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Dipartimento di Fisica dell’Università di Pisa and INFN, Sezione di Pisa, I-56127 Pisa, Italy
(Received 30 September 2013; published 21 November 2013)

We investigate the nature of the finite-temperature chiral transition in QCD with two light flavors, in

the case of an effective suppression of the Uð1ÞA symmetry breaking induced by the axial anomaly, which

implies the symmetry breaking Uð2ÞL � Uð2ÞR ! Uð2ÞV , instead of SUð2ÞL � SUð2ÞR ! SUð2ÞV . For this
purpose, we perform a high-order field-theoretical perturbative study of the renormalization-group flow of

the corresponding three-dimensional multiparameter Landau-Ginzburg-Wilson �4 theory with the same

symmetry-breaking pattern. We confirm the existence of a stable fixed point and determine its attraction

domain in the space of the bare quartic parameters. Therefore, the chiral QCD transition might be

continuous also if the Uð1ÞA symmetry is effectively restored at Tc. However, the corresponding

universality class differs from the O(4) vector universality class which would describe a continuous

transition in the presence of a substantial Uð1ÞA symmetry breaking at Tc. We estimate the critical

exponents of the Uð2ÞL � Uð2ÞR ! Uð2ÞV universality class by computing and analyzing the correspond-

ing perturbative expansions. These results are important to discriminate among the different scenarios for

the scaling behavior of QCD with two light flavors close to the chiral transition.
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I. INTRODUCTION

At finite temperature (T) nuclear matter shows two
different phases: a low-T hadronic phase, in which chiral
symmetry is broken, and a high-T phase, in which chiral
symmetry is restored and quarks and gluons are unbounded
[1–6]. Since the u and d quarks are very light, a great
amount of work has been devoted to the study of QCDwith
Nf light flavors, Nf ¼ 2 being the physically interesting

case. In this limit the QCD Lagrangian is invariant under
UðNfÞL and UðNfÞR transformations. Since

UðNÞL;R ffi Uð1ÞL;R � ½SUðNÞ=ZðNÞ�L;R; (1)

and the group Uð1ÞL � Uð1ÞR is isomorphic to the group
Uð1ÞV � Uð1ÞA of vector and axialUð1Þ transformations, the
classical symmetry group of the theory can be written as

Uð1ÞV � Uð1ÞA � ½SUðNfÞ=ZðNfÞ�L � ½SUðNfÞ=ZðNfÞ�R:
(2)

The vector subgroup Uð1ÞV corresponds to the quark-
number conservation and it is not expected to play any
role at the transition. The Uð1ÞA symmetry is broken to
ZðNfÞA by quantum fluctuations, since the divergence of

the corresponding current presents a quantum anomaly
proportional to the topological charge density. This reduces
the relevant symmetry to [5]

½SUðNfÞL � SUðNfÞR�=ZðNfÞV: (3)

At zero temperature, the hadronic spectrum shows that this
symmetry is spontaneously broken to SUðNfÞV withN2

f � 1

Goldstone particles (pions and kaons) and a nonzero quark
condensate h �c c i. The large mass difference between the
pseudoscalar flavor singlet and nonsinglet mesons, such as
� and �0, which have the same quark content, reflects the
quantum breaking of the Uð1ÞA symmetry.
At finite temperature, a phase transition occurs at a critical

temperatureTc,Tc ’ 160 MeV forNf ¼ 2. AboveTc, chiral

symmetry is restored and the quark condensate vanishes.
Therefore, the symmetry-breaking pattern at the chiral
transition is expected to be

½SUðNfÞL � SUðNfÞR�=ZðNfÞV ! SUðNfÞV=ZðNfÞV; (4)

with a matrix-like order parameter given by the expectation
value of the quark bilinear�ij � �c L;ic R;j. In the case of two

flavors, i.e. Nf ¼ 2, the symmetry-breaking pattern (4) is

equivalent to that of the O(4) vector model, i.e., to Oð4Þ !
Oð3Þ [7–15]. Thus, in the case of a continuous transition, the
critical behavior of the model with two massless flavors is
expected to belong to the three-dimensional (3D) O(4) uni-
versality class.
The symmetry-breaking pattern at the transition signifi-

cantly changes if the Uð1ÞA symmetry is also restored. The
anomaly effects breaking the Uð1ÞA symmetry are related
to the topological properties of QCD. Semiclassical instan-
ton calculations predict a substantial suppression of the
instanton density for T � Tc, where the dilute instanton
gas (DIG) model is expected to provide a reliable approxi-
mation [16]. For example, in QCD with two light flavors
of mass m, the topological susceptibility � is expected to
decay asymptotically as [16]
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��m2T��; � ¼ 11

3
Nc � 2

3
Nf � 4 (5)

where Nc is the number of colors. For Nc ¼ 3 and Nf ¼ 2

we have � ¼ 17=3. Although � vanishes in the massless
limit, the Dirac zero modes associated with the instantons
induce a residual contribution to the Uð1ÞA symmetry
breaking, giving rise to a difference between the suscepti-
bilities of the so-called � and � channels at high T [17,18],
which behaves as �� � �� � T�� in the chiral massless
limit.

The breaking of the Uð1ÞA symmetry at finite T, and its
role at the chiral transition, has been much investigated
[17–34]. Monte Carlo (MC) simulations of lattice QCD
[17–25] find a substantial suppression of the Uð1ÞA anom-
aly effects at large T, as predicted by the DIGmodel. These
results are supported by numerical investigations of pure
SUðNÞ gauge theories, which show that the topological
susceptibility is rapidly suppressed above the deconfine-
ment transition (see, e.g., Ref. [35] and references therein)
and that the DIG regime sets in quite early for T * Tc [36].
There are also some claims of an exact restoration of the
Uð1ÞA symmetry at the chiral transition [20,21].

It is thus worth investigating the nature of the finite-T
chiral transition in the case where the Uð1ÞA symmetry is
effectively restored, and the relevant symmetry-breaking
pattern is

½UðNfÞL � UðNfÞR�=Uð1ÞV ! UðNfÞV=Uð1ÞV; (6)

instead of that reported in Eq. (4).
Up to now we have discussed the case of the model with

Nf massless flavors. However, in nature quarks have a

finite mass. Since u and d quarks are very light, one expects
that the correct physical behavior can be obtained by
considering their masses as a perturbation in the theory
with Nf ¼ 2. According to renormalization-group (RG)

theory, if the transition is continuous in the chiral massless
limit, then an analytic crossover is expected for nonzero
values of the quark masses mf because the quark masses

act as external fields coupled to the order parameter. Still,
the presence of a close continuous transition gives rise to
scaling relations depending on the fermion mass mf ¼ m

and on the reduced temperature t � ðT � TcÞ=Tc. For
instance, the fermion condensate is expected to scale as

h �c c i / m1=�Eðm�1=ð�þ�ÞtÞ; (7)

where �, � and � are appropriate critical exponents deter-
mined by the universality class of the transition (see, e.g.,
Refs. [7,37–39]), and EðxÞ is a universal scaling function
(apart from trivial normalizations). On the other hand, a
first-order transition is generally robust against perturba-
tions. Therefore, if the massless theory undergoes a first-
order transition, we expect a first-order transition also for
small nonvanishing values of the masses, up to an endpoint
m�, around which a 3D Ising critical behavior is expected.

For larger fermion masses the phase transition disappears
and we have an analytic crossover as well.
To make contact with experiments, it is also necessary to

take into account the massive strange quark s, whose mass
(ms 	 100 MeV) is comparable with Tc. Since the transi-
tion is expected to be of first order for Nf ¼ 3 light

degenerate quarks, we also expect a first-order transition
when increasing ms (keeping mu ¼ md ¼ 0), at least for
sufficiently small values of ms. For larger values of ms

there are two possibilities, depending on the nature of the
transition for Nf ¼ 2 degenerate quarks, corresponding to

the limit ms ! 1. In one case we may have a first-order
transition line which extends for all values of ms.
Alternatively, the first-order transition line extends up to
a finite m�

s ; then the transition becomes continuous for
ms > m�

s and, in particular, in the limit ms ! 1. m�
s is a

tricritical point, separating the first-order transition line
from the critical line, which implies that the critical
behavior for ms ¼ m�

s should be described by mean-field
theory, with logarithmic corrections.
The nature of the chiral transition has been extensively

studied. In spite of several MC studies of different lattice
QCD formulations with two light quarks [40–50], the
nature of the chiral transition is still controversial. Some
MC results favor a continuous transition but are not suffi-
ciently accurate to clearly identify the corresponding
universality class. Other MC studies report instead evi-
dence of a first-order transition. For quark masses close
to their physical values, the results of MC simulations
[51–58] support a crossover scenario: the low-T and
high-T regimes are not separated by a phase transition
but rather by a crossover region in which the thermody-
namic quantities change rapidly, but continuously, in a
relatively narrow temperature interval.
The universal features of the chiral transition can be

investigated within the RG framework [37,38]. They are
determined by a few global properties, such as the space
dimensionality d (d ¼ 3 for the finite-T QCD transition),
the nature and the symmetry of the order parameter
(a complex matrix related to the bilinear quark operators
�c Lic Rj), and the symmetry-breaking pattern [which is

given by Eq. (4) or (6) depending on the role played by
the Uð1ÞA anomaly]. For this purpose one considers the RG
flow in the space of Lagrangians which satisfy the above-
reported general properties and determines the fixed points
(FPs) of the flow. In the absence of a stable FP, only first-
order transitions between the disordered and ordered
phases are possible. On the other hand, if a stable FP exists,
the transition may be continuous, and the usual critical
exponents �, �, etc. are related to the eigenvalues of the
linearized flow around the FP. However, it is important to
stress that, even in the presence of a stable FP, some
systems may still undergo a first-order transition. From
the RG point of view, this occurs in systems which are
not in the attraction domain of the stable FP.
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To determine the RG behavior of the model, one can use
standard perturbative field-theoretical approaches [7,39].
The first RG study of the effective model with symmetry-
breaking pattern (6) was presented by Pisarski andWilczek
[5], who performed a one-loop calculation within the 	
expansion, 	 ¼ 4� d, finding no stable FP close to d ¼ 4.
This result suggests a first-order transition for the model
with symmetry-breaking pattern (6). However, subsequent
analyses of the RG flow directly in three dimensions, based
on high-order perturbative expansions (up to six loops),
have provided the evidence of a stable 3D FP [59–61].
Thus, the transition may also be continuous if the Uð1ÞA
symmetry is effectively restored at Tc. However, its uni-
versality class differs from the 3D O(4) universality class.

Table I summarizes the results of these RG analyses,
reporting the possible transitions for various values of Nf,

and for the two symmetry breaking patterns (4) and (6).
When a continuous transition is possible, the correspond-
ing universality class is reported.

In this paper we extend previous field-theoretical studies
[59–61] of the 3D Uð2ÞL � Uð2ÞR ! Uð2ÞV universality
class. Our purpose is to provide accurate predictions for
the critical features of this universality class, for which we
know much less compared with the OðNÞ vector universal-
ity classes. We study the RG flow of the multiparameter�4

theory with the same symmetry breaking. For this purpose,
we consider two different 3D perturbative schemes:
the massive zero-momentum (MZM) scheme [7,39,62]

and the 3D minimal subtraction scheme MS without 	
expansion [63,64].

The resummation of the perturbative expansions of the
� functions (known to six and five loops in the MZM and

MS schemes, respectively) allows us to compute the RG
trajectories starting from the unstable Gaussian FP of the
free theory. They approach a stable FP in both schemes for
an extended region of bare parameters. Moreover, we
estimate the critical exponents by computing the expan-
sions of appropriate RG functions and evaluating them at
the stable FP.

The paper is organized as follows. In Sec. II we review
the universality and RG arguments which we use to inves-
tigate the finite-T transition in QCD with Nf ¼ 2 light

flavors. In particular, we define the effective theory that is
relevant for the model with symmetry-breaking pattern (6).
In Sec. III we study the RG flow in the space of the
renormalized couplings; in particular, we determine the
RG trajectories that start at the unstable Gaussian FP of
the free quadratic theory and flow towards the stable FP
controlling the critical behavior at the transition. Moreover,
we determine the critical exponents by evaluating appro-
priate RG functions at the stable FP. Finally, in Sec. IV we
draw our conclusions. In Appendix Awe report the pertur-
bative expansions used in the paper to determine the RG
flow and the critical exponents.

II. RG ANALYSIS OF THE CHIRALTRANSITION

The nature of the finite-T chiral transition in QCD
can be investigated using universality and RG arguments
[5,59–61,65]. In this section we review these arguments,
focusing on the finite-T transition in QCD with two light
flavors.
Let us first assume that the phase transition at Tc is

continuous for vanishing quark masses. In this case the
length scale of the critical modes diverges approaching
Tc, becoming eventually much larger than 1=Tc, which is
the size of the Euclidean ‘‘temporal’’ dimension at Tc.
Therefore, the asymptotic critical behavior is associated
with a 3D universality class with the same symmetry
breaking pattern, and the order parameter is an N 
 N
complex-matrix field �ij, related to the bilinear quark

operators �c Lic Rj. Nonvanishing quark masses can be

accounted for by an external field coupled to the order
parameter.
To determine the critical behavior we consider the most

general Landau-Ginzburg-Wilson (LGW) �4 theory com-
patible with the given symmetry breaking. If Eq. (6) holds,
the theory is given by

LUðNÞ ¼ Trð@
�yÞð@
�Þ þ rTr�y�

þ u0
4
ðTr�y�Þ2 þ v0

4
Trð�y�Þ2; (8)

where the field �ij is a generic N 
 N complex matrix.

The symmetry is UðNÞL � UðNÞR, which breaks to UðNÞV
if v0 > 0, thus providing the LGW theory relevant for
QCDwith two light flavors. The reduction of the symmetry
to SUðNÞL � SUðNÞR for QCD, due to the axial anomaly,
can be achieved by adding additional quadratic and quartic
terms containing the determinant of the field � [61]. We
return to this point later.
The critical behavior at a continuous transition is con-

trolled by the FPs of the RG flow, which are determined
by the common zeros of the � functions associated with
the quartic parameters. To study the RG flow of the �4

theory (8), we consider two different perturbative schemes.
In the MZM scheme [7,39,62] one performs the pertur-

bative expansion directly in three dimensions, in the criti-
cal region of the disordered phase. The MZM perturbative

TABLE I. Summary of the RG predictions for the finite-T
QCD transition, as a function of the number Nf of light flavors.

We distinguish two cases, depending on whether the Uð1ÞA
symmetry is broken or effectively restored. When a continuous
transition is possible, we specify the corresponding 3D univer-
sality class by reporting its symmetry-breaking pattern.

Nf Uð1ÞA broken Uð1ÞA restored

1 Crossover or first order Oð2Þ ! Z2 or first order

2 Oð4Þ ! Oð3Þ
or first order

Uð2ÞL � Uð2ÞR ! Uð2ÞV
or first order

� 3 First order First order
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expansions of the � functions and of the critical exponents
have been computed to six loops, requiring the computa-
tion of approximately 1000 Feynman diagrams. The six-
loop series of the � functions were reported in Ref. [61];
here we also report those of the RG functions associated
with the critical exponents, in Appendix A 1.

In the 3DMS scheme one considers the massless critical
theory: one uses dimensional regularization and the modi-
fied minimal-subtraction prescription; thus, the RG func-
tions are obtained from the divergences appearing in the
perturbative expansion of the correlation functions [66].
In the standard 	-expansion scheme [67], the FPs, i.e., the
common zeros of the � functions, are determined pertur-
batively as expansions in powers of 	 � d� 4, while
exponents are obtained by expanding the corresponding
RG functions computed at the FP in powers of 	. Physical
results are then obtained by extrapolating the results to
d ¼ 3. This procedure assumes the existence of a FP for
	 ! 0, i.e., close to four dimensions. Therefore, it allows
one to determine only those three-dimensional FPs which
can be defined, by analytic continuation, close to four
dimensions. Other FPs, which do not have a four-
dimensional counterpart, cannot be detected. This problem

is overcome by the 3D MS scheme without 	 expansion

[63,64,68]. The RG functions �u;v and ��;t are the MS

functions. However, 	 � 4� d is no longer considered as
a small quantity, but it is set equal to its physical value
(	 ¼ 1 in our case) before computing the FPs. This pro-
vides a well-defined 3D perturbative scheme which allows
us to compute universal quantities, without the need for

expanding around d ¼ 4 [63,64]. In theMS scheme the RG
series of the � functions are known up to five loops [69];
here we also present the five-loop series of the RG
functions associated with the critical exponents. They are
reported in Appendix A 2.

The physically relevant results are obtained by resum-
ming the perturbative expansions (which are divergent but
Borel summable), using methods that take into account
their large-order behavior, which is computed by semiclas-
sical (hence, intrinsically nonperturbative) instanton calcu-
lations [39,70,71]. For the model (8) the large-order
behavior is discussed in Refs. [61,68]. The method we use
is described in Refs. [39,71]. Resummations depend on two
parameters, which are optimized in the procedure [72].

III. RG PERTURBATIVE RESULTS FOR
THE 3D Uð2Þ � Uð2Þ THEORY

In this section we study the 3D RG flow of model (8) in
the case relevant for QCD with two light flavors, i.e. for
N ¼ 2 and v0 > 0. Figure 1 provides a sketch of the
locations of the stable and unstable FPs. The RG trajecto-
ries, starting from the unstable Gaussian FP (denoted by G
in Fig. 1) of the quadratic theory, flow toward a nontrivial
FP (denoted by S) for an extended region of quartic bare

parameters v0 and u0, which implies the stability of the FP.
We then determine the critical exponents at the stable FP.

A. RG trajectories toward the stable FP

We first consider the MZM scheme, where one expands
in powers of the zero-momentum renormalized quartic
couplings. The theory is renormalized by introducing a
set of zero-momentum conditions for the one-particle
irreducible two-point and four-point correlation functions
of the 2
 2 matrix-like field �ab:

�ð2Þ
a1a2;b1b2

ðpÞ ¼ �a1b1�a2b2Z
�1
� ½m2 þ p2 þOðp4Þ�; (9)

�ð4Þ
a1a2;b1b2;c1c2;d1d2

ð0Þ ¼ 2�Z�2
� m4�d 
 ðuUa1a2;b1b2;c1c2;d1d2

þ vVa1a2;b1b2;c1c2;d1d2Þ; (10)

where Z� is the renormalization constant of the order-

parameter field �, and U, V are appropriate form factors
defined so that u / u0=m and v / v0=m at the leading tree
order (more details are reported in Ref. [61], where the
couplings u, vwere denoted by �u, �v). The FPs of the theory
are given by the common zeros of the Callan-Symanzik �
functions

�uðu;vÞ¼m
@u

@m

�
�
�
�
�
�
�
�u0;v0

; �vðu;vÞ¼m
@v

@m

�
�
�
�
�
�
�
�u0;v0

: (11)

The resummation of the six-loop series of the � func-
tions, as outlined in Refs. [61,73], finds a FP (point S in
Fig. 1) at [60,74]

u� ¼ �3:4ð3Þ; v� ¼ 5:3ð3Þ; (12)

besides the unstableGaussian FP at u ¼ v ¼ 0 and theO(8)
FP along the v ¼ 0 axis; see Fig. 1. A FP is stable if all
eigenvalues of the corresponding stability matrix, �ij ¼
@�i=@gj (where g1;2 corresponds to u, v), have a positive

real part. The numerical analysis of the stability matrix at

u

zeros of 

zeros of β
βu

OG

v

S
v

FIG. 1 (color online). Zeros of the � functions �u and �v

associated with the quartic couplings of the Lagrangian (8) for
N ¼ 2. For v � 0 the � functions have three common zeros,
corresponding to three FPs: the Gaussian (G) and O(8) (O) FPs
along the v ¼ 0 axis are unstable, while the FP (S) with v > 0
and u < 0 is stable.
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the FP (12) favors its stability [59]. In the following we
provide more direct evidence of the stability of this FP,
showing that the RG trajectories in the space of the renor-
malized couplings flow towards this FP for an extended
region of bare parameters. Physically, the values u� and v�
at a stable FP are the two independent (RG invariant)
couplings which describe the zero-momentum behavior of
the quartic correlations in the critical region of the disor-
dered phase [7].

The existence of a stable FP is confirmed by the analysis

of the � functions in the 3DMS scheme. The renormalized
couplings are again defined by the irreducible four-point

correlation function, and the MS � functions are

�uðu;vÞ¼

@u

@


�
�
�
�
�
�
�
�u0;v0

; �vðu;vÞ¼

@v

@


�
�
�
�
�
�
�
�u0;v0

; (13)

where 
 is the energy scale of this massless scheme.

See Ref. [69] for more details. In the 3D MS scheme we
set 	 ¼ 4� d ¼ 1 and then resum the series using Borel
resummation techniques. The five-loop series of the �
functions are reported in Appendix A 2. Again, a nontrivial
common zero of the � functions is found at [74]

u� ¼ �0:55ð6Þ; v� ¼ 1:22ð9Þ; (14)

which is represented by the point S in Fig. 1. Note that the

renormalized couplings of the MZM and MS perturbative
schemes correspond to different quartic couplings; thus,
their FP values, cf. Eqs. (12) and (14), differ.

In order to check the stability of these FPs and determine
their attraction domain,we study theRGflow in the space of
the renormalized parameters. If u and v are the renormal-
ized couplings and u0, v0 the corresponding Lagrangian
couplings that satisfy u 	 u0=m andv 	 v0=m at tree level
(m is the zero-momentummass in theMZM scheme and the

renormalization energy scale 
 in the MS scheme), the
RG trajectories are determined by solving the differential
equations

��
du

d�
¼ �uðuð�Þ; vð�ÞÞ; ��

dv

d�
¼ �vðuð�Þ; vð�ÞÞ;

(15)

where � 2 ½0;1Þ, with the initial conditions

uð0Þ ¼ vð0Þ ¼ 0;
du

d�

�
�
�
�
�
�
�
��¼0

¼ s� u0
v0

;
dv

d�

�
�
�
�
�
�
�
��¼0

¼ 1;

(16)

where s parametrizes the different RG trajectories in terms
of the bare quartic parameters. Note that the initial condi-
tion dv=d� ¼ þ1 for v is required by the theory. Indeed,
systems with v0 < 0 are associated with transitions with a
different symmetry-breaking pattern, i.e.

UðNfÞL � UðNfÞR ! UðNf � 1ÞL � UðNf � 1ÞR: (17)

Since the stability of the �4 theory (8) requires [61]

u0 þ v0 > 0; u0 þ 1

2
v0 > 0; (18)

physical systems corresponding to the effective theory (8)
with v0 > 0 and s <�1=2 are expected to undergo a first-
order phase transition.
The RG trajectories for s >�1=2 are determined by

solving Eq. (15) after resumming the expansions of the �
functions. In Figs. 2 and 3 we report the RG flow for
several values of the ratio s, as obtained by a particular
choice of the approximants that are used to perform the
resummation of the perturbative � functions [39,71,72].
Different approximants show analogous qualitative behav-
iors when they are chosen in the optimal region, defined as
outlined in Refs. [39,71]. The RG trajectories in both
schemes are attracted by a FP for an extended region of
bare quartic parameters u0, v0, which implies that the FP is

stable. In the MS scheme, all trajectories with s * �0:5

−0.6 −0.4 −0.2 0.0 0.2
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

v

s=10
s=1
s=0.1
s=-0.01
s=-0.1
s=-0.3
s=-0.4
s=-0.49

stable FP

from 5-loop 3D MS

FIG. 3 (color online). RG flow in the renormalized coupling
space of the massless 3D MS scheme, for several values of the
ratio s � u0=v0 of the bare quartic parameters.

−4 −3 −2 −1 0 1
u

0

2

4

6

v

s=10
s=1
s=0.1
s=0.01
s=-0.01
s=-0.1
s=-0.2
s=-0.3
s=-0.4

stable FP

from 6-loop MZM

FIG. 2 (color online). The RG flow in the renormalized cou-
pling space of the MZM scheme, for several values of the ratio
s � u0=v0 of the bare quartic parameters.
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flow towards the FP given in Eq. (12), which is indeed the
stable FP of the model. In the MZM scheme, we find the
same as long as s * �0:4. The trajectory that corresponds
to s ¼ �0:4 runs away, into the region in which the
perturbative series can no longer be resummed (the closest
Borel singularity is on the positive real axis); hence, we are
not able to determine its large-� behavior. In any case, both
perturbative schemes show the presence of a stable FP.
Moreover, both schemes consistently find that the attrac-
tion domain of the bare quartic parameters corresponds to
s ¼ u0=v0 * �0:5.

Note that no stable FP is found close to d ¼ 4, in
agreement with the one-loop 	-expansion calculation of
Ref. [5]; see also Ref. [69]. However, the extension of this
result to the relevant d ¼ 3 dimension fails. This is not the
only physically interesting case in which 	-expansion cal-
culations fail to provide the correct physical picture in
three dimensions. For example, this also occurs for the
Ginzburg-Landau model of superconductors, in which a
complex scalar field couples to a gauge field: although
	-expansion calculations do not find a stable FP [75],
thus predicting first-order transitions, it is now well estab-
lished (see, e.g., Refs. [76,77]) that 3D systems described
by the Ginzburg-Landau model can also undergo a con-
tinuous transition—this implies the presence of a stable
FP in the 3D Ginzburg-Landau theory—in agreement with
experiments [78]. Other examples are provided by the
LGW �4 theories describing frustrated spin models with
noncollinear order [68] and the 3He superfluid transition
from the normal to the planar phase [79].

Finally, we also mention that the RG flow of the Uð2Þ �
Uð2Þ scalar theory has also been studied by methods based
on approximate solutions of functional RG equations
[80,81]. These studies have not found evidence of a stable
FP, but they are limited to approximations keeping only the
first terms of the derivative expansion of the effective
action.

B. The critical exponents of the
Uð2Þ � Uð2Þ �4 theory

We now compute the critical exponents by evaluating
the corresponding RG functions at the stable FP. In the
MZM scheme they are given by

��ðu; vÞ ¼
@ lnZ�

@ lnm
; �tðu; vÞ ¼ @ lnZt

@ lnm
; (19)

where Z� and Zt are the renormalization functions of the

field � and of the quadratic operator Tr�y�, respectively
[61]. The six-loop series are reported in Appendix A 1.

We have performed an analogous calculation in the MS
scheme. The perturbative five-loop series are reported in
Appendix A 2.

The critical exponents are obtained by evaluating the
resummed RG functions at the stable FP. In particular,

� ¼ ��ðu�; v�Þ; � ¼ ½2� �þ �tðu�; v�Þ��1: (20)

Resumming the perturbative series by using the conformal-
Borel method [39], we obtain

� ¼ 0:71ð7Þ; � ¼ 0:12ð1Þ ð6 loopMZMÞ; (21)

� ¼ 0:76ð10Þ; � ¼ 0:11ð6Þ ð5 loopMSÞ: (22)

The errors take into account the uncertainty on the location
of the FP, the dependence of the results on the resummation
parameters, and the stability of the estimates with respect
to the number of terms in the series [74].
Estimates (21) and (22) obtained in the two perturbative

schemes are fully consistent. This agreement provides a
nontrivial crosscheck of the accuracy of the analysis of the

MZM and 3D MS perturbative series: the resummation of
the perturbative expansions in two different schemes gives
consistent results for the universal quantities. This fact may
be hardly explained as an artefact of the resummation; it
should instead be considered as robust evidence of the
existence of a stable FP describing 3D continuous transi-
tions characterized by the symmetry-breaking pattern
Uð2Þ � Uð2Þ ! Uð2Þ.

IV. CONCLUSIONS

In this paper we report a detailed study of the RG flow
of the �4 model (8) for N ¼ 2, which is relevant for the
finite-T chiral transition of two-flavor QCD if the Uð1ÞA
symmetry is restored at the chiral transition. For this
purpose we consider two field-theoretical perturbative
schemes: the MZM scheme, defined in the disordered

massive phase, and the 3D MS scheme without 	 expan-
sion, which considers the massless critical theory.
Extending previous RG studies [59–61], we verify the
existence of a stable FP with v0 > 0, which is the relevant
domain for the symmetry-breaking pattern (6). We study
the RG flow in the space of the renormalized quartic
couplings, as obtained by the analysis of the perturbative
expansions of the � functions, computed to six and five

loops in the MZM and 3D MS schemes, respectively. In
both cases the RG trajectories starting from the unstable
Gaussian FP flow towards a nontrivial stable FP for an
extended region of the bare quartic parameters u0, v0, i.e.
for u0=v0 * �0:5. This implies that systems correspond-
ing to an effective Lagrangian with u0=v0 * �0:5 undergo
a continuous transition. We also estimate the correspond-
ing critical exponents, obtaining consistent results in the
two field-theoretical schemes considered, cf. Eqs. (21)
and (22). On the other hand, systems corresponding
to u0=v0 & �0:5 are expected to undergo a first-order
transition.
The existence of a stable FP with v > 0 implies that the

finite-T chiral transition of two-flavor QCD can be con-
tinuous also if theUð1ÞA symmetry is effectively restored at
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Tc. Although the critical behavior differs from that ex-
pected in the case of a substantial Uð1ÞA symmetry break-
ing around Tc, which is the 3D O(4) vector universality
class, we note that differences are small. For instance, the
critical exponents of the O(4) universality class [9,13],
� ¼ 0:749ð2Þ, � ¼ 0:0365ð10Þ, � ¼ ð5� �Þ=ð1þ �Þ 	
4:789ð6Þ, � ¼ �ð1þ �Þ=2 	 0:388ð1Þ, � ¼ �ð2� �Þ ¼
1:471ð4Þ, and  ¼ 2� 3� ¼ �0:247ð6Þ, are close to those
we have obtained for model (8). In the MZM scheme we
obtain �¼0:71ð7Þ, � ¼ 0:12ð1Þ, � ¼ 4:3ð1Þ, � ¼ 0:40ð4Þ,
� ¼ 1:3ð1Þ, and  ¼ 0:1ð2Þ. In the MS scheme we obtain
instead �¼0:76ð10Þ, �¼0:11ð6Þ, �¼4:4ð3Þ, �¼0:42ð6Þ,
� ¼ 1:4ð2Þ, and  ¼ �0:3ð3Þ. Thus, only very accurate
estimates of the critical exponents can distinguish the two
different critical behaviors.

We stress that the existence of a universality class does
not exclude that some systems with the same order pa-
rameter and symmetry-breaking pattern undergo a first-
order transition. This occurs when the system is outside
the attraction domain of the stable FP, i.e., when the system
at the transition is effectively described by the Lagrangian
(8) with quartic parameters u0 and v0 belonging to the
large region u0=v0 & �0:5. The nature (first order or
continuous) of the transition is nonuniversal since it de-
pends on the details of the model and not only on the global
features that characterize the universality class. For ex-
ample, the model considered in Ref. [82], which corre-
sponds to two-flavor lattice QED with the same symmetry
breakingUð2ÞL � Uð2ÞR ! Uð2ÞV , shows a first-order tran-
sition. This result cannot be extended to all transitions with
the same symmetry breaking because it is indeed possible
that this model corresponds to a runaway RG trajectory,
while the case relevant to QCD may belong to the attrac-
tion domain of the stable FP, thus undergoing a continuous
transition.

The results for model (8) are also of interest if chiral
symmetry is not exactly restored at Tc, but Uð1ÞA breaking
effects are small. In this case we can parametrize the
effective Lagrangian as

LSUð2Þ ¼ LUð2Þ þ w0ðdet�y þ det�Þ
þ x0

4
ðTr�y�Þðdet�y þ det�Þ

þ y0
4
½ðdet�yÞ2 þ ðdet�Þ2�; (23)

where we added all terms up to dimension four which
contain the determinant of the order parameter field and
leave a residual SUð2Þ � SUð2Þ symmetry. In the context of
two-flavor QCD, we may assume thatw0, x0, y0�g, where
g parametrizes the effective breaking of the Uð1ÞA symme-
try. In the T-g plane, the Uð2ÞL � Uð2ÞR transition point
becomes a multicritical point [61], as Lagrangian (23)
contains two quadratic terms. In Fig. 4 we show two
possible phase diagrams, depending on the nature of the
transition at g ¼ 0. In the first case (left panel of Fig. 4),

the transition is always continuous for g � 0 along the
critical line TcðgÞ. But if jgj is small, we may observe a
crossover behavior controlled by the Uð2Þ � Uð2Þ multi-
critical point at g ¼ 0: the free energy should behave as
F sing 	 t3�fðgt��Þ, where t / T � Tcðg ¼ 0Þ, � 	 0:7,

and � 	 1:3 [83]. In practice, if g is small, one might
observe two different behaviors depending on the distance
of T from the critical line TcðgÞ. For jT � TcðgÞj not too
small, the RG flow is influenced by the Uð2Þ � Uð2Þ multi-
critical point; hence, one would observe an effective criti-
cal behavior analogous to that for g ¼ 0. As T approaches
TcðgÞ, this crossover behavior disappears and the O(4)
behavior is eventually observed. In the other case, shown
in the right panel of Fig. 4, we expect first-order transitions
to occur also for small jgj, up to an endpoint g� where
mean-field behavior with logarithmic corrections should
be observed; then the continuous transition for larger
g > g� (note that g� does not need to be small) is expected
to belong to the O(4) universality class. The available
numerical MC results for QCD with two light flavors do
not yet allow us to distinguish between the above scenarios.
Finally, we would like to discuss the possible scenarios

for the finite-T transitions of the QCD-like theory with a
large numberNc of colors, widening the parameter space to
get further hints for the relevant Nc ¼ 3 case. We first note
that the universality arguments based on the global flavor
symmetries do not depend on the number of colors; thus,
they hold for any Nc > 3 (keeping Nf fixed) as well,

including Nc ! 1. At large Nc, keeping the number Nf

of flavors fixed, we expect a first-order transition corre-
sponding to the deconfinement transition of pure SUðNcÞ
gauge theories for a large number of colors, thus at [85,86]
Tc=

ffiffiffiffi

�
p ¼ 0:545ð2Þ þOðN�2

c Þ where � is the string ten-
sion. The presence of Nf ¼ 2 fermion flavors, which con-

tribute to Oð1=NcÞ according to standard large-Nc scaling
arguments [87], cannot smooth out this transition whose
latent heat is OðN2

cÞ [88–90]. This opens the road to other
possible scenarios with respect to the standard three-color
QCD. Indeed, the chiral symmetry of the fermions may
be restored at the same transition point, or we may have

gg
TT

O(4) O(4)U(2)xU(2)/U(2)

O(4)

1st order

O(4)

FIG. 4 (color online). Possible phase diagrams in the T-g plane
for the effective model with symmetry-breaking pattern (4). The
parameter g is proportional to the Uð1ÞA symmetry breaking;
hence, for g ¼ 0 we reobtain the model with symmetry-breaking
pattern (6). On the left panel, the multicritical transition at g ¼ 0
is continuous; on the right panel, it is of first order. Thick black
lines indicate first-order transitions. The endpoints of the first-
order transition lines correspond to mean-field transitions with
logarithmic corrections.
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another transition at a larger temperature [90], like the case
of QCD with adjoint fermions [91,92], where the decon-
finement and chiral transitions occur at different tempera-
tures. Moreover, since the Uð1ÞA anomaly is suppressed by
1=Nc in the large-Nc limit [93], theUð1ÞA symmetry break-
ing is further suppressed at large Nc, as also shown by
the behavior �� � �� � T��, where the exponent �� Nc,
cf. Eq. (5). Therefore, with increasing Nc, the effective
symmetry breaking at the chiral transition with two light
flavors should be better described by Uð2ÞL � Uð2ÞR !
Uð2ÞV , rather than SUð2ÞL � SUð2ÞR ! SUð2ÞV .
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APPENDIX: HIGH-ORDER PERTURBATIVE
SERIES OF THE Uð2Þ � Uð2Þ �4 THEORY

In this appendix we report the perturbative series used in
the paper to analyze the RG flow of the Uð2Þ � Uð2Þ �4

theory (8) and estimate the critical exponents, i.e. the six-
loop series of the MZM scheme and the five-loop series of

the 3D MS scheme.

1. The MZM series up to six loops

The � functions of the MZM perturbative schemes
have already been reported to six loops in Ref. [61]. Here
we report the six-loop RG functions defined in Eq. (19),
which allow us to evaluate the critical exponents through
Eqs. (20). They are given by

��ðu; vÞ ¼ 0:011574074u2 þ 0:000964218u3 þ 0:001280763u4 � 0:000212863u5 þ 0:000487251u6

þ 0:018518518uvþ 0:002314125u2vþ 0:004098443u3v� 0:00085145u4vþ 0:00233880u5v

þ 0:011574074v2 þ 0:002241809uv2 þ 0:00595656u2v2 � 0:00169549u3v2 þ 0:00540470u4v2

þ 0:000771375v3 þ 0:00417400uv3 � 0:00183407u2v3 þ 0:0071929u3v3 þ 0:00105250v4

þ 0:000956991uv4 þ 0:00550762u2v4 � 0:000180727v5 þ 0:00223754uv5 þ 0:000372148v6; (A1)

and

�tðu; vÞ ¼ �0:625uþ 0:078125u2 � 0:053818796u3 þ 0:0282218u4 � 0:0265992u5 þ 0:0230998u6 � 0:5v

þ 0:125uv� 0:12916511u2vþ 0:0903098u3v� 0:10639677u4vþ 0:11087907u5vþ 0:078125v2

� 0:12444547uv2 þ 0:13414445u2v2 � 0:19715907u3v2 þ 0:2561752u4v2 � 0:0430550v3

þ 0:0964956uv3 � 0:1970603u2v3 þ 0:3409476u3v3 þ 0:0241934v4 � 0:0993356uv4

þ 0:260895u2v4 � 0:0193974v5 þ 0:1057591uv5 þ 0:017517v6: (A2)

2. The MS series up to five loops

We report the perturbative series in the MS scheme. The � functions were computed in Ref. [69], where they were
explicitly reported up to three loops for generic UðMÞ � UðNÞ models. Here we report the five-loop series of the �
functions and of the RG functions associated with the critical exponents for the case relevant for QCD with two flavors, i.e.
the �4 theory (8) with N ¼ 2.

The � functions are given by [94]

�uðu;vÞ¼�uþ4u2þ4uvþ3

2
v2�57

8
u3�11u2v�61

8
uv2�3v3þ93

8
u4�ð3Þþ389

16
u4þ24u3v�ð3Þþ975

16
u3v

þ99

4
u2v2�ð3Þþ9347

128
u2v2þ18uv3�ð3Þþ45uv3þ6v4�ð3Þþ1197

128
v4�1885

16
u5�ð5Þ�3119

32
u5�ð3Þ

þ 31

120
�4u5�51759

512
u5�340u4v�ð5Þ�1183

4
u4v�ð3Þþ161

240
�4u4v�10449u4

32
v�3905

8
u3v2�ð5Þ

�6849

16
u3v2�ð3Þþ353

480
�4u3v2�391151

768
u3v2�895

2
u2v3�ð5Þ�377u2v3�ð3Þþ 8

15
�4u2v3�42919

96
u2v3

�1875

8
uv4�ð5Þ�3049

16
uv4�ð3Þþ31

96
�4uv4�12697

64
uv4�50v5�ð5Þ�325

8
v5�ð3Þþ 5

48
�4v5�1097

32
v5

þ646947

512
u6�ð7Þþ333739

256
u6�ð5Þ� 3

64
u6�ð3Þ2þ333239

512
u6�ð3Þ�1885

4032
�6u6�6827

2560
�4u6þ121665

256
u6
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þ146853

32
u5v�ð7Þþ158151

32
u5v�ð5Þ�507

32
u5v�ð3Þ2þ320791

128
u5v�ð3Þ�6625

4032
�6u5v�37481

3840
�4u5v

þ494921

256
u5vþ4266675

512
u4v2�ð7Þþ1144635

128
u4v2�ð5Þ�7017

256
u4v2�ð3Þ2þ4795927

1024
u4v2�ð3Þ�9615

3584
�6u4v2

�504343

30720
�4u4v2þ7852881

2048
u4v2þ9702u3v3�ð7Þþ79415

8
u3v3�ð5Þ�3

4
u3v3�ð3Þ2þ171801

32
u3v3�ð3Þ

�155

56
�6u3v3�8173

480
�4u3v3þ6814435

1536
u3v3þ3658095

512
u2v4�ð7Þþ1773961

256
u2v4�ð5Þþ2777

128
u2v4�ð3Þ2

þ1942077

512
u2v4�ð3Þ�94645

48384
�6u2v4�182363

15360
�4u2v4þ36147287

12288
u2v4þ189189

64
uv5�ð7Þ

þ44351

16
uv5�ð5Þþ103

8
uv5�ð3Þ2þ189841

128
uv5�ð3Þ�2585

3024
�6uv5�1647

320
�4uv5þ2121643

2048
uv5

þ265041

512
v6�ð7Þþ61459

128
v6�ð5Þþ81

64
v6�ð3Þ2þ246291

1024
v6�ð3Þ� 335

2016
�6v6�3125

3072
�4v6þ2538035

16384
v6;

(A3)

�vðu;vÞ ¼�vþ 3uvþ 2v2� 61

8
u2v� 11uv2� 27

8
v3þ 1349

64
u3vþ 1451

32
u2v2þ 575

16
uv3þ 347

32
v4þ 33

2
u3v�ð3Þ

þ 36u2v2�ð3Þþ 24uv3�ð3Þþ 9

2
v4�ð3Þ� 49815

512
u4vþ 29

64
�4u4v� 27835

96
u3v2þ 163

120
�4u3v2� 272945

768
u2v3

þ 22

15
�4u2v3� 6635

32
uv4þ 53

80
�4uv4� 365

8
v5þ 1

10
�4v5� 3765

32
u4v�ð3Þ� 691

2
u3v2�ð3Þ� 6111

16
u2v3�ð3Þ

� 1507

8
uv4�ð3Þ� 567

16
v5�ð3Þ� 2625

16
u4v�ð5Þ� 480u3v2�ð5Þ� 2115

4
u2v3�ð5Þ� 1045

4
uv4�ð5Þ� 795

16
v5�ð5Þ

þ 445355

1024
u5v� 58367

15360
�4u5v� 12115

16128
�6u5vþ 209163

128
u4v2� 109087

7680
�4u4v2� 7535

2688
�6u4v2

þ 16837765

6144
u3v3� 81491

3840
�4u3v3� 8455

2016
�6u3v3þ 3808447

1536
u2v4� 30289

1920
�4u2v4� 38005

12096
�6u2v4

þ 9331663

8192
uv5� 1485

256
�4uv5� 28555

24192
�6uv5þ 825245

4096
v6� 1285

1536
�4v6� 5

28
�6v6þ 395479

512
u5v�ð3Þ

þ 734983

256
u4v2�ð3Þþ 282653

64
u3v3�ð3Þþ 56043

16
u2v4�ð3Þþ 736561

512
uv5�ð3Þþ 63485

256
v6�ð3Þþ 2499

128
u5v�ð3Þ2

þ 4305

64
u4v2�ð3Þ2þ 405

4
u3v3�ð3Þ2þ 2771

32
u2v4�ð3Þ2þ 2579

64
uv5�ð3Þ2þ 231

32
v6�ð3Þ2þ 105231

64
u5v�ð5Þ

þ 390003

64
u4v2�ð5Þþ 295491

32
u3v3�ð5Þþ 457495

64
u2v4�ð5Þþ 5647

2
uv5�ð5Þþ 29035

64
v6�ð5Þþ 472311

256
u5v�ð7Þ

þ 218295

32
u4v2�ð7Þþ 1325205

128
u3v3�ð7Þþ 1030617

128
u2v4�ð7Þþ 816291

256
uv5�ð7Þþ 16317

32
v6�ð7Þ: (A4)

The five-loop series of the RG functions associated with the critical exponents are

��ðu; vÞ ¼ þ 5

16
u2 þ 1

2
uvþ 5

16
v2 � 5

16
u3 � 3

4
u2v� 93

128
uv2 � 1

4
v3 þ 1125

1024
u4 þ 225

64
u3vþ 2835

512
u2v2 þ 135

32
uv3

þ 135

128
v4 � 485

64
u5 � 31

1536
�4u5 � 485

16
u4v� 31

384
�4u4v� 114469

2048
u3v2 � 119

768
�4u3v2 � 28337

512
u2v3

� 31

192
�4u2v3 � 57059

2048
uv4 � 1

12
�4uv4 � 5743

1024
v5 � 31

1920
�4v5 þ 515

512
u5�ð3Þ þ 515

128
u4v�ð3Þ

þ 3593

512
u3v2�ð3Þ þ 407

64
u2v3�ð3Þ þ 1513

512
uv4�ð3Þ þ 19

32
v5�ð3Þ; (A5)
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�tðu;vÞ ¼�5u

2
� 2vþ 15

8
u2 þ 3uvþ 15

8
v2 � 1195

128
u3 � 717

32
u2v� 2775

128
uv2 � 239

32
v3 þ 9825

256
u4 þ 31

384
�4u4

þ 1965

16
u3vþ 31

120
�4u3vþ 1431

8
u2v2 þ 119

320
�4u2v2 þ 4029

32
uv3 þ 31

120
�4uv3 þ 8103

256
v4 þ 1

15
�4v4

þ 425

64
u4�ð3Þþ 85

4
u3v�ð3Þþ 51

2
u2v2�ð3Þþ 107

8
uv3�ð3Þþ 209

64
v4�ð3Þ� 398085

2048
u5

� 2503

6144
�4u5 � 9425

96768
�6u5 � 398085

512
u4v� 2503

1536
�4u4v� 9425

24192
�6u4v� 5888529

4096
u3v2 � 24209

7680
�4u3v2

� 34885

48384
�6u3v2 � 366513

256
u2v3 � 12767

3840
�4u2v3 � 8705

12096
�6u2v3 � 11832549

16384
uv4

� 26999

15360
�4uv4 � 17735

48384
�6uv4 � 589857

4096
v5 � 691

1920
�4v5 � 1795

24192
�6v5 � 102955

1024
u5�ð3Þ� 102955

256
u4v�ð3Þ

� 364439

512
u3v2�ð3Þ� 85837

128
u2v3�ð3Þ� 334685

1024
uv4�ð3Þ� 16379

256
v5�ð3Þþ 4675

256
u5�ð3Þ2 þ 4675

64
u4v�ð3Þ2

þ 17687

128
u3v2�ð3Þ2 þ 4531

32
u2v3�ð3Þ2 þ 9307

128
uv4�ð3Þ2 þ 917

64
v5�ð3Þ2 þ 85

64
u5�ð5Þþ 85

16
u4v�ð5Þ

þ 1601

128
u3v2�ð5Þþ 65

4
u2v3�ð5Þþ 461

64
uv4�ð5Þ� 1

16
v5�ð5Þ: (A6)
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