effÞ ¼ lnZtopð�; �effÞ � 1

2
�magð�; �effÞ

þ V�

2
hBindð�; �effÞi2; (50)

where V � L1L2L3 is the three volume of the system and
hBindð�; �effÞi is the induced magnetic field defined as
follows [1]:

hBindð�; �effÞi

¼ � 1

�V

@ lnZtopð�; �effÞ
@Bext

¼
ffiffiffiffiffiffiffi
��

p
Ztop

X
k2Z

ðBext þ 2�k

L1L2e
Þ exp

�
���2ðkþ �eff

2�
Þ2
�
:

(51)

Magnetic susceptibility �magð�; �effÞ in (50) is defined

similarly to Eq. (38) with the only difference being that
one should keep �eff � 0 after taking the derivatives, i.e.,

�magð�; �effÞ � � 2

�

@2 lnZtopð�; �effÞ
@�2eff

: (52)

One can see from (51) that our definition of the induced
field accounts for the total field which includes both terms:
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the external part as well as the induced topological portion
of the field. In the absence of the external field when
Bext ¼ 0, the series is antisymmetric under k ! �k and
hBindð�eff ¼ 0Þi vanishes. This feature is similar to the
vanishing expectation value of the topological density
(16) in two-dimensional gauge theory when � ¼ 0. One
could anticipate this result from the very beginning as the
theory must respect P invariance at �eff ¼ 0, and therefore
hBindi must vanish at �eff ¼ 0.

Now it is easy compute all the ingredients which enter
the expression for entropy (50) at nonvanishing external
field in large � � 1 limit similar to our computations (41)
and (42). The corresponding asymptotic expressions for
�eff � 0 with exponential accuracy can be represented as
follows,

lnZtopð� � 1; �effÞ ! 1

2
ln ð��Þ � �2�

�
�eff
2�

�
2

hBindð� � 1; �effÞi ! �eff
eL1L2

�magð� � 1; �effÞ ! 1;

(53)

where we assume that j�effj<�. The degenerate case
�eff ¼ � requires a special treatment, similar to the two-
dimensional analysis presented in Sec. II D, and will be
discussed at the very end of this section. We substitute (53)
to general expression for the entropy (50) to arrive at

Stopð� � 1; �effÞ !
�
1

2
ln ð��Þ � 1

2

�
; (54)

where �1=2 in Eq. (54) is due to the topologically
protected �mag similar to previous formula (41) derived

for vanishing background field, �eff ¼ 0.
The expression (54) for TE at asymptotically large � is

independent on �eff , similar to our previous studies in two
dimensional ‘‘empty’’ gauge theory in Sec. II D. It implies
that the topologically protected contribution in Eq. (54)
assumes exactly the same value (46) independently of a
magnitude of the external field. Therefore, we interpret
�1=2 in Eq. (54) as topological entropy similar to our
discussions leading to Eq. (46). We claim that the relation
(46) holds even in the presence of external field when
�eff � 0.

E. Degeneracy at �eff ¼�

In this subsection we want to analyze a special but
important case with �eff ¼ � when the system becomes
degenerate. This case is very similar to our previously
studied system of the two-dimensional ‘‘empty’’ theory
discussed at the end of Sec. II D. The crucial element is
that our system is 2� periodic as explicit expression for
the partition function (49) shows. At the same time the
point �eff ¼ � requires a special treatment as the system
shows two-fold degeneracy at this point. Indeed, the par-
tition function in vicinity �eff ’ �	 � at large � can be
approximated as

Ztopð� � 1; �eff ¼ �	 �Þ
¼ ffiffiffiffiffiffiffi

��
p ½e��2�ð�	�

2� Þ2 þ e��2�ð1��	�
2� Þ2�; (55)

where we keep only two leading terms at large �. One can
explicitly see that these two terms identically coincide
when �eff ¼ � which implies the degeneracy of the sys-
tem. These two degenerate states are classified by different
directions of the induced magnetic field characterizing the
system. Indeed, with exponential accuracy one gets

hBindð� � 1; �eff ¼ �� �Þi ¼ �

eL1L2

hBindð� � 1; �eff ¼ �þ �Þi ¼ � �

eL1L2

;

(56)

where two terms in (56) are originated from different terms
in Eq. (55) by approaching �eff ¼ � from different sides.
The effect of degeneracy is very similar in spirit to our
studies of two dimensional ‘‘empty’’ theory at the end of
Sec. II D. Using an explicit expression for the partition
function (55) in vicinity �eff ’ � at large � one can arrive
to the following additional term to the entropy (54) at
�eff ¼ �,

�Stopð� � 1; �eff ¼ �Þ ¼ ln 2: (57)

A few comments are in order. First, we should emphasize
that the fact of degeneracy itself does not actually depend
on magnitude of �, though the expression (57) is computed
in the limit of large � � 1. Indeed, from initial formula
(48) one can explicitly see that for �eff ¼ � an each term
with given positive k has its partner (�k� 1) which
produces an identical contribution to Ztopð�; �eff ¼ �Þ.
This obviously implies the emergence of degeneracy in
the system at �eff ¼ � which is reflected by (56) and (57).
Second, in the limit L1L2 ! 1 in Eq. (56) the expectation
values of the local operator in these degenerate states are
the same (they vanish, hBindi ¼ 0). A proper interpretation
in this limit should be formulated in terms of total flux
determined by the global behavior, rather than by local
expectation values (56):

eL1L2

2�
hBindiþ ¼

�
e

2�

I
Aidxi

�
�eff¼���

¼ þ 1

2

eL1L2

2�
hBindi� ¼

�
e

2�

I
Aidxi

�
�eff¼�þ�

¼ � 1

2
:

(58)

In other words, these degenerate states cannot be distin-
guished locally; they are classified by the global character-
istics (58), similar to topologically ordered CM systems
[2–8]. Third, the entropy (57) does not vanish in thermo-
dynamical limit in the presence of the external magnetic
field at �eff ¼ � as a reflection of the degeneracy of
the ground state (58). This feature is a direct analog of
the degeneracy discussed in Ref. [15] in the presence of the
electric fluxes. As we already mentioned after Eq. (49) one
should expect six different �’s parameters corresponding
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three different magnetic fluxes and three different electric
fluxes. There will be extra degeneracy (and extra ln 2
contribution to the entropy) when each flux assumes 1=2
of its value.

Finally, a similar degeneracy does not occur for another
CP even state with �eff ¼ 0. Indeed, while each contribu-
tion with positive k � 0 has its partner with negative�k in
Eq. (48) there is a unique single term with k ¼ 0 which
does not have its partner. This single term prevents the
degeneracy to occur in the system with �eff ¼ 0.

IV. ‘‘BF’’ FORMULATION OF THE
MAXWELL SYSTEM

In the previous section we presented a number of argu-
ments suggesting that the Maxwell system defined on a
compact manifold behaves very much in the same way as a
topologically ordered system. The arguments include the
analysis of such ‘‘signatures’’ of a topological phase as the
degeneracy and the topologically protected finite correc-
tion to the entropy. Still, it would be highly desirable to
describe the same system in more conventional way in
terms of auxiliary fields governed by the topological
Chern-Simons action. In this case our claim (that the
Maxwell system defined on a compact manifold is a
topologically ordered system) would be less puzzling and
mysterious notion. We should remark here that our system
supports conventional massless photons with physical
polarizations, in apparent contrast with conventional de-
scription of topologically ordered systems which normally
are characterized by a gap. However, as we already
mentioned the massless photons with physical transverse
polarizations completely decouple from our topological
fluctuations described by the topological portion of the
partition function Ztop according to Eq. (29). Therefore,

these massless photons can be completely ignored in our
studies of the topological properties of the partition func-
tion, similar to decoupling of the massless phonons (which
are in fact responsible for the mere existence of a gap) in
treatment of the topologically ordered superconductors [5].

A. Partition function in ‘‘BF’’ formulation

Wewish to derive the topological action for the Maxwell
system by using the same conventional technique exploited
e.g., in [21] for the so-called ‘‘deformed QCD’’ and in [5]
for the Higgs model. Our starting point is to insert the delta
function into the path integral with the field bzðxÞ acting as
a Lagrange multiplier

�½BzðxÞ � �zjk@jakðxÞ�
�

Z
D½bz�eiL3�

R
d2xbzðxÞ�½BzðxÞ��zjk@jakðxÞ�; (59)

where BzðxÞ in this formula is treated as the original ex-
pression for the field operator entering the action (28),
including all classical k-instanton configurations (27) and

(30) and quantum fluctuations surrounding these classical
configurations. In other words, we treatBzðxÞ as fast degrees
of freedom. At the same time akðxÞ is treated as a slow-
varying external source effectively describing the large dis-
tance physics for a given instanton configuration. Our task
now is to integrate out the original fast ‘‘instantons’’ and
describe the large distance physics in terms of slow varying
fields bzðxÞ, akðxÞ in form of the effective action.We use the
same procedure by summation over k instantons as before
which is expressed in terms of the partition function (31).
The only new element in comparison with the previous
computations is that the fast degrees of freedom must be
integrated out in the presence of the new slow varying
background fields bzðxÞ, akðxÞ which appear in Eq. (59).
Fortunately, the computations can be easily performed if one
notices that the background field bzðxÞ enters Eq. (59) ex-
actly in the same manner as external magnetic field enters
(48). Therefore, assuming that bzðxÞ, akðxÞ are slow varying
background fields we arrive to the following expression for
the partition function:

Ztop ¼
ffiffiffiffiffiffiffi
��

p Z
D½bz�D½a�e��2��

R
d2x
L1L2

ð�ðxÞ
2� Þ2�Stop ; (60)

where �ðxÞ � eL1L2bzðxÞ represents the slow varying
background auxiliary bz field which is assumed to lie in
the lowest k ¼ 0 branch, j�ðxÞj<�. Correspondingly, in
formula (60) we kept only asymptotically leading term with
k ¼ 0 in the series (48) at large � � 1. The topological term
Stop½bz; ak� in Eq. (60) reads

Stop½bz; ak� ¼ iL3�
Z

d2x½bzðxÞ�zjk@jakðxÞ�: (61)

Our observation here is as follows. The topological term
(61) which emerges as an effective description of our
system is in fact a Chern-Simons–like topological action.
In our simplified setting we limited ourself by considering
the fluxes-instantons along z direction only. It is naturally to
assume that a more general construction would include
fluxes-instantons in all three directions which leads to a
generalization of action (61). It is quite natural to expect
that the action in this case would assume a Chern-Simons–
like form i�

R
d3x½�ijkbiðxÞ@jakðxÞ� which replaces (61).

A similar structure in CM systems is known to describe a
topologically ordered phase. Therefore, it is not really a
surprise that we found in Sec. III some signatures of the
topological phases (such as degeneracy and topological
entropy) in the Maxwell system defined on a compact
manifold. The emergence of the topological Chern-
Simons action (61) further supports our basic claim that
the Maxwell system on a compact manifold belongs to a
topologically ordered phase.

B. Magnetic susceptibility in ‘‘BF’’ formulation

Our goal here is to consider a simplest application of the
effective low energy topological action constructed above
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(60). To be more specific, we want to reproduce our
expression for the magnetic susceptibility (39) and (42)
by integrating out the bz and ak fields using low energy
effective description (60):

hBzðxÞ; Bzð0Þi ¼ 1

Z

Z
D½bz�D½a�e�Stot½bz;ak�

� ½�zjk@jakðxÞ; �zj0k0@j0ak0 ð0Þ�; (62)

where Stot½bz; ak� determines the dynamics of auxiliary bz
and ak fields, and it is given by

Stot ¼ L3�
Z

d2x

�
1

2
b2zðxÞ þ ibzðxÞ�zjk@jakðxÞ

�
: (63)

The obtained Gaussian integral (62) over
R
D½bz� can be

explicitly executed, and we are left with the following
integral over

R
D½a�

hBzðxÞ; Bzð0Þi ¼ 1

Z

Z
D½a�e�L3�

2

R
d2x½�zjk@jakðxÞ�2

� ½�zjk@jakðxÞ; �zj0k0@j0ak0 ð0Þ�: (64)

The integral (64) is also gaussian and can be explicitly
evaluated with the following final result

hBzðxÞ; Bzð0Þi ¼ 1

�L3

�2ðxÞ: (65)

Formula (65) precisely reproduces our previous expres-
sion (43) derived by explicit summation over fluxes-
instantons, and without even mentioning any auxiliary
topological fields bzðxÞ, akðxÞ. It obviously demon-
strates a self-consistency of our formal manipulations with
auxiliary topological fields.

Few comments are in order. First of all, the expression
(43) and (65) for the magnetic susceptibility represents the
contact nondispersive term which cannot be associated
with any physical propagating degrees of freedom as it
has a ‘‘wrong sign,’’ similar to our discussions for two-
dimensional QED (10). The nature of this contact term is
very much the same as in two-dimensional QED (11), and
it results from tunneling transitions between topologically
different but physically identical states. As we mentioned
in Sec. II B, this contact term in two-dimensional QED can
also be understood in terms of KS ghost [19,20]. Secondly,
this term is responsible for the topologically protected
contribution to the entropy as Eq. (38) states, and serves
as a signal of a topologically ordered phase. Finally, as we
already mentioned in Sec. II B an analogous construction
also emerges in ‘‘deformed QCD’’ [21] where the auxiliary
topological fields, similar in spirit to bzðxÞ, akðxÞ fields
from (63), and which saturate the ‘‘wrong sign’’ in topo-
logical susceptibility can be identified with the so-called
Veneziano ghost. Our observation here is that in all con-
sidered cases the presence of a nonvanishing contact term
in expression for the entropy and some manifestations of a

topologically ordered phase are somehow related. A deep
understanding for such a correlation is still lacking.

V. CONCLUSION

Before we formulate the main results of this work, we
want to make few general comments on connection with
other related studies.

A. Connection with other related studies

In this work we discussed a number of very unusual
effects in Maxwell theory formulated on a compact
manifold such as the four torus. All these effects are
originated from the topological portion of the partition
function Ztopð�; �effÞ and cannot be formulated in terms

of conventional E&M propagating photons with two physi-
cal polarizations. In fact, a strong hint that something is
missing in attempt to describe everything in terms of the
propagating degrees of freedom (d.o.f.) comes from study
of the ‘‘empty’’ two-dimensional gauge theory discussed in
Sec. II when the system cannot support any physical prop-
agating d.o.f. Still, all physical effects relevant for this
work are already present in the two-dimensional system.
The same comment also holds for the four-dimensional
Maxwell theory when photons with two physical polar-
izations are present in the system. However, their contri-
bution completely decouple from topological effects
studied in the present work.
The source of these unusual effects is as follows. When

the Maxwell system is quantized on a compact manifold
one cannot completely remove all unphysical degrees of
freedom from the system as it would result in emergence of
the so-called Gribov’s ambiguities [11] (see recent paper
[15] and also some previous relevant discussions [12–14]).
These ambiguities were originally discussed for non-
Abelian gauge theories in Minkowski space when one tries
to completely remove all unphysical degrees of freedom in
the Coulomb gauge [11], but similar ambiguities also
emerge in Abelian Maxwell theory defined on a nontrivial
manifold [12–14].
In the present work we opted to keep some gauge free-

dom in our analysis. The corresponding construction is
implemented by allowing the boundary conditions to be
periodic up to large gauge transformations, which are
precisely reflected by the presence of the ‘‘instantons’’
(27) interpolating between topologically different, but
physically identical, pure gauge configurations. The same
topological construction has been used previously in four
dimensions in study of the topological Casimir effect [1]
where it has been claimed that there is an additional con-
tribution to the Casimir force in Maxwell theory which
cannot be accounted for by conventional propagating
photons with two physical polarizations. Similar in
spirit computations were also carried out in [21] in
weakly coupled ‘‘deformed QCD’’ where fractionally
charged monopoles-instantons describe the tunneling
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events between topologically different, but physically
identical winding states. In this case one can also argue
that the gapped ‘‘deformed QCD’’ belongs to a topologi-
cally ordered phase, related to the ‘‘degeneracy’’ of these
winding states.

These computations imply that an extra energy (and
entropy), not associated with any physical propagating
degrees of freedom, may appear in some gauge systems.
The extra energy in all these cases emerges as a result of
dynamics of pure gauge configurations at very large dis-
tances. This unique feature of the system when extra
energy is not related to any physical propagating degrees
of freedom was the main motivation for a proposal [19,31]
that the observed dark energy in the Universe may have
precisely such nondispersive nature. Essentially, the pro-
posal [19,31] identifies the observed dark energy with the
Casimir type energy, which however is originated not from
dynamics of the physical propagating degrees of freedom,
but rather, from the dynamics of the topological sectors
which are always present in gauge systems. A de Sitter
behavior of the Universe in this case can be formulated in
terms of the auxiliary topological fields which are similar
in spirit to bzðxÞ, akðxÞ fields from (63) and which effec-
tively describe the dynamics of the topological sectors
in the expanding background [32]. It would be very excit-
ing if this new type of energy not associated with propagat-
ing particles could be experimentally measured in a
laboratory as suggested in [1]. Furthermore, one could
argue that these finite contributions (to the entropy and to
the energy), not related to any propagating degrees of
freedom cannot be removed by any means such as sub-
traction or redefinition of observables, (see Appendix of
Ref. [1] with corresponding arguments).

B. Main results

In this work we have discussed two novel (topologically
protected) contributions to the thermodynamical entropy.
The analysis of these additional contributions to the en-
tropy, not related to the physical propagating photons,
represents the main result of the present work. There are
two types of extra terms to the entropy which are related to
each other as they both originated from topological portion
of the partition function Ztopð�; �effÞ, but nevertheless the
physical meaning of these contributions are very different.

The contribution of the first type always enters the
entropy with the negative sign. This term is expressed in
terms of the topologically protected magnetic susceptibil-
ity �mag, can be represented as the infrared-sensitive sur-

face integral, and emerges even in the absence of external
fields as discussed in Sec. III C. Such contributions are
similar in spirit to the topological entanglement entropy
in condensed matter systems, which are normally
expressed in terms of the quantum dimension D.

The arguments that such nondispersive contact contri-
butions to the entropy may emerge in the gauge systems

have been discussed in the literature long ago (see original
Ref. [22] and a few comments and references on the recent
development at the beginning of Sec. II C). These contri-
butions to the entropy are obviously very unique. It is
important to emphasize that these terms do not contradict
to any fundamental principles as we discussed in this work.
In particular, the total entropy is always positive function,
and the ground-state entropy vanishes in the thermody-
namical limit (outside of the degeneracy points, see next
paragraph). Nonetheless, the presence of these contact
nondispersive terms expressed in terms of the infrared-
sensitive surface integrals signalling that some kind
of long range order, not related to propagating degrees
of freedom (irrespectively whether they are massless or
massive) may emerge in the system.
The contribution to the entropy of the second type is also

related to the topological portion of the partition function
Ztopð�; �effÞ. However, these terms emerge only in the

presence of external field represented by �eff ¼ �. In this
case this system becomes degenerate as discussed in
Sec. III E and, as a result of this degeneracy the entropy
receives an additional topologically protected contribution
with the positive sign as Eq. (57) states (see also footnote 2
on generalization of this construction when the external
electric fluxes along with magnetic fluxes are included).
This degeneracy can be interpreted as a result of a sponta-
neous symmetry breaking of P parity when the induced
magnetic field may choose one of two possible directions.
The effect can be observed only globally (58) rather than
locally.
Such behavior of the system should be contrasted with

conventional picture when physical photons do not directly
couple to an external field, especially when it is rather
small, within a mG range which corresponds to L1 � L2 �
10�2 cm in Eq. (36). The coupling with physical photons
occurs only through the fermion loop, which leads to
enormous suppression for all effects normally expressed
in terms of a nonlinear effective Lagrangian. At the same
time the coupling of such small external fields with
‘‘instanton-fluxes’’ is always of order of unity even in
absence of any charged fermions. Eventually, it results to
the large effects such as emergence of the degeneracy in
the system (57) and (58).
Another result of this work is an explicit demonstration

that the topological portion of the partition function
Ztopð�; �effÞ can be reformulated in conventional terms

using the Chern-Simons–like effective description in
Sec. IVB. We reproduced the contact term in magnetic
susceptibility using this effective description. Such a for-
mulation once again supports our main claim that the
Maxwell system formulated on the four torus belongs to
a topologically ordered phase.
It remains to be seen if the system discussed in the

present work can be used as a platform for quantum
computations similar to the previous well-known
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suggestion [33] as there are many formal similarities be-
tween our system and topologically ordered condensed
matter systems (see Sec. III C with some comments on
these analogies). The crucial question is, of course, if one
can manipulate with topological ‘‘fluxes-instantons’’ from
Sec. III in the same way as with real quasiparticles in CM
systems using the external magnetic field ��eff from
Eq. (36), or varying the boundary conditions. The point
is that such manipulations may become efficient only for
sufficiently small systems as one should deal with a mag-
nitude of a single flux, as numerical estimates for the
topological Casimir effect show [1]. Another way to ma-
nipulate the topological ‘‘fluxes-instantons’’ is to couple
the topological fields with real propagating quasiparticles.

This coupling is likely to create the so-called ‘‘edge
states,’’ which is a typical manifestation of topological
phases in CM physics. We leave all these interesting sub-
jects for the future studies.
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