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We study the space-time structure of polynomiality and positivity—the most important properties

which are inherent to the generalized parton distributions (GPDs). In this connection, we reexamine the

issue of the time and normal ordering in the operator definition of GPDs. We demonstrate that the

contribution of the anticommutator matrix element in the collinear kinematics, which was previously

argued to vanish, has to be added in order to satisfy the polynomiality condition. Furthermore, we

schematically show that a new contribution due to the anticommutator modifies likewise the so-called

positivity constraint, i.e., the Cauchy-Bunyakovsky-Schwarz inequality, which is another important

feature of the GPDs.
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I. INTRODUCTION

The space-time structure of the generalized parton
distributions (GPDs), together with their polynomiality, is
encoded in the matrix elements of the (anti)commutators of
the fermion fields. In this connection, the problem of the
time ordering and the consistency of the replacement of it
by the ordinary ordering in the GPDs has been discussed in
the literature for many years (see, e.g., [1,2]). In the cases
of the deep inelastic scattering (DIS) and deeply virtual
Compton scattering (DVCS) processes, it was argued that
the matrix element of the fermion anticommutator vanishes
and, therefore, the time ordering in GPDs is ‘‘illusory’’ and
can readily be replaced by the ordinary ordering of the
corresponding fermion operators. The crucial point of
those studies was that the anticommutator contribution
is defined by the limit of 1=ðk�Þn�1, where n � 2 at
k� ! 1 for the Mandelstam variables differ from zero.
Furthermore, it was shown in Ref. [2] that the support and
spectral properties of the GPDs emerge naturally.

The purpose of this paper is to demonstrate that in the
collinear kinematics and within the factorization procedure
in the t channel, where the Mandelstam variable t is small
compared to s, the matrix element of the fermion anticom-
mutator does not vanish and yields a term necessary to hold
the model-independent polynomiality condition for any
kind of generalized parton distributions. Moreover, the
latter is even valid in the regime where the Mandelstam
variables s, u, and t are similarly small, that is, in the so-
called totally collinear kinematics. Note that this particular
point s� t� 0 in the Mandelstam plane is responsible
for the duality regime of the factorization, discussed in
detail in Ref. [3], and bridges between the factorizations
in the t and s channels. The comprehensive analysis of
this very interesting point is forthcoming in [4]. We also

demonstrate schematically that the obtained contribution,
arising from the matrix element of the fermion anticom-
mutator, modifies evenly another important property of the
GPDs, the positivity. We show, moreover, that this modi-
fication allows us to relate the GPDs with the nonpertur-
bative fermion condensates.

II. HEISENBERG AND INTERACTION
REPRESENTATIONS

As the first step, let us start with the outline of the main
issues of the matching between the Heisenberg and inter-
action representations. Consider, for instance, the time-
ordered product of two fermion fields in the interaction
representation with the S matrix, Sðt2 ¼ 1; t1 ¼ �1Þ �
S1;�1 � S. Using the Wick theorem,

Tc ðxÞ �c ðyÞS1;�1

¼ Gcðx; yÞ þX
n

ðigÞn
n!

Z
ðd4�Þn

� X0

pairing

:c ðxÞ �c ðyÞð �c Â c Þ�1
. . . ð �c Â c Þ�n

:; (1)

where : . . . : denotes the normal-ordered product of fields.

Here
P0

pairing

stands for the sum of all possible sets of

contractions (or pairings) between the fields excluding
the terms with all fields contracted, the latter being accu-
mulated in Gcðx; yÞ.
The field c ðxÞ in the interaction representation trans-

forms into the Heisenberg field operator c HðxÞ as follows:
c HðxÞ ¼ Sy

t;0c ðxÞSt;0. By making use of this transforma-

tion, we obtain the relation between the time-ordered
products of two fermion fields in the Heisenberg and in
the interaction representations, respectively:

Tc ðxÞ �c ðyÞS1;�1 ¼ S1;0Tc HðxÞ �c HðyÞS0;�1: (2)
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Calculating the vacuum expectation value of the time-
ordered operator product, we get the standard definition
of the connected Green function:

Scðx; yÞ ¼ h0jTc ðxÞ �c ðyÞS1;�1j0i
S0

¼ Hh0jTc HðxÞ �c HðyÞj0iH; (3)

where the normalization condition S0 ¼ h0jS1;�1j0i
cancels all contributions from the disconnected graphs in
the interaction representation, while the vacuum state in
the Heisenberg picture is defined as Hh0j ¼ h0jS1;0 and

j0iH ¼ S0;�1j0i. In what follows, we shall keep only

the superscript H in formulas to indicate the Heisenberg
representation.

If we consider now the hadronic matrix element of the
time-ordered operator product instead of the vacuum aver-
age, we observe (upon application of the Wick theorem)
that the terms related to the matrix elements of the normal-
ordered operators do not disappear. Notice that the same
inference is true if our states are the physical or nonper-
turbative vacuum. At the same time, the fully contracted
terms refer to the disconnected matrix elements and,
therefore, have to be discarded. Indeed, we have

hp2jTc ðxÞ �c ðyÞS1;�1jp1i
¼ Gcðx; yÞhp2jp1i þ

X
n;i;j

Z
ðd4�Þnhp2j:c ð�iÞ

� Cnð�i; �j; x; yÞ �c ð�jÞ:jp1i
þ ð“N > 2 normal-ordered operators”Þ; (4)

where Cnð�i; �j; x; yÞ is the corresponding product of

different propagators. The first term in the left-hand
side of (4), Gcðx; yÞhp2jp1i, which is proportional to

�ð4Þðp2 � p1Þ, describes only the disconnected Feynman
diagrams. Thus, we define the connected matrix element of
the time-ordered operator product as

hp2jTc ðxÞ �c ðyÞS1;�1jp1iC
¼ X

n;i;j

Z
ðd4�Þnhp2j:c ð�iÞCnð�i; �j; x; yÞ �c ð�jÞ:jp1i

þ ð“N > 2 normal-ordered operators”Þ; (5)

where the subscript C points out that we are dealing with
the connected matrix elements. On the other hand, the
hadron matrix element (5) can be written in compact
form in the Heisenberg representation. We have

X
n;i;j

Z
ðd4�Þnhp2j:c ð�iÞCnð�i; �j; x; yÞ �c ð�jÞ:jp1i

þ ð“N > 2 normal-ordered operators”Þ
� hp2j:c ðxÞ �c ðyÞ:jp1iHC ; (6)

or, comparing Eq. (5) with Eq. (6), we conclude that

hp2jTc ðxÞ �c ðyÞSjp1iC ¼ hp2j:c ðxÞ �c ðyÞ:jp1iHC : (7)

In turn, given that we consider only the connected
matrix elements, the normal-ordered operators in the
Heisenberg representation can be replaced by the time-
ordered operators

hp2j:c ðxÞ �c ðyÞ:jp1iHC ¼ hp2jTc ðxÞ �c ðyÞjp1iHC : (8)

Let us emphasize that Eqs. (7) and (8) are our principal
observations, to which we would like to attract attention of
the reader.

III. THE FACTORIZED DVCS AMPLITUDE

Now we concentrate on the DVCS amplitude factorized
into the hard and the soft parts. Before the factorization is
carried out, the DVCS amplitude in the interaction picture
can be expressed as

A�� ¼ e2
Z

d�d�e�iq��þiq0��hp2jTJem� ð�ÞJem� ð�ÞSjp1iC;

where Jem� is the electromagnetic current and the S matrix

involves all possible interactions. Expanding the S matrix
in power of the coupling constant (we do not need yet to
specify the Lagrangians we are working with) and making
use of theWick theorem, we obtain the standard expression
for the amplitude

A ) hp2j: �c ð�Þ��Sð�� �Þ��c ð�Þ:jp1iC þ � � � ;
where the ellipsis denotes other possible combinations of
the normal-ordered operators including the cross terms. We
here underlined the combination to stress that it will form
the hard part of the amplitude. Notice that the combina-
tions with N > 2 normal-ordered operators are not the
issues in the present paper.
The factorization of the amplitude in the interaction

representation consists in the separation of the hard part
(underlined) from the soft part (which will be expressed in
what follows in terms of the GPDs):

�ðx; �Þ ¼
Z

d4k�ðx� k � nÞd4zeiðk��=2Þ�z

� hp2j~T �c ð0Þc ðzÞS1;�1jp1iC; (9)

where ~T suggests that we have to hold only two fermion
operators as the normal-ordered one. The spinors should be
understood as the operators with the free Dirac indices. As
has been mentioned above, the Heisenberg representation
allows us to rewrite the right-hand side of Eq. (9) in the
most compact form as

�ðx; �Þ ¼
Z

d4k�ðx� k � nÞd4zeiðk��=2Þ�z

� hp2j: �c ð0Þc ðzÞ:jp1iHC : (10)
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Given that we are again interested in the connected matrix
elements only, we may write the time-ordered operators
instead of the normal-ordered operators in the Heisenberg
representation, i.e.,

�ðx; �Þ ¼
Z

d4k�ðx� k � nÞd4zeiðk��=2Þ�z

� hp2jT �c ð0Þc ðzÞjp1iHC : (11)

Alternatively, using the light-cone notations, one has

�ðx; �Þ ¼
Z

dk�d2kT�ðxPþ; k�;kT ;�Þ: (12)

These three representations, Eqs. (10)–(12), are equivalent.
Recall that the function� possesses the free Dirac indices.
If we now project the GPDs (10)–(12) to the �þ matrix, we
shall obtain the various twist-2 generalized parton distri-
butions, depending on the hadron target:

�½�þ� ¼def tr½�þ�� ) fH1;H;E; . . .g: (13)

We can thus conclude that, since we deal only with the
connected matrix elements, the time ordering and/or the
normal ordering occur in the GPDs of any kind in an
equivalent way. This is one of our main observations.

Let us now focus on Eq. (11). It is well known that the
time-ordered combination of spinors can be expressed
through their commutator and anticommutator:

�ðxÞ ¼ �½...�ðxÞ þ�f...gðxÞ; (14)

where

�½...�ðxÞ ¼ 1

2

Z
d4k�ðx� k � nÞd4zeiðk��=2Þ�z

� hp2j½ �c ð0Þ; c ðzÞ�jp1iHC (15)

and

�f...gðxÞ ¼ 1

2

Z
d4k�ðx� k � nÞd4zeiðk��=2Þ�z � "ðz0Þ

� hp2jf �c ð0Þ; c ðzÞgjp1iHC : (16)

We would like to emphasize that the presence of "ðz0Þ in
Eq. (16) leads to the absence of any sðuÞ-channel cuts in the
anticommutator contribution, while the commutator con-
tribution can be related to the sðuÞ-channel cuts. Indeed,
consider the first term of the anticommutator contribution
[see Eq. (16)]:

1

2

Z 1

�1
d4z"ðz0Þeiðk��=2Þ�zhp2j �c ð0Þc ðzÞjp1iHC : (17)

Inserting of the full set and making use of the translation
invariance, one presents this expression in the following
form:

ZX
X

i

�
P

1

k0 � P0 þ PX
0

�ð3Þð ~k� ~Pþ ~PXÞ

� hp2j �c ð0ÞjPXiHC hPXjc ð0Þjp1iHC : (18)

One can see that the four-dimensional � function, needed
for the appearance of the cut in the sðuÞ channel, is absent.
A similar result is valid for the second term of Eq. (16).
It is obvious that if the anticommutator were vanishing

for some reason (see, e.g., [1,2]), it would be permitted to
replace the time ordering by the ordinary product of
operators. That is to say, the time ordering gets illusory.
However, we here present an alternative approach

to show that the contribution of the anticommutator,

�f...gðxÞ, does not vanish in the case of factorization in
the t channel, using the collinear kinematics (see below),
where the Mandelstam variable t is small compared to s.
One of our main evidences is that the contribution of the
anticommutator matrix element is necessary to obey the
model-independent polynomiality condition for the GPDs,
which arises from the requirement of the Lorentz covari-
ance of the corresponding matrix element. We will dem-
onstrate this by taking as an example the box diagram
within a toy model which was very useful to the introduc-
tion of GPDs [5].

IV. A TOY MODEL FOR THE BOX DIAGRAM

Consider first the box diagram contribution to the DVCS
amplitude:

��ðqÞ þ Aðp1Þ ! �ðq0Þ þ Aðp2Þ (19)

in the perturbation theory. The box diagram is the most
illustrative object to reveal the main features of the facto-
rization approach involving the GPDs; see [5]. Because
the factorization procedure is extensively described in the
literature, we will skip the details of this procedure. We
begin with the definition of the light-cone kinematics,
which we will use in what follows:

n2 ¼ p2 ¼ 0; p �n¼ 1; gT�� ¼ g���p�n��p�n�;

p2 ¼ ð1��Þpþð1þ�Þ �M2

2
nþ�T=2;

p1 ¼ ð1þ�Þpþð1��Þ �M2

2
n��T=2; q0 ¼P:q0n;

�Q¼ ðqþq0Þ=2; P¼ ðp1þp2Þ=2; �¼ p2�p1;

P2 ¼ �M2 ¼�2
T � t

4�2
; �2 ¼ t: (20)

Without loss of generality, we may use the collinear kine-
matics which corresponds to the case when �T 	 0. We
now approach the factorized amplitude in the perturbation
theory, so that we can write in the twist-2 level
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A�� ¼
Z 1

�1
dx tr½��SðxPþ �QÞ���

��

�
Z

d4k�ðx� k � nÞ�½�þ�ðkÞ þ “crossed:” (21)

We identify the initial and final states in the corresponding
matrix elements with the electron and quark states. In this
case, the soft part of this amplitude takes the following
form (in the Feynman gauge) (see Fig. 1):

�½�þ�ðx; �Þ ¼
Z
ðd4kÞ�ðx� k � nÞ�½�þ�ðkÞ

¼g
2

ig2
Z
ðd4kÞ�ðx� k � nÞDðk� PÞ

� ½ �uðp2Þ��Sðkþ�=2Þ
� �þSðk� �=2Þ��uðp1Þ�: (22)

Making use of Eq. (20), we obtain that

ðk��=2Þ2 ¼ 2k�pþðxþ �Þ � ðxþ �Þ� �M2 �k2
T;

ðkþ�=2Þ2 ¼ 2k�pþðx� �Þ þ ðxþ �Þ� �M2 �k2
T:

(23)

For the parton subprocess, we also introduce the corre-
sponding Mandelstam variables:

ŝ ¼ ðkþ PÞ2 ¼ 2k�pþðxþ 1Þ þ ðxþ 1Þ �M2 � k2
T;

û ¼ ðk� PÞ2 ¼ 2k�pþðx� 1Þ þ ð1� xÞ �M2 � k2
T:

(24)

Notice that within the collinear kinematics, �M 	ffiffiffiffiffiffi�t
p

=ð2�Þ, and, therefore, it can be discarded with respect
to the large pþ. At the same time, keeping the terms which
are proportional to t will never allow the poles to jump
from the upper plane to the lower one.

For the sake of simplicity, we extract the following
structure integral:

�½�þ�ðx; �Þ ¼ �uðp2ÞI ½�þ�ðx; �Þuðp1Þ; (25)

where

I ½�þ�ðx; �Þ ¼def
Z

d�ðkTÞ
Z

dk�
	þðk;�Þ
D1D2D3

��������kþ¼xPþ
(26)

with

	þ ¼ ��ð6kþ 6�=2Þ�þð6k� 6�=2Þ�� 	 �k2
T�

þ;

D1;3 ¼ 2k�Pþðx
 �Þ � k2
T þ i
;

D2 ¼ 2k�Pþðx� 1Þ � k2
T þ i
:

(27)

We introduced the effective integration measure d�ðkTÞ in
Eq. (26) in order to ensure the convergence of the corre-
sponding integration. Let us emphasize that this modifica-
tion of the measure will not affect the results of our study.
Indeed, our reasoning is also valid for the GPDs in the toy
scalar model, considered, e.g., in Refs. [5,6], because the
numerator 	þðk;�Þ contains only k2

T in the collinear
kinematics.
Let us first carry out the integration over k� in (26) in the

complex plane. To this end, we will analyze the analytical
properties on the integrand, namely, the position of the
poles in the complex plane of the variable k�. We have
(cf. [7])

k�1 ¼ � k2
T

2Pþð�� xÞ þ i
; k�2 ¼ � k2
T

2Pþð1� xÞ þ i
;

k�3 ¼ � k2
T

2Pþð�þ xÞ � i
; (28)

for 0< x< �, and

k�2 ¼ � k2
T

2Pþð1� xÞ þ i
; k�1 ¼ k2
T

2Pþðx� �Þ � i
;

k�3 ¼ k2
T

2Pþðxþ �Þ � i
; (29)

for x > � > 0. For the negative fraction x, especially for
the interval�� < x < 0, the poles are situated similarly to
the case of 0< x< �; while for the interval x <�� all
poles lie in the same semiplane, and, therefore, this region
of the fraction does not contribute. In (28) and (29), k�1;3
correspond to the quark poles while k�2 to the gluon pole.
Thus, integrating over k� in its complex plane, we

obtain

I ½�þ�ðx; �Þ ¼ �þ Z
ðdk2

TÞ
�2ðk2

TÞ
k2
T þ�2

Hðx; �Þ; (30)

where

FIG. 1. GPDs within a toy model.
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Hðx; �Þ ¼ �ð�� < x < �Þ
�

�� x

2�ð1� �Þ �
1� x

1� �2

�

� �ð� < x < 1Þ 1� x

1� �2
: (31)

We here introduce the effective UV and IR regularizations
following Ref. [6]. Equations (31) can be split into the
contributions of the quark and gluon poles separately:

H½...�ðx; �Þ ¼ ��ð�� < x < 1Þ 1� x

1� �2
;

Hf...gðx; �Þ ¼ �ð�� < x < �Þ �� x

2�ð1� �Þ ;
(32)

where the ‘‘anticommutator part’’ of the GPDs, Hf...gðx; �Þ,
is related to the quark pole contributions and the ‘‘commu-

tator part,’’ H½...�ðx; �Þ to the gluon pole contribution.
Indeed, consider the commutator contribution written in
the following form [see (10)–(12)]:

H½...�ðx; �Þ ¼
Z

d4k�ðx� k � nÞA½...�ðkÞ;

A½...�ðkÞ ¼ 1

2

Z
d4zeiðk��=2Þ�zhp2j½ �c ð0Þ�þ; c ðzÞ�jp1iHC :

(33)

As before, we identify the initial and final states in Eq. (33)
with the electrons and quarks. Hence, we insert in Eq. (33)
the full set of the intermediate states

P
XjPXiHHhPXj ¼ 1

and obtain

A½...�ðkÞ ¼ 1

2

ZX
X

�ð4Þðk� Pþ PXÞ

� hp2j �c ð0Þ�þjPXiHhPXjc ð0Þjp1iHC : (34)

In order to be able to make use of the perturbation theory,
we transform to the interaction representation and keep the
terms up to the g2 order:

A½...�ðkÞ ¼ 1

2

ZX
X

�ð4Þðk� Pþ PXÞhp2jTð �c ð0Þ�þSÞjPXi

� hPXjTðc ð0ÞSÞjp1iC
)g
2PT

�ððP� kÞ2Þ �uðp2Þ� � "�Sðkþ �=2Þ�þ

� Sðk� �=2Þ� � "uðp1Þ; (35)

where we have used the one-particle states jp1i ¼
bþðp1Þj0i and hp2j ¼ h0jb�ðp2Þ and we have chosen the
one-boson (photon and gluon) state as the intermediate
state. Therefore, we obtain

H½...�ðx;�Þ ¼ 1

2

Z
dk2

Tdk
��ð2k�Pþðx� 1Þ �k2

TÞ �uðp2Þ
�� � "�Sðkþ�=2Þ�þSðk��=2Þ� � "uðp1Þ;

where we assume that kþ ¼ xPþ. This expression can be
rewritten in the Heisenberg representation:

H½...�ðx; �Þ ¼ 1

2

Z
dk2

Tdk
��ð2k�Pþðx� 1Þ � k2

TÞ
� hp2j �c ð0Þ�þjP� kiHhP� kjc ð0Þjp1iHC :

(36)

One can easily see that this expression is nothing else but
the cut of the amplitude (25) in the photon and gluon
propagator. To say the same thing in a different way, this
contribution comes from the diagrams where the photon
and gluon propagator is replaced by its imaginary part (that
is to say, it yields the gluon pole contribution). In the same
way, we can show that the anticommutator contribution is
given by the quark pole contribution or by picking up the
cut in the quark propagator with the momentum kþ �=2.

V. POLYNOMIALITYAND POSITIVITY FOR GPDS

We are now in a position to address the polynomiality
condition for (31). To this end, we calculate the corre-
sponding moments of (31) by the straightforward integra-
tion of (31) weighted by x2n and x2nþ1. We have

Z 1

�1
dxx2nHðx; �Þ ¼ � 2ð1� �2nþ2Þ

ð2nþ 1Þð2nþ 2Þð1� �2Þ
¼ c0 þ c2�

2 þ � � � þ c2n�
2n;

Z 1

�1
dxx2nþ1Hðx; �Þ ¼ � 2ð1� �2nþ2Þ

ð2nþ 2Þð2nþ 3Þð1� �2Þ
¼ d0 þ d2�

2 þ � � � þ d2n�
2n: (37)

Let us stress that the box diagram itself cannot ensure the
so-called D-term contribution which describes the reso-
nance exchange diagram (see, e.g., Refs. [6,8]). We will
therefore treat, for a moment, the polynomiality of the
GPDs as the expression of the corresponding moments
through the finite series with only even orders of �; see
(37). By making use of the splitting (32), we can verify the
polynomiality for each of the commutator and anticommu-
tator contributions. We have the following:

Z 1

�1
dxxnH½...�ðx; �Þ ¼ c�1

1� �
þ Xn

k¼0

ak�
k; (38)

Z 1

�1
dxxnHf...gðx; �Þ ¼ � c�1

1� �
þ Xn

k¼0

bk�
k; (39)

where a2k�1 ¼ �b2k�1. One can see that neither the com-
mutator contribution nor the anticommutator contribution
obeys the polynomiality separately. In other words, we have
the polynomiality only after summation of these two terms.
We conclude, therefore, that the anticommutator contribu-
tion is necessary to satisfy the model-independent polyno-
miality condition and, therefore, cannot be discarded by
default. This is our principal result.
Now let us present the scheme for how the new contri-

bution arising from the Hf...g term, Eq. (32), affects the
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positivity constraint, Ref. [9]. The full and comprehensive
analysis will be presented in the forthcoming paper [4].
The structure of the photon and gluon and the quark pole
contributions in the factorized box diagram amplitude,
where the soft part has been calculated perturbatively,
helps us to write down the Cauchy-Bunyakovsky-
Schwarz inequality. We have

Z
d4k�ðx�k�nÞ�ððP�kÞ2Þ
�j�hP�kjcþð0Þjp2iHþhP�kjcþð0Þjp1iHj2

þ
Z
d4k�ðx�k�nÞ�ððkþ�=2Þ2Þ

�
���������hkþ

�

2
;p1jc y

þð0Þjp2iHþhkþ�

2
jc y

þð0Þj0iH
��������

2�0:

Here, the light-cone components of the fermion fields are
given by c� ¼ 1=2�
��c . The characteristic equation
of Eq. (40) takes the following form: �2Aþ �Bþ C � 0,
where (using the crossing where needed)

A ¼
Z

d4k�ðx� k � nÞ�ððP� kÞ2Þ
� hp2jc y

þð0ÞjP� kihP� kjcþð0Þjp2iH

þ
Z

d4k�ðx� k � nÞ�ððkþ �=2Þ2Þ

� hp2;�p1jcþð0Þ
��������kþ

�

2

��
kþ �

2

��������
� c y

þð0Þj�p1; p2iH; (40)

B ¼
Z

d4k�ðx� k � nÞ�ððP� kÞ2Þ
� hp2jc y

þð0ÞjP� kihP� kjcþð0Þjp1iH

þ
Z

d4k�ðx� k � nÞ�ððkþ�=2Þ2Þ

� hp2;�p1jcþð0Þ
��������kþ

�

2

��
kþ�

2

��������
� c y

þð0Þj0iH þ ðp1 $ p2Þ; (41)

and

C ¼
Z

d4k�ðx� k � nÞ�ððP� kÞ2Þ
� hp1jc y

þð0ÞjP� kihP� kjcþð0Þjp1iH

þ
Z

d4k�ðx� k � nÞ�ððkþ�=2Þ2Þ

� h0jcþð0Þ
��������kþ�

2

��
kþ�

2

��������c y
þð0Þj0iH: (42)

We now see that the first and the second terms of Eq. (41)
produce the ‘‘commutator’’ and ‘‘anticommutator’’ GPDs,
respectively, while the first and the second terms of
Eqs. (40) and (42) correspond to the forward distributions
and the vacuum expectations (the quark condensate),
respectively. To satisfy the above-mentioned characteristic
equation we have to demand that D ¼ B2 � 4AC � 0,
which is equivalent to the following inequality [the corre-
sponding normalization of qðxÞ is implied]:

½H½...�
SðAÞðx; �Þ þHf...g

SðAÞðx; �Þ�2
� ½qðx2Þ þDðx2Þ�½qðx1Þ þ Cðx1Þ�; (43)

where we introduced the symmetrized and antisymme-
trized in x $ �x combinations of the corresponding
GPDs and performed the rescaling of the fractions; see
[9]. After the summation over the intermediate states, the
functionsDðxÞ andCðxÞ [Eq. (43)] take the following form:

DðxÞ ¼
Z

d4k�ðx� k � nÞd4zeiðk��=2Þ�z

� hp2; p1jcþðzÞc y
þð0Þjp2; p1iH;

CðxÞ ¼
Z

d4k�ðx� k � nÞd4zeiðk��=2Þ�z

� h0jcþðzÞc y
þð0Þj0iH:

(44)

VI. CONCLUSIONS

In conclusion, we have found that, in the collinear
kinematics and in the factorization regime with t 	 0,
the matrix element of the fermion anticommutator does
not vanish. We have demonstrated, moreover, that the
existence of this contribution is dictated by the polyno-
miality condition for the GPDs. Furthermore, we have
obtained a new possible constraint for the GPDs wherein
the new contributions from the forward distribution and the
quark condensate are included.
Let us also emphasize that the model we have used in

our analysis do not assume the existence of any semi-
disconnected graphs due to the absence of the two-hadron
vertices. Moreover, being taken into account in another
framework (e.g., with the resonance exchange in the
‘‘t’’channel or with theD term included in the correspond-
ing GPDs), they will not affect our conclusions but rather
extend and generalized them.
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