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We introduce a general parametrization for non-Abelian gauge fields on the four-dimensional space

CP2. The volume element for the gauge-orbit space or the space of physical configurations is then

investigated. The leading divergence in this volume element is obtained in terms of a higher dimensional

Wess-Zumino-Witten action, which has previously been studied in the context of Kähler-Chern-Simons

theories. This term, it is argued, implies that one needs to introduce a dimensional parameter to specify

the integration measure, a step which is a nonperturbative version of the well-known dimensional

transmutation in four-dimensional gauge theories.
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I. INTRODUCTION

The importance of the gauge-orbit space needs no em-
phasis given that Yang-Mills theories are the foundational
paradigm for the interactions of fundamental particles. The
relevant space over which the functional integration for
such theories is carried out is the space of gauge potentials
(A) modulo the space of all gauge transformations which
are fixed to be identity at one point on the spacetime
manifold (G�). In particular, the measure of integration is
the volume element of this gauge-orbit space C ¼ A=G�,
equivalently, the space of physical field configurations [1].

This volume element can be calculated exactly for
gauge fields in two dimensions in terms of a Wess-
Zumino-Witten (WZW) action [2]. It plays a role in the
Chern-Simons-WZW relationship [3] and, albeit indi-
rectly, in the solution of Yang-Mills theory on Riemann
surfaces [4]. It can be incorporated into a Hamiltonian
formalism for (2þ 1)-dimensional Yang-Mills theories
leading to string tension calculations and insight into the
mass gap [5,6], including supersymmetric cases [7].

The situation for four-dimensional gauge theories has
been much less clear. Gauge-fixing and the Faddeev-Popov
procedure construct this volume element for a local section
ofA viewed as aG�-bundle over C; this is adequate for the
perturbative calculations, but does not really give any
insight into anything beyond that. The volume element
for the gauge-orbit space is the subject of this paper. The
calculations in lower dimensions utilized the possibility
that one could view two-dimensional space as a complex
manifold, which then led to a parametrization of fields
which was very suitable for the calculation of the volume
element for C. There is no natural complex structure for
R4 since any choice of complex coordinates would not be
4d-rotationally invariant (or Lorentz invariant with
Minkowski signature). One could consider a twistor space
version which would include the set of all local complex

structures. However, a simpler situation is obtained with
CP2, which is a complex Kähler manifold. The standard
metric for this space is the Fubini-Study metric given, in
local coordinates za, �z �a, a ¼ 1, 2, �a ¼ �1, �2, by

ds2 ¼ dzad�z �a

ð1þ z � �z=R2Þ �
�z � dzz � d�z

R2ð1þ z � �z=R2Þ (1)

where we have also included a scale parameter for the
coordinates. As the parameter R ! 1, the metric becomes
that of flat space (although there are some global issues
which will not be important for us). This is, therefore,
an interesting space to consider, being endowed with a
complex structure and with a suitable limit to the flat
four-dimensional space. So, in this paper, we will consider
gauge fields on CP2.
In the next section we will introduce a suitable parame-

trization for gauge fields on CP2 and identify the gauge-
invariant variables of the problem. We will then proceed
to the evaluation of the leading divergent term in the
functional integration measure. This is shown to be given
by a higher dimensional generalization of the WZWaction.
The functional integration for gauge fields in four dimen-
sions, it is well known, should show dimensional transmu-
tation with a freely specifiable dimensional parameter
characterizing the theory. In the last section, we argue
that the leading divergence in the calculation of the volume
element for C introduces just such a parameter, which is,
effectively, a nonperturbatively defined version of the
�-parameter of QCD. The main result of the paper is
then contained in Eqs. (52) and (53), which give the
definition of the functional integral with the measure
defined in terms of the gauge-invariant variables. The
computation of the subleading and finite terms in the
Jacobian of the transformation to the gauge-invariant var-
iables and the extensions of the result to supersymmetric
theories are briefly alluded to in the discussion section;
they are interesting directions to explore in future.*vpn@sci.ccny.cuny.edu
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II. THE VOLUME ELEMENT FOR THE GAUGE
ORBIT SPACE

A. Parametrization of fields

We will begin with a suitable parametrization of the
gauge fields on CP2. This space may be thought of as the
group coset SUð3Þ=Uð2Þ. Thus functions, vectors, etc. on
this space may be realized in terms of the Wigner functions
hR; AjĝjR; Bi which are the representation of a SUð3Þ ele-
ment g in a general irreducible representation labeled as R.
For the defining fundamental representation, we takeg to be
a 3� 3 unitary matrix of unit determinant and it can be
parametrized as g ¼ exp ðita’aÞ, where ta form a basis for
Hermitian traceless 3� 3 matrices, with TrðtatbÞ ¼ 1

2�ab,

and ’a are the coordinates for SUð3Þ. In terms of the
functions hR; AjĝjR; Bi, the states on the right, namely,
jR; Bi must be so chosen as to give the correct transforma-
tion property under Uð2Þ 2 SUð3Þ. Notice that, for CP2,
SUð3Þ plays the role of the Poincaré group and Uð2Þ plays
the role of the Lorentz group; so vectors, tensors, etc., must
be characterized by their transformation property under
Uð2Þ. We will refer to the SUð2Þ part of Uð2Þ as isospin
(denoted by I) and the Uð1Þ part of Uð2Þ as hypercharge
(denoted by Y). Specifically, we take the SUð2Þ to be
generated by t1, t2, t3 and the hypercharge to correspond
to t8. For functions on CP

2, which must be invariant under
Uð2Þ, we need states with Y ¼ 0 and I ¼ 0. For vectors, we
need a SUð2Þ doublet (I ¼ 1

2 representation). A general

SUð3Þ representation is of the form T
a1a2���ap
b1b2���bq , ai, bj ¼ 1,

2, 3, which may be labeled as ðp; qÞ. These are totally
symmetric in all ai’s and totally symmetric in all bj’s with

the trace (or contraction between any two upper and lower
indices) vanishing. The value of hypercharge is given by

Y ¼

8>>>><
>>>>:

1=3 ai ¼ 1; 2

�2=3 ai ¼ 3

�1=3 bi ¼ 1; 2

2=3 bi ¼ 3:

(2)

For the derivative operators on CP2 we can use a subset of
the right translation operators Ra defined by

Rag ¼ gta: (3)

More explicitly, we can write

g�1dg ¼ �itaE
a
i d’

i; Ra ¼ iðE�1Þia @

@’i : (4)

For CP2, the derivatives will be taken as r1 ¼ R4 þ iR5

and r2 ¼ R6 þ iR7, and r�1 ¼ R4 � iR5, r�2 ¼ R6 � iR7.
The r’s correspond to derivatives in the tangent frame,
ri ¼ ðe�1

i Þ�ð@=@x�Þ in terms of the usual local coordi-
nates, e’s being the frame fields. (The group theoretic ap-
proachwe use, with derivatives given byRa, forCP

k spaces
is essentially along the lines of [8]; it is also similar to what
was done for gauge fields on CP1 in [9].)

The operators ri form a SUð2Þ doublet with Y ¼ 1, r�i

are again a SUð2Þ doublet with Y ¼ �1. A gauge field A is
to be added to these operators, so we need a SUð2Þ doublet
with Y ¼ 1 for Ai, and a SUð2Þ doublet with Y ¼ �1 for
A�i. This corresponds to the states of the form Ti33���3

33���3 which

give Y ¼ 1 for p ¼ q, and Y ¼ �1 for p ¼ qþ 3.
Likewise, T33���3

i33���3 would give a SUð2Þ doublet with Y ¼
�1 for p ¼ q and Y ¼ 1 for q ¼ pþ 3. Thus for a vector
field, we need three types of representations:
(1) R1 � ðp; pÞ-type, p � 0: These contribute to both

Ai and A�i.
(2) R2 � ðp; pþ 3Þ-type: These contribute to Ai.
(3) R3 � ðpþ 3; pÞ-type: These contribute to A�i.

The general expression for an Abelian vector field is thus

Ai ¼
X
A;R1

CR1

A hR1; AjĝjR1; ii þ
X
A;R3

B
R3

A hR3; AjĝjR3; ii

A �j ¼
X
A;R1

�CR1

A hR1; AjĝjR1; �ji þ
X
A;R2

�BR2

A hR2; AjĝjR2; �ji;
(5)

where CR1

A and BR3

A are arbitrary complex numbers. The

representations R2 and R3 are conjugates of each other; R1

is invariant under conjugation. The state on the right for R1,
namely, Ti3...3

3...3 can be obtained by the action of t4 þ it5 and
t6 þ it7 on a state jwi of the form T3...3

3...3 , which is SUð2Þ
invariant with zero hypercharge. In other words it can be
obtained by the action of ri on a function. Thus the first
terms in (5) are of the form of derivatives acting on a
function. In a similar way, the relevant state jR3; ii can
be obtained by the action of �ijr �j on a state jzi which is

SUð2Þ invariant with Y ¼ 2. [A point of clarification: Even
though there is only one irreducible doublet representation
for SUð2Þ, it is only pseudoreal. Thus to convert doublet
with upper indices to ones with lower indices, we have
to use the �ij symbol.] In a similar way, we can obtain

the relevant state for jR2; �ji by the action of �ijrj on a

state which is SUð2Þ invariant with Y ¼ �2. Combining
these results, we see that the parametrization given above
reduces to

Ai ¼ �ri�þ �ijr �j�; A �j ¼ r�i
��� �ijrj ��: (6)

(In preparation for the non-Abelian case where we use
anti-Hermitian basis for the gauge fields, we have changed

over, compared to (5), to the conjugation property Ay
i ¼

�A�i. In other words, Ai corresponds to �iðA4 þ iA5Þ,
�iðA6 þ iA7Þ.) In (6), ’ is a complex function on CP2

and hence is expandable in terms of hR1; Ajĝjwi. The
quantity � is expandable in terms of hR3; Ajĝjzi; it does
not define a function on CP2 since jzi has Y ¼ 2. The term
�ijr �j� may be thought of as the divergence of a twoform.

The four real independent components for general a vector
field in four dimensions are captured by the �, ��, � and ��.
The generalization to the non-Abelian case is straight-

forward. Notice that, the product of a state of the form jwi
with another state of the form jwi still gives a state of the
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same type. Thus functions can be multiplied to form other
functions. Also, the product of a state of the type jwi with
jzi still gives a state of the form jzi. Thus multiplying � by
functions is also possible. We may combine this to write a
parametrization for Ai as

Ai ¼ �riMM�1 �MaiM
�1; (7)

whereM is a complex matrix in the complexification of the
gauge group. We will take the gauge group as SUðNÞ for
the rest of this paper, so M 2 SLðN;CÞ. Gauge transfor-
mations act on M as M ! MU ¼ UM; the term MaiM

�1

transforms covariantly under this, so that Ai in (7) has the
expected transformation property

Ai ! AU
i ¼ UAiU

�1 �riUU�1: (8)

The conjugate components are given by

A�i ¼ My�1r�iM
y þMy�1 �a�iM

y: (9)

Since the inhomogeneous parts in the gauge transformation
are generated from �riMM�1 and My�1r�iM

y, Dif �
rifþ ½�riMM�1; f� and �D�i � r�ifþ ½My�1r�iM

y; f�
are gauge-covariant derivatives, for f’s which transform
as f ! fU ¼ UfU�1. Thus another way to generalize
(6) is

Ai ¼ �riMM�1 þ �ij �D �j�

A�i ¼ My�1r�iM
y � �ijDj�

y
(10)

Here � transforms covariantly under gauge transforma-
tions. Primarily, the parametrization of the gauge fields we
use will be (10). But we may also view it as equivalent to
(7) and (9), defining

ai¼�M�1�ij �D �j�M; �a�i¼�My�ijDj�
yMy�1: (11)

Both these ways of viewing the parametrization of
the gauge fields will be useful later. In terms of the
matrix structure, the gauge fields are of the form
A1 ¼ ð�iTaÞAa

1 ¼ ð�iTaÞðAa
4 þ iAa

5Þ, A�1 ¼ ð�iTaÞAa
�1
¼

ð�iTaÞðAa
4 � iAa

5Þ, etc., where fTag form a basis for the

Lie algebra of the gauge group, say, SUðNÞ.
The gauge transformation properties show that the

gauge-invariant degrees of freedom are described by H ¼
MyM and � ¼ M�1�M, �� ¼ My�yMy�1 (orMba�b and
ðMyÞab�yb). (We use the same letter �, although these are
matrices and parametrize the non-Abelian fields now.)
These fields constitute the coordinates for the space of
gauge-invariant configurations or the gauge-orbit space C.

B. The metric and volume

We now turn to the metric on the space of these gauge
potentials. It is given by

ds2 ¼ �2
Z

d�Trð�A�i�AiÞ ¼
Z

d��Aa
�i
�Aa

i ; (12)

where d� is the volume element for CP2. Taking the
variations of (10) we find

�Aa
i ¼ �ðDi�Þa þ �ijð �D �j��Þa þ �ijf

abcð �D �j�
yÞb�c;

�Aa
�i
¼ �ð �D�i�

yÞa þ �ijðDj��
yÞa þ �ijf

abcðDj�Þb�yc;

(13)

where � ¼ �MM�1 ¼ ð�iTaÞ�a and fabc are the structure
constants of the Lie algebra defined by ½Ta; Tb� ¼ ifabcTc.
Using these variations in (12), we obtain

ds2 ¼ ðds2Þ0 þ ðds2Þ1 þ ðds2Þ2;
ðds2Þ0 ¼

Z
d�½ð �D�i�

y � �ijDj��
yÞaðDi�� �ik �D �k��Þa�;

ðds2Þ1 ¼
Z

d�½��ijf
abcðDj�Þb�ycðDi�� �ik �D �k��Þa

� ð �D�i�
y � �ijDj��

yÞa�ikfabcð �D �k�
yÞb�c�;

ðds2Þ2 ¼
Z

d�½�ij�ikfabcfamnðDj�Þb�ycð �D �k�
yÞm�n�:

(14)

We have separated the metric into terms with no power of
� or �y, with one power of the same, or two powers. It is
worth emphasizing that the connections in the covariant
derivatives Di and �D�i are �riMM�1 and My�1r�iM

y,
respectively. As a result, we can further simplify ðds2Þ0
by partial integration, by noting that

Z
d�½�ijðDj��

yÞaðDi�Þa�

¼ �
Z

d�½��ya�ijðDjDi�Þa� ¼ 0: (15)

Since Di only involves riMM�1, the holomorphic cova-
riant derivatives commute and so �ijDiDj ¼ 0. Thus

ðds2Þ0 ¼
Z

d�½�yað� �D�iDiÞab�b

þ ��yað�Di
�D�iÞab��b�: (16)

We can simplify the other term in ds2 in a similar way
to get

ðds2Þ1 ¼
Z

d�½�að�ikDi�
yDkÞab�b

þ �aðDk�
y �D �kÞab��b þ �yað�ik �D�i� �D �kÞab�yb

þ ��yað�Dk� �D �kÞab�yb�;
ðds2Þ2 ¼

Z
d�½�yað �D �k��yDkÞab�b�; (17)

where � is a matrix, ð�Þab ¼ �cfabc and ð�yÞab ¼
�ycfabc. Define a 4� 4 matrix of operators M by
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M11 ¼ M33 ¼ ð� �D�iDi þ �D �k��yDkÞ;
M22 ¼ M44 ¼ ð�Di

�D�iÞ; M13 ¼ 2ð�ik �D�i� �D �kÞ;
M23 ¼ 2ð�Dk� �D �kÞ; M31 ¼ 2ð�ikDi�

yDkÞ;
M32 ¼ 2ðDk�

y �D �kÞ; (18)

with all other elements being zero. Then the metric is

ds2 ¼ 1

2

Z
d��y

AMAB�B;

ð�1; �2; �3; �4Þ ¼ ð�; ��; �y; ��yÞ:
(19)

The volume element corresponding to this is given, up to

an overall normalization factor, by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
times the

volume defined by the differentials �. For the latter, �
and �y give the standard Cartan-Killing volume element
of SLðN;CÞ (at each spacetime point); the differentials ��,
��y give the standard functional integration measure
[d�d�y]. Thus the volume element corresponding to
(19) becomes

dV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
d�SLðN;CÞ½d�d�y�: (20)

(In d�SLðN;CÞ, we have a product of the volume of SLðN;CÞ
over all spacetime points; this is not explicitly displayed,
but left as understood.) As discussed in [5], by doing a
polar decomposition of M into a unitary matrix and a
Hermitian matrix, we can factor out the volume of gauge
transformations from d�SLðN;CÞ,

d�SLðN;CÞ ¼ d�ðHÞd�ðSUðNÞÞ: (21)

The integration measure for the �’s is gauge invariant
since these fields transform covariantly, in much the
same way matter fields have a gauge-invariant measure
in standard functional integration. Factoring out the vol-
ume of gauge transformations, we get the volume element
for the gauge-orbit space C (or the space of physical
configurations) as

d�ðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
d�ðHÞ½d�d�y�: (22)

Also, as noted in [5], parametrizing the matrix H in terms
of a set of real fields �a, H�1dH ¼ d�arakð�ÞTk and
d�ðHÞ ¼ Q

xðdet rÞ½d��.

C. Calculating the Jacobian factor

The problem is now reduced to the computation of the
determinant of M. For this we note that the off-diagonal
terms in the matrix M depend on � or �y, so in the
neighborhood of the subspace � ¼ 0, M has only diago-
nal elements given by the operators (� �D �kDk) and
(�Dk

�D �k). Our strategy will be to calculate the volume
around this subspace. The terms which depend on �, �y
can then be included in a series expansion. The gauge
transformation of the potentials Ai, A�i is fully captured
by M and My in the parametrization we have used; thus

setting � and �y to zero (in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
) is consistent with

gauge invariance requirements. Taking a Hamiltonian
point of view for a moment, the two polarization states
which would normally be eliminated by the Gauss law—
which being a first class constraint eliminates two degrees
of freedom—are contained in M, My. The fields � and
�y act almost as matter fields describing the surviving
two polarizations. We may therefore expect to gain some
insight into many of the issues of low energy physics
from the analysis of the measure near the subspace with
� ¼ �y ¼ 0.
The quantity to be calculated is thus log ½det ð� �D �kDkÞ�

det ð�Dk
�D �kÞ�. In two dimensions, the analogous quantity

would be log det ð� �DDÞ. Formally we can factorize this,
calculating log det �D and log detD separately and putting
them together with the standard Schwinger-Quillen coun-
terterm to obtain the gauge invariant result. In four dimen-
sions, such a factorization is obviously not possible since
we have a sum over the two complex indices in �D �kDk. So
we will first recalculate the two-dimensional case in a way
that will help us generalize to the four dimensions. In two
dimensions, we need to calculate � ¼ log det ð� �DDÞ ¼
Tr log ð� �DDÞ. Consider the variation of this with respect
to A. We get

�� ¼ Tr

�
��ð �DDÞ

�
1

� �DD

��

¼
Z

d2xTr½� �Dxð�AxGðx; yÞÞ�y!x; (23)

where Gðx; yÞ ¼ ð� �DDÞ�1
x;y . The operator �D acts on both

�A and Gðx; yÞ. When it acts on �A, we have Gðx; yÞ�y!x.

This is proportional to the identity in any regularized
version of G and hence this contribution vanishes by the
matrix trace. The surviving term is

�� ¼
Z

d2xTr½��Ax
�DxGðx; yÞ�y!x: (24)

(We have written out the functional trace; the remaining
trace is just over the matrices.) This shows that we need a
regularized version of the short-distance behavior of
�DxGðx; yÞ. We know that ð� �@@Þ�1 behaves as log½ðx�yÞ�
ð �x� �yÞ� at short separations, so that �@Gðx; yÞ behaves as
1=ð �x� �yÞ. However, we need to put in phase factors which
ensure the correct gauge transformation properties. It can
then be seen that the short-distance behavior should be
given by

�DxGðx; yÞ ’ �MðxÞM�1ðyÞWðy; xÞ
	ð �x� �yÞ ;

Wðy; xÞ ¼ P exp

�
�
Z y

x
A

�
:

(25)

Wðy; xÞ is the Wilson line matrix which transforms under
gauge transformations as
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Wðy; xÞ ! Wðy; x; AUÞ ¼ UðyÞWðy; xÞU�1ðxÞ (26)

so that �DxGðx; yÞ ! UðxÞ �DxGðx; yÞU�1ðxÞ. Since �A
transforms covariantly, �Ax ! UðxÞ�AxU

�1ðxÞ, this
makes the trace in (24) gauge invariant. Further, since the
numerator of �DxGðx; yÞ in (25) transforms covariantly, we
have

DðMðxÞM�1ðyÞWðy; xÞÞ
¼ @ðMðxÞM�1ðyÞWðy; xÞÞ þ ½A;MðxÞM�1ðyÞWðy; xÞ�
¼ 0: (27)

The action of @ on 1=	ð �x� �yÞ leads to a delta function,
verifying

�Dx½ �DxGðx; yÞ� ¼ �ð2Þðx� yÞ: (28)

This verifies the correctness of the short-distance behavior
of the �DxGðx; yÞ given in (25).

It is now straightforward to expand (25) to first order in
x� y, �x� �y and find

�� ¼ 1

	

Z
d2xTr½�Að �Aþ �@MM�1Þ�;

¼ 1

	

Z
d2x½Trð�A �AÞ � Trð �@�@MM�1Þ�;

¼ 1

	

Z
d2xTrð�A �AÞ þ �SwzwðMÞ; (29)

where the WZW action is given by

SwzwðMÞ ¼ 1

2	

Z
d2xTrð@M �@M�1Þ

þ i

12	

Z
TrðM�1dMÞ3: (30)

There is a similar result for the variation ofMy or �A and the
combined result is

� ¼ SwzwðHÞ: (31)

In arriving at (29), we have used the symmetric way of
taking the limit y ! x, so that ðx� yÞ=ð �x� �yÞ gives zero.

Before going to the four-dimensional case, there is one
other point worth emphasizing. In parametrizing the fields
as A ¼ �@MM�1, �A ¼ My�1 �@My there is an ambiguity
since M and MVð �xÞ where Vð �xÞ is antiholomorphic give
the same A. The use of M’s in (25) carry this ambiguity
over to the short-distance behavior. However, it is imma-
terial, as the corresponding correction to �� vanishes,

���M!MV ¼ 1

	

Z
Tr½�AM �@VV�1M�1�

¼ 1

	

Z
Tr½�D�M �@VV�1M�1�

¼ 1

	

Z
Tr½�DðM �@VV�1M�1Þ�

¼ 1

	

Z
Tr½�M@ð �@VV�1ÞM�1� ¼ 0: (32)

In four dimensions, the connections in the covariant
derivatives are �rkMM�1 and My�1r �kM

y. The degree
of divergence for the short-distance behavior is worse
since Gðx; yÞ � ð�r �krkÞ�1

x;y � ðx� yÞ�2. We will intro-

duce a Pauli-Villars type regulator which corresponds to
the replacement

�
1

� �D �kDk

�
!

�
1

� �D �kDk

��
�2

� �D �jDj þ�2

�
� Gregðx; yÞ:

(33)

The parameter �2 [with the dimension of ðmassÞ2] is the
ultraviolet cutoff. The short-distance behavior of this func-
tion is given by Gregðx;yÞ��2ð� �@@Þ�2��2logðx�yÞ2,
just as in two dimensions. Thus we get the short-distance
behavior

�D �kGðx; yÞ�reg ’ ��2

	

ðx� yÞk
jx� yj2 ðMðxÞM�1ðyÞWðy; xÞÞ:

(34)

(The numerical factors are not quite precise; it is immate-
rial since they can all be absorbed into �2.) As before,
defining � ¼ Tr log ð� �D �kDkÞ we find

�� ¼
Z

d�Tr½�ð�rkMM�1Þð� �D �kGðx; yÞÞreg�y!x

¼ �2

	

Z
d�Tr½�ð�rkMM�1Þ

� ðMy�1r �kM
y þ r �kMM�1Þ�: (35)

We have taken the angular symmetric limit as y ! x, so
that �ðx� yÞkð �x� �yÞ �a

jx� yj2
�
y!x

¼ c�ka (36)

for some constant c, which has been absorbed into the
cutoff �2. We have a similar result for the variation with
respect to My and the results can be combined to obtain

� ¼ �2S4dðHÞ; (37)

where S4d is the four-dimensional WZWaction appropriate
to a four-dimensional Kähler manifold. This action is
basically contained in Donaldson’s paper [10], but was
independently derived as the boundary action for the
Kähler-Chern-Simons theory in [11] in an attempt to
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generalize conformal field theories to four dimensions. It
has since been studied by a number of authors, most
notably starting with the work of Losev et al. [12]. For
an arbitrary matrix N, it is explicitly given by

S4dðNÞ ¼ 1

2	

Z
d�TrðrkNr �kN

�1Þ

þ i

12	

Z
! ^ TrðN�1dNÞ3;

¼ 1

2	

Z
d�ga �a Trð@aN �@ �aN

�1Þ

þ i

12	

Z
! ^ TrðN�1dNÞ3; (38)

where ! is the Kähler form for CP2. For �, we need
S4dðMyMÞ ¼ S4dðHÞ. In the first term of the first line of
(38), we are still using the derivatives in the tangent frame
(given by the right translation operators on the group
element which coordinatizes the manifold). In the second
line, we show the expression in terms of the derivatives in
the local coordinate description, with ga �a as the inverse
to the Kähler metric ga �a. In local coordinates, the metric
and the Kähler form are given by

ds2 ¼
�

d�z � dz
ð1þ �z � zÞ �

z � d�z �z �dz
ð1þ �z � zÞ2

�
� ga �adz

ad�z �a;

! ¼ i

2
ga �adz

a ^ d�z �a:

(39)

In this convention,

d� ¼ 1

4
ðdetga �aÞdz1d�z�1dz2d�z�2 ¼ ðdet gÞd4x: (40)

This higher dimensional WZW action also satisfies a
Polyakov-Wiegmann identity of the form [11,13]

S4dðNMÞ ¼ S4dðNÞ þ S4dðMÞ
� 1

	

Z
d�TrðN�1r �aNraMM�1Þ: (41)

This is easily verified by direct substitution and simplifi-
cation in (38). This identity shows that � in (37) satisfies
(35), thereby justifying (37) as the integrated version
of (35).

There are a number of refinements to be considered.
First of all, so far we have only calculated the leading term
proportional to�2; there can be subleading terms and finite
terms, which are not captured because of the way we have
taken the short distance limit. So the result (37) should,
more accurately, be expressed as

Tr log ð� �D �kDkÞ ¼ �2S4dðHÞ þ subleadingþ finite terms:

(42)

Second, for the measure calculation, we also need
det ð�Dk

�D �kÞ. Notice that if we make the transformation
za $ �z �a and rk $ r �k andM $ My�1, then Dk $ �D �k. So

this second determinant is the same as the first with
za $ �z �a and H $ H�1. The first term of S4d is obviously
unchanged; the second term changes sign under H $ H�1

and there is another minus sign from za $ �z �a. So it is
unchanged as well as we find

Tr log ð�Dk
�D �kÞ ¼ �2S4dðHÞ þ subleadingþ finite terms:

(43)

Going back to (22), we can now write our result so far as

d�ðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
d�ðHÞ½d�d�y�

� det ð� �D �kDkÞ det ð�Dm
�D �mÞd�ðHÞ½d�d�y�

� e2�
2S4dðHÞd�ðHÞ½d�d�y�: (44)

We will now look at how this result can be improved by
some of the �, �y-dependent terms. Separating off the

M13, M23, etc., we can write log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
as

log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
¼ 1

2
TrlogM

¼TrlogM11þTrlogM22þ1

2
Trlog ð1þXÞ

¼Trlogð� �D �kDkþ �D �k��yDkÞ
þTrlogð�Dm

�D �mÞþ1

2
TrX�1

4
TrðXXÞ

þ��� ;

X¼
0 0 M�1

11 M13

0 0 M�1
22 M23

M�1
11 M31 M�1

11 M32 0

2
664

3
775:

(45)

The term in log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
which is second order in�,�y is

then

ðlog
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
Þ2

¼
Z
d�xTr½ �D �k��yDkGðx;yÞ�y!x

�2
Z
d�xd�y�ik�mnTr½Di�

yDkGðx;yÞ �D �m� �D �nGðy;xÞ�

þ2
Z
d�xd�yTr½Dk� �D �kGðx;yÞDm�

y �D �m
~Gðy;xÞ�;

(46)

Gðx; yÞ ¼ ð� �D �kDkÞ�1
x;y ; ~Gðx; yÞ ¼ ð�Dk

�D �kÞ�1
x;y : (47)

This term can be calculated with a suitable regulator and
clearly one can go to higher powers as there is a systematic
expansion of (45) in powers of�,�y. Nevertheless, it is an
involved process and we will postpone further discussion
of this. It will not be needed for the arguments presented in
the next section. Instead, what we will do here is determine

V. P. NAIR PHYSICAL REVIEW D 88, 105027 (2013)

105027-6



some of the quadratic terms in �, �y using a symmetry
argument. For this we go back to the parametrization (7)
and (9). Notice that the components of ai and �a�i are all
related to the single complex quantity �, as in (11).
However, consider evaluating the Jacobian factor for the
�, �y part of d�ðCÞ for arbitrary ai and �a�i, setting them to
the values given in (11) at the end. This can be done by
taking variations of (7) and (9) at fixed ai, �a�i. Notice that
(7) and (9) have something of a ‘‘fake gauge symmetry,’’

M!MS ¼MS; ai ! aSi ¼ S�1aiS� S�1riS;

My !MyS ¼ S�1My; �a�i ! �aS�i ¼ S�1 �a�iSþ S�1r�iS:

(48)

The calculation of the Jacobian must have this symmetry
implying that we must consider the gauged version of the
WZW action. This is given by

S4dðH; a; �aÞ ¼ S4dðHÞ � 1

	

Z
d�Tr½H�1r�iHai

þ �a�iriHH�1 þ �a�iHaiH
�1 � �a�iai�: (49)

We can now substitute for ai, �a�i from (11) and simplify
to get

S4dðH;�; ��Þ ¼ S4dðHÞ � 1

	

Z
d�Tr½H�1ðDa ��ÞHDa�

� ðDa ��ÞDa�� � �a �bH�1r �aHD �b�

� �abDb ��raHH�1�; (50)

where, as stated before, � ¼ M�1�M, �� ¼ My�yMy�1.
Since we can consider ½d�d�y� ¼ ½d�d ��� as well, we can
now summarize our results so far as follows.

d�ðCÞ ¼ d�ðHÞ½d�d ��� exp ½2�2S4dðH;�; ��Þ þ � � ��;
(51)

where the ellipsis denotes terms which are subleading in
the divergence, or finite, or involve higher powers of �, ��.

III. DISCUSSION

We are now in a position to discuss the relevance of this
result (51) for the functional integration in a gauge theory.

First of all, note that the term S4d is only obtained for the
non-Abelian theory. The variables �a and �a transform in
the adjoint representation and the trace in S4d is in the same
representation, hence vanishing for the Abelian theory.
Second, we note that S4d has the properties of a mass
term for the gauge fields in the sense of being a gauge-
invariant completion of Ai

�A�i. In fact, it is well known that
the WZW action in two dimensions is a mass term for the
gauge fields [13]; this even goes back to Schwinger’s
original calculation in the Abelian case. It is also known
that such a term defined on a light cone (with a suitable
integration over the orientations of the light cone) can

describe the screening mass in four-dimensional Yang-
Mills theory at finite temperature [14].
Usually, when we integrate over fermions in a four-

dimensional gauge theory, there is a quadratic divergence
proportional to A2, but this is generally rejected on the
grounds that there is no such term which is both gauge and
Lorentz invariant. In other words, there is no such term
consistent with gauge invariance and the isometries of the
underlying space. (And, indeed, with a gauge- and
Lorentz-invariant regularization, no such term is gener-
ated.) However, in our case, the term we find is gauge
invariant and invariant under the isometries of the space
CP2. Therefore the conclusion is that we must define the
gauge theory by including such a term from the beginning
with a bare parameter m2

0, so that

d�ðCÞ ¼ d�ðHÞ½d�d ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
exp ½m2

0S4dðH;�; ��Þ�;
¼ d�ðHÞ½d�d ��� exp ½m2

RS4dðH;�; ��Þ þ � � ��:
(52)

The renormalized value of this parameter, namelym2
R, then

defines a mass scale for the theory. Thus the functional
integral for Yang-Mills theory would be defined as

Z ¼
Z

d�ðCÞe�SYMðAÞ;

¼
Z

d�ðHÞ½d�d ���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p

� exp ½m2
0S4dðH;�; ��Þ�e�SYMðH;�; ��Þ: (53)

This is the main conclusion of this paper. For the term
exp ½m2

0S4dðH;�; ��Þ� which we need to have for a well-

defined definition of the integration measure, it is sufficient

to understand the divergence structure of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
. To

identify the nature of the terms needed, it is sufficient to

calculate the divergent terms in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM

p
. This is why we

concentrated on such terms in this paper. Eventually, in
calculating physical processes, the higher terms with �, ��
will be needed as well.
It is straightforward to take the R ! 1 for the term

m2
0S4dðH;�; ��Þ to obtain the flat space limit. With the

metric scaled as indicated in (1), S4dðH;�; ��Þ has the
dimension of ðmassÞ�2, so that m2

0 is retained as such.

But the coordinates of the R4 would still be organized
into two complex coordinates. Viewing this as one choice
of local complex structure for R4, it may be possible to
use twistor space and obtain a more symmetric form as
R ! 1; this is one of the issues for future work. However,
we do emphasize that for any finite value of R, no matter
how large, the term S4dðH;�; ��Þ is obtained, and hence it
will remain relevant to the question of the mass gap. For
this question, it is sufficient to consider the case R 	 m�1

R ,
but finite.
The need for a dimensional parameter to define non-

Abelian gauge theories in four dimensions is certainly not a
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surprise. We may in fact view this as a nonperturbative
version of the standard dimensional transmutation. It
should further be possible to carry out perturbation theory
starting from (53)—we will not need gauge-fixing and
ghosts—and relate m2

R to the �-parameter of QCD.
Going back to the role of the volume element, the two-

dimensional version of d�ðCÞ, set into a Hamiltonian for-
mulation, has also been very useful for understanding
many features of Yang-Mills theory in three dimensions.
The WZW action SwzwðHÞ from the measure is again
crucial for the mass gap in the theory, although it is not
directly a 3d-covariant mass term. In fact, generalizing to
the extended supersymmetric cases, one can show a com-
plete concordance between such terms (or lack thereof) in
the functional measure and the results regarding mass gap
expected from other independent considerations. It would
be interesting to generalize these considerations to super-
symmetric theories in four dimensions by analyzing the
measure along the lines of this paper. (There is a small
caveat though: Since CP2 is not a spin-manifold, a spin-C
structure will have to be used.) We will postpone such an
analysis to a future work.

The importance of a masslike term for Yang-Mills the-
ory in four dimensions was first emphasized by Cornwall
[15] and there have been many attempts to elucidate its
origin and implications [16]. Our calculation shows a clear
and specific realization of this suggestion.

The masslike term in the functional measure, whether
for the wave functions at equal time (as is relevant for a
Hamiltonian formulation) or for the Euclidean spacetime
functional integral, provides a cutoff on fluctuations of the
low momentum modes of the fields and this is the key to

the mass gap. It is worth emphasizing that this is a general
property of the geometry of the gauge-orbit space and not
reliant on any special configurations or matter content.
Some of the properties of S4dðHÞ as an action in its own

right are are also worthy of a few remarks. The equations of
motion for this action give anti–self-dual instantons, which
are also obviously related to holomorphic vector bundles. It
was in this context that Donaldson originally considered this
action. The action S4d was obtained in [11] as an attempt to
generalize the WZW theory to four dimensions and relate it
to the Kähler-Chern-Simons theory as a replay of the CS-
CFT correspondence in two-three dimensions [3]. As shown
in [11], and elaborated in [12,17], the 4-d theory S4d admits
a holomorphically factorized current algebra very similar to
the 2-d case. Such theories have also been found in higher
dimensional quantum Hall systems [8], and are also realized
as the target space dynamics of (world sheet) N ¼ 2 heter-
otic superstrings [18]. Finally, as a small addendum to the
remark on the instanton connection, the action S4dðHÞ eval-
uated on instantons is a function of the instanton moduli and
it would be interesting to see how the integration over the
moduli is controlled by the measure in (53).
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