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We study the effect of a static homogeneous external magnetic field on charmonium and bottomonium

states. In an external magnetic field, quarkonium states do not have a conserved center-of-mass

momentum. Instead there is a new conserved quantity called the pseudomomentum which takes into

account the Lorentz force on the particles in the system. When written in terms of the pseudomomentum,

the internal and center-of-mass motions do not decouple and, as a result, the properties of quarkonia

depend on the states’ center-of-mass momentum. We analyze the behavior of heavy particle-antiparticle

pairs subject to an external magnetic field assuming a three-dimensional harmonic potential and Cornell

potential plus spin-spin interaction. In the case of the Cornell potential, we also take into account the

mixing of the �c and J=c states and �b and � states due to the background magnetic field. We then

numerically calculate the dependence of the masses and mixing fractions on the magnitude of the

background magnetic field and center-of-mass momentum of the state.
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I. INTRODUCTION

The behavior of matter subject to magnetic fields has
been a subject of interest for physicists for quite some time.
Already over one hundred years ago Zeeman showed that
an external magnetic field affected the spectrum of light
emitted by a flame [1–3]. In recent years there has been
considerable attention focused on the question of what
happens to matter in the presence of extremely strong
magnetic fields which are many orders of magnitude larger
than normally experienced magnetic fields. There are at
least two situations in which extremely strong magnetic
fields are expected to be generated: (1) During early times
after noncentral heavy ion collisions one expects B�
m2

� � 1018 G at energies probed by the Relativistic
Heavy Ion Collider and B� 15m2

� � 1:5� 1019 G at
Large Hadron Collider (LHC) energies [4–9] and (2) in
the interior of magnetars, which are a class of neutron stars
which possess central magnetic fields on the order of
1018–1019 G [10]. In this paper, we study the behavior of
charmonium and bottomonium states subject to magnetic
fields with an eye towards applications to the phenomenol-
ogy of relativistic heavy ion collisions.

Interest in the effects of strong magnetic fields in heavy
ion collisions has become a hot topic recently following
the prediction of a nontrivial quantum chromodynamics
(QCD) effect dubbed ‘‘the chiral magnetic effect’’ which
stems from small P- and CP-odd interactions inducing an
electromagnetic current when a quark-gluon plasma is
placed in an external magnetic field [4]. There has been
much work related to this in recent years and in addition it
has been shown how to self-consistently take into account
this effect through Berry curvature flux in the presence of a
magnetic field [11,12]. The existence of such high mag-
netic fields has also prompted many research groups to
study how the finite temperature deconfinement and chiral

phase transitions are affected by the presence of a strong
background magnetic field. These studies have included
direct numerical investigations using lattice QCD [13–17]
and theoretical investigations using a variety of methods
including, for example, perturbative QCD studies, model
studies, and string-theory-inspired anti–de Sitter/confor-
mal field theory correspondence studies [18–43].
In this paper, we consider the effects of magnetic fields

on heavy quarkonium states, focusing on 1s charmonium
and bottomonium states. The physics of quantum mechani-
cal bound states in a background magnetic field is compli-
cated by the fact that in a background magnetic field
the center-of-mass (COM) momentum is not a conserved
quantity due to the breaking of translational invariance by
the vector potential. Instead one must take into account the
Lorentz force on the constituents and construct a quantity
called the COM pseudomomentum [44–57]. However,
in practice one finds that, even after expressing the
Hamiltonian in terms of the pseudomomentum, it is not
possible to factorize the Hamiltonian into free COM
motion plus decoupled internal motion. As a result, the
spectrum of a bound state in a background magnetic field
depends on the COMmomentum of the system. To the best
of our knowledge, the first theoretical consideration of
motional effects was by Lamb [46] and, as we will show,
this effect is related to the so-called motional Stark effect.
In this paper we investigate the effect of strong magnetic

fields on heavy quarkonium states including such motional
effects. Heavy quarkonium is a nice test bed for QCD since
heavy quark states are dominated by short-distance physics
and can be treated using heavy quark effective theory [58].
Based on such effective theories of QCD, nonrelativistic
quarkonium states can be reliably described. Their binding
energies are much smaller than the quark mass mq �
�QCD (q ¼ c, b), and their sizes are much larger than

1=mq. Since the velocity of the quarks in the bound state
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is small (v � c), quarkonium can be understood in terms
of nonrelativistic potential models such as the Cornell
potential which can be derived directly from QCD using
effective field theory [59–61].

We present numerical calculations using a Cornell
potential supplemented by a spin-spin interaction which
allows for a splitting between the spin-singlet and spin-
triplet states. This study contributes to ongoing discussions
of the effect of strong magnetic fields on QCD bound states
[62–68]. Apart from the long-range interactions, which are
fundamentally different, the physics of heavy quarkonium
is very similar to positronium [69–81].1 In addition to
motional effects [81], it is also necessary to take into
account the hyperfine mixing in the background magnetic
field. In positronium this results in a change of the
spin-singlet and spin-triplet energy eigenvalues and
‘‘quenching’’ of orthopositronium 3� decays [76,77,79].
Analogous effects occur in quarkonium and we present
quantitative calculations of the effect utilizing a realistic
heavy quark interaction potential. In addition, we present
exact analytic formulas which can be obtained assuming a
harmonic interaction between the constituents. The har-
monic interaction results are used for purposes of discus-
sion and also to check the numerical methods which are
applied in the more realistic case.

The structure of the paper is as follows. In Sec. II we
introduce the pseudomomentum. In Sec. III we discuss the
application to two particle states and then specialize to the
case of particle-antiparticle states. In Sec. IV we discuss
the relation of the pseudopotential derived in the previous
section to the motional Stark effect. In Sec. V we discuss
the prescription we use to subtract the energy associated
with the center-of-mass motion. In Sec. VI we discuss the
mixing of the spin-singlet and spin-triplet states in the
presence of a magnetic field. In Sec. VII we present
the potential we use for our final results. In Sec. VIII we
present our numerical results. In Sec. IX we present our
conclusions and outlook for the future. In three appendixes
we collect details of the interquark potential used and
resulting spectra, our numerical method for solving the
3D Schrödinger equation, and an investigation of what
happens to a harmonic state with a given center-of-mass
momenta when a magnetic field is turned on suddenly.

II. PARTICLE IN A CONSTANT MAGNETIC FIELD

We begin with the basics by introducing the pseudomo-
mentum in the context of a single classical nonrelativistic
charged spin one-half particle in a background magnetic
field. As we will demonstrate, unlike the particle momen-
tum, the pseudomomentum is conserved since it takes into
account the Lorentz force on the particle. The classical
nonrelativistic Hamiltonian for a particle in a constant
magnetic field can be written

H ¼ 1

2m
½p� qAðrÞ�2 þ VðrÞ �� �Bþm; (1)

where m is the rest mass of the particle and we assume
BðxÞ ¼ ð0; 0; BÞ which, in symmetric gauge, can be ex-
pressed in terms of the vector potential AðrÞ ¼ 1

2B� r ¼
1
2Bð�y; x; 0Þ.
We can apply Hamilton’s equations to derive the equa-

tion of motion

� @H
@ri

¼ _pi;
@H
@pi

¼ _ri: (2)

The second Hamilton equation gives m _ri ¼ pi � qAi

which allows us to solve for the canonical momentum,
pi ¼ m _ri þ qAi. Using this, we can evaluate the full
time derivative of the canonical momentum

_pi¼m€riþq

�
@Ai

@t
þdrj

dt

@Ai

@rj

�
;

¼m€riþq _rj
@Ai

@rj
; (3)

where, in going from the first to second line we have used
the fact that the vector potential is static in the case under
consideration. The right-hand side of the first Hamilton
equation gives

�@H
@ri

¼ 1

m
ðp� qAðrÞÞ �

�
q
@A

@ri

�
� @V

@ri
;

¼ q _rj
@Aj

@ri
� @V

@ri
: (4)

Equating the two sides we obtain

m€ri ¼ q _rj
@Aj

@ri
� q _rj

@Ai

@rj
� @V

@ri
: (5)

Using v� B ¼ _r� ðr�AÞ ¼ rð _r �AÞ � ð _r � rÞA we
can rewrite this as

m€r ¼ q _r� B�rV: (6)

In the case that there is no potential, V ¼ 0, we have only
the Lorentz force acting on the particle

m€r ¼ q _r�B; (7)

which shows that the momentum is not conserved in a
constant magnetic field, as expected; however, we can
introduce a quantity which is conserved called the
pseudomomentum, K,

K ¼ m _rþ qB� r;

¼ pþ q

2
B� r;

¼ pþ qA; (8)

such that the equation of motion can be expressed as

d

dt
K ¼ 0: (9)1For a nice review of positronium physics see Ref. [82].
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III. TWO COUPLED PARTICLES IN A
CONSTANT MAGNETIC FIELD

We next consider the case of two particles subject to a
translationally invariant potential in nonrelativistic quan-
tum mechanics. We will follow closely the treatment found
in Ref. [55]. The Hamiltonian operator for two particles in
a constant magnetic field can be written as

H ¼ 1

2m1

½p1 � q1Aðr1Þ�2 þ 1

2m2

½p2 � q2Aðr2Þ�2

þ Vðr1 � r2Þ �� �Bþm1 þm2; (10)

where � ¼ �1 þ�2 is the sum of the two particles’
magnetic moments and BðxÞ ¼ ð0; 0; BÞ, which can be
expressed in terms of the vector potential AðrÞ ¼ 1

2B�
r ¼ 1

2Bð�y; x; 0Þ in symmetric gauge. As usual, pi ¼ �ir
is the momentum operator for the ith particle. As in the
previous section, one finds that the COMmomentum of the
system is no longer conserved. This is due to the breaking
of translational invariance by the vector potential (chang-
ing the origin changesA). In order to preserve translational
invariance in a constant magnetic field an additional gauge
transformation is required. This can be achieved by intro-
ducing the generalized pseudomomentum operator [55]

Kk ¼
X2
j¼1

�
�i

@

@xjk
� qj

Z rj

0

@A

@xk
� dr

�
; (11)

where k ¼ 1, 2, 3 denotes Cartesian components.
Integrating and discarding a constant one obtains

K ¼ X2
j¼1

ðpj � qjAj þ qjB� rjÞ: (12)

In the gauge used herein we have AðrÞ ¼ 1
2B� r which

allows us to simplify this to

K ¼ X2
j¼1

�
pj þ 1

2
qjB� rj

�
;

¼ X2
j¼1

ðpj þ qjAjÞ; (13)

which is the generalization of the one particle case ob-
tained in the previous section. One can verify explicitly
that the pseudomomentum operator commutes with the
Hamiltonian

½K;H � ¼ 0: (14)

One can also compute the commutator of two components
of K in which case one obtains

½Kk;Kl� ¼ �i"klmBm

�X2
j¼1

qj

�
; (15)

which means that one will only be able to determine all
components of K simultaneously for an electric charge
neutral system.

A. Two particles with equal and opposite charge

In this section we specialize to the case that q1 ¼
�q2 ¼ q. To proceed we introduce center-of-mass and
relative coordinates

R ¼ m1r1 þm2r2
M

; r ¼ r1 � r2; (16)

where M ¼ m1 þm2. As is standard, we can express the
individual positions as

r1 ¼ Rþ mr

m1

r; r2 ¼ R� mr

m2

r; (17)

where mr ¼ m1m2=M is the reduced mass.
This allows us to simplify the pseudomomentum operator

K ¼ X2
j¼1

�
pj þ 1

2
qjB� rj

�
;

¼ �i

�
@

@r1
þ @

@r2

�
þ 1

2
qB� ðr1 � r2Þ;

¼ �i
@

@R
þ 1

2
qB� r: (18)

Since the system is neutral, the full two-particle eigenfunc-
tions� of the Hamiltonian are simultaneous eigenfunctions
of all componentsKi of the pseudomomentum with eigen-
values Ki. This allows us to factorize the full wave function

�ðR; rÞ ¼ exp

�
i

�
K� 1

2
qB� r

�
�R

�
�ðrÞ

� �ðR; rÞ�ðrÞ; (19)

which satisfies Kj� ¼ Kj� by construction.

Expanding out the two-particle Hamiltonian one finds
the ‘‘relative’’ Hamiltonian

H rel ¼ K2

2M
� q

M
ðK� BÞ � rþ p2

2mr

þ q

2

�
1

m1

� 1

m2

�
B � ðr� pÞ þ q2

8mr

ðB� rÞ2

þ VðrÞ �� �Bþm1 þm2; (20)

where p ¼ �ir is the relative momentum operator and
one has the new eigenvalue equation H rel�ðrÞ ¼ E�ðrÞ.
Note that, unlike the case without the external field, the
energy eigenvalue E depends on the value of K through
coupling in the second term and not only through the term
K2=2M.

B. Heavy-light system

In the limit that m2 ! 1 while holding m1 fixed, we
have M ! 1 and mr ¼ m1 � m and we obtain

H rel ¼ p2

2m
� q

2m
B � ðr� pÞ þ q2

8m
ðB� rÞ2

þ VðrÞ �� � Bþm; (21)
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where we have discarded the infinite constant m2 in this
case. Recalling that A ¼ 1

2B� r ¼ 1
2Bð�y; x; 0Þ one has

ðB� rÞ2 ¼ B2�2 and using B � ðr� pÞ ¼ ðB� rÞ � p ¼
�Bp� ¼ �iB@� we obtain

H rel ¼ � 1

2m
r2 þ i

2
!c

@

@�
þm!2

c

8
�2

þ VðrÞ �� �Bþm; (22)

where !c ¼ qB=m. This is the standard nonrelativistic
Hamiltonian for a spin-one-half particle subject to a po-
tential V and an external magnetic field.

C. Particle-antiparticle pair

For a bound state consisting of a particle-antiparticle
pair we have m1 ¼ m2 ¼ m, M ¼ 2m, and mr ¼ m=2.
In this case the relative Hamiltonian simplifies to

H rel ¼ K2

2M
� q

M
ðK� BÞ � r� r2

2mr

þ q2

8mr

ðB� rÞ2

þ VðrÞ �� �BþM: (23)

Next we decompose K ¼ Kxx̂þ Kyŷ þ Kzẑ and simplify

the expression above to obtain

H rel ¼ K2

2M
þ qB

4mr

Kxy� qB

4mr

Kyx� r2

2mr

þ q2B2

8mr

�2

þ VðrÞ �� �BþM: (24)

1. Relation between the pseudomomentum and kinetic
center-of-mass momentum

We now derive a general relation between the pseudo-
momentum and kinetic COM momentum. The COM
kinetic momentum of the system is given by

Pkinetic ¼
X
j

�
�i

@

@rj
� qjAj

�
;

¼ �i
@

@R
� 1

2
qB� r: (25)

Therefore, we have

hPkinetici ¼
R
R

R
r �

	½�i @
@R � 1

2qB� r��R
R

R
r �

	�
: (26)

Using

� i
@

@R
� ¼

�
K� 1

2
qB� r

�
�; (27)

one finds

hPkinetici ¼ K� qB� hri: (28)

D. Particle-antiparticle pair with a
harmonic interaction

We now specialize to the case that the potential is
harmonic in which case the wave functions and energy
levels can be obtained analytically. Some of the results
contained in this subsection were first obtained explicitly
by Herold et al. [55]. We repeat the derivation here in
order to use them as a basis for discussion of the COM
momentum dependence of the energy. We also use this
case as a check for our numerics since it can be solved
analytically.
Using the general relative Hamiltonian for a particle-

antiparticle pair (24) and VðxÞ ¼ 1
2 kx

2 ¼ 1
2mr!

2
0ðx2 þ

y2 þ z2Þ we have

H rel ¼ K2

2M
� r2

2mr

þ 1

2
mr

�
!2

0 þ
!2

c

4

�
ðx2 þ y2Þ

�!cKy

4
xþ!cKx

4
yþ 1

2
mr!

2
0z

2 �� �BþM;

¼ K2

2M
� r2

2mr

þ 1

2
aðx2 þ y2Þ � bxþ cy

þ 1

2
dz2 �� �BþM; (29)

where!c ¼ qB=mr,� ¼ �1 þ�2, a ¼ mrð!2
0 þ!2

c=4Þ,
b ¼ !cKy=4, c ¼ !cKx=4, and d ¼ mr!

2
0. We can re-

write the third, fourth, and fifth terms using

1

2
aðx2 þ y2Þ � bxþ cy

¼ 1

2
a

��
x� b

a

�
2 þ

�
yþ c

a

�
2
�
� 1

2a
ðb2 þ c2Þ: (30)

We can simplify things further by making use of a constant
coordinate shift �x � x� b=a and �y � yþ c=a,

H rel ¼ K2

2M
� r2

2mr

þ 1

2
að �x2 þ �y2Þ þ 1

2
dz2

� 1

2a
ðb2 þ c2Þ �� �BþM; (31)

which suggests that we use cylindrical coordinates with
�x ¼ � cos�, �y ¼ � sin�, and z ¼ z. After this, the eigen-
value equation H rel� ¼ E� becomes

�
� r2

2mr

þ 1

2
a�2 þ 1

2
cz2

�
�ðrÞ

¼
�
E� K2

2M
þ b2

2a
þ� �BþM

�
�ðrÞ: (32)

Factorizing the relative wave function as �ðrÞ ¼
ei‘�ZðzÞc ð�Þ we find

�
� @2

@�2
� 1

�

@

@�
þ j‘j2

�2
þ �4�2

�
c ¼ 2mr�c ; (33)
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where �2 ¼ ffiffiffiffiffiffiffiffiffi
mra

p ¼ mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ!2
c=4

q
, � ¼ E� Ez �

K2=2Mþ ðb2 þ c2Þ=2aþ� �BþM, and Ez is the
eigenvalue of the separated z equation

�
� @2

@z2
þ �4z2

�
Z ¼ 2mrEzZ; (34)

where � ¼ ðmrcÞ1=4 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
mr!0

p
which has a solution

Z ¼ Ne�1
2�

2z2Hnzð�zÞ; (35)

and energy eigenvalue

Ez ¼
�
nz þ 1

2

�
!0: (36)

Convergence as � ! 1 requires

� ¼ �2

mr

ð2n? þ 1þ j‘jÞ ¼ ð2n? þ 1þ j‘jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ
!2

c

4

s
:

(37)

Solving for E we obtain the energy eigenvalues for the
system

EK;n?nz‘ ¼
K2

2M
� !2

cðK2
x þ K2

yÞ
32mrð!2

0 þ!2
c=4Þ

þ
�
nz þ 1

2

�
!0

þ ð2n? þ 1þ j‘jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ
!2

c

4

s
�mr �BþM:

(38)

We can now write the full two-particle wave function

�K;n?nz‘ðR; rÞ ¼ N �j‘jei‘�e�1
2�

2z2e�1
2�

2�2
Hnzð�zÞ

� Lj‘j
n?ð�2�2ÞeiðK�1

2qB�rÞ�R; (39)

where N is a normalization constant and

!c ¼ qB

mr

; �2 ¼mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0þ
!2

c

4

s
;

�¼ !c

4mrð!2
0þ!2

c=4Þ
; �2 ¼mr!0;

�2 ¼ ðx��KyÞ2þðyþ�KxÞ2; �¼ arctan

�
yþ�Kx

x��Ky

�
:

(40)

1. Center-of-mass kinetic momentum

Using this we can analytically compute the relationship
between the pseudomomentum and the COM kinetic
momentum of the state. Using Eq. (28) and

B� r ¼ Bð�y; x; 0Þ
¼ B

�
�� sin�þ c

a
; � cos�þ b

a
; 0

�
; (41)

one finds in this case

hPkinetici ¼ K� qBc

a
x̂� qBb

a
ŷ: (42)

Plugging in the definitions of a, b, and c we obtain

hPkinetici ¼
�

4!2
0

4!2
0 þ!2

c

Kx;
4!2

0

4!2
0 þ!2

c

Ky; Kz

�
: (43)

As we can explicitly see from this expression, the compo-
nents of the kinetic COM momentum do not directly
correspond to the pseudomomentum components. We
note that in Appendix C we derive this formula in a differ-
ent manner by assuming a time-dependent magnetic field
which turns on rapidly.

IV. RELATION TO THE MOTIONAL
STARK EFFECT

One way to intuitively understand the result obtained in
Eq. (24) is try to derive it in a different manner. We can
instead try to write down the nonrelativistic Hamiltonian in
the COM rest frame. This step is self-contradictory since,
as we have pointed out previously, the COM momentum is
not a conserved quantity in the presence of an external
magnetic field; however, let us ignore this for the time
being and assume that we can, in fact, boost to the rest
frame of the state. As before, we assume that the magnetic
field points in the z direction and as a result the dynamics in
the z direction is straightforward. Putting the system at rest
in the z direction and assuming that we can also hold it at
rest in the y direction we need only consider boosts in the x
direction with vx ¼ Px=M. In the lab frame there is only a
magnetic field. In the comoving frame there will be both
electric and magnetic fields. Using the standard transfor-
mation laws for electric and magnetic fields one finds

E0
x ¼ 0; B0

x ¼ 0; E0
y ¼ ��vxB 
 �vxB;

B0
y ¼ 0; E0

z ¼ 0; B0
z ¼ �B 
 B;

where for the terms with 
 appearing we have discarded
terms of the order v2

x and higher.
As we can see from the relations above, if we boost to

the rest frame of the state, there is an additional electric
interaction of the form H0

electric ¼ �qE0 � r where r ¼
r1 � r2 is the relative position. Using the expressions
above one finds trivially

H0
electric ¼

qB

4mr

Pxy; (44)

where we have used the fact that for a particle-antiparticle
systemM ¼ 4mr. As we can see this is precisely the ‘‘extra
term’’ in Eq. (24) (assuming Px ¼ Kx and Py ¼ Ky ¼ 0).
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If we had allowed for a general direction for the COM
momentum, we would have generated both terms. So we
can see that the physical origin of these terms is, in fact, the
motional Stark effect; however, deriving things in this
manner we have blurred the important distinction between
P and K, where only the latter is a conserved quantity. In
what follows we will simply use Eq. (24) since it is the
correct expression.

V. CENTER-OF-MASS KINETIC
ENERGY SUBTRACTION

Since the energy of a particle-antiparticle state in the
presence of a magnetic field has a nontrivial dependence on
the pseudomomentum quantum number K, one has to
specify the precise manner in which the energy associated
with the COM motion is subtracted from the total energy.
Our prescription for doing this is to subtract hPkinetici2=2M
where M ¼ m1 þm2 ¼ 2mq from the total energy with

hPkinetici computed via Eq. (28).
As a concrete example, let us return to the case of a

harmonic interaction. As demonstrated in the previous
section this can be computed analytically in the case of a
harmonic interaction. Taking Eq. (38) and subtracting
hPkinetici2=2M with hPkinetici given in Eq. (43) we obtain

~EK;n?nz‘ ¼ EK;n?nz‘ �
hPkinetici2

2M
;

¼ 2!2
c!

2
0ðK2

x þ K2
yÞ

Mð!2
c þ 4!2

0Þ2
þ
�
nz þ 1

2

�
!0

þ ð2n? þ 1þ j‘jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ
!2

c

4

s
�� �BþM:

(45)

As we can see from this expression, as B ! 0 the depen-
dence of the COM-subtracted energy on the COM pseu-
domomentum vanishes as it should; however, for
nonvanishing background magnetic field, there is still a
residual dependence on the components of the pseudomo-
mentum which are perpendicular to the background mag-
netic field. In the case of the harmonic interaction, we are
able to obtain the answer analytically. In cases other than
the simple harmonic interaction, it may not be possible to
obtain analytic expressions. Absent analytic expressions
for the energy and necessary expectation values, one
must perform the subtraction prescribed in this section
numerically.

VI. QUARKONIUM SPIN MIXING

Thus far we have not discussed the effects of the mag-
netic field-spin coupling for particle-antiparticle states. In
this respect states like the J=c and � are similar to
positronium (see e.g. [82,83] and references therein). We
now review the mixing of the singlet and triplet states for
completeness. The Hamiltonian can be written in the form

Ĥ ¼ Ĥ0 �� �B; (46)

where Ĥ0 collects all terms which depend on the spatial
coordinates and

� ¼ �q þ� �q ¼ g�	qSq þ gþ	qS �q

¼ 1

2
g0	qð�� � �þÞ; (47)

where 	q ¼ Q=2mq is the quark magneton and in going

from the second to third lines we have used g� ¼ �gþ ¼
g0. Herein, we ignore effects of the anomalous magnetic
moment and take g0 ¼ 2. The coupled spin states to be
considered are

j11i¼ j ""i; j1�1i¼ j ##i;
j10i¼ 1ffiffiffi

2
p ðj "#iþ j #"iÞ; j00i¼ 1ffiffiffi

2
p ðj "#i� j #"iÞ:

(48)

In the case of c �c states, the 1s triplet and singlet states
correspond to the J=c and the �c, respectively. For b �b
states the 1s triplet and singlet states correspond to the
�ð1sÞ and �b, respectively. Without a spin-spin interac-
tion, these states would be degenerate. With a spin-spin
interaction, the triplet and singlet states split. In vacuum,
the charmonium 1s splitting is approximately �E ¼
113 MeV and for bottomonium it is approximately �E ¼
63 MeV.
In the presence of a magnetic field there is mixing

between some of these spin states. One can easily verify
that

ð
þ
z � 
�

z Þj1� 1i ¼ 0; ð
þ
z � 
�

z Þj10i ¼ 2j00i;
ð
þ

z � 
�
z Þj00i ¼ 2j10i: (49)

From this we see that there is no magnetic field effect on
the j1� 1i spin states but there will be mixing between the
j00i and j10i spin states. To determine the effect of the
mixing we need only consider the two-dimensional eigen-
system for the j00i and j01i states. To proceed we shift the
zero of the Hamiltonian energy to the midpoint between
the unperturbed singlet and triplet states and write an
effective Hamiltonian of the form

Heff ¼ �E

2

1 �

� �1

 !
; (50)

where

� ¼ 2g0	qB

�E
: (51)

The resulting eigenstates can be expressed as

jc�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2�

q ðj00i þ "�j10iÞ; (52)

with "� � ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Þ=�. One can verify that the
states are orthogonal and normalized. The energy shifts
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of the states relative to the case of no spin-magnetic field
effects taken into account are

�E� ¼ ��E

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

q
� 1

�
: (53)

As a result, we see an increase in the energy of the j10i
state and a decrease in the energy of the j00i state. In what
follows wewill indicate the two degenerate unmixed triplet
states with a superscript �, e.g. J=c� and ��, and the
spin-mixed triplet state with a superscript 0, e.g. J=c 0 and
�0. To close this section we note that in addition to the
shifts in the energy levels, the state mixing implies that e.g.
some portion of j10i decays will be suppressed, instead
appearing as decays with an invariant mass given by the
energy of the jc�i state. This will cause suppression of
e.g. � decays to lepton pairs and turn on decays of the �b

to lepton pairs. This would manifest itself experimentally
as a reduction in dilepton yields at the � mass along and
the appearance of a peak at the mass of the �b. The
suppression described above is similar to the experimen-
tally well-known magnetic field suppression of the ortho-
positronium 3� decays [76,77,79].

VII. HAMILTONIAN REDUCTION AND
CHOICE OF POTENTIAL

In some cases, such as the case of a harmonic interac-
tion, the energies and wave functions can be solved for
analytically; however, in most cases this is not possible. In
these cases it is necessary to solve the Schrödinger equa-
tion numerically. In practice, we can subtract out any terms
which are independent of the position from Eq. (24). In
addition, if the potential still possesses azimuthal symme-
try we can set either Kx or Ky to zero by rotating the

coordinate system appropriately. We choose herein to set
Ky to zero. The resulting Hamiltonian which is used in the

numerical solutions is then of the form

H 0
rel ¼ � r2

2mr

þ qB

4mr

Kxyþ q2B2

8mr

�2 þ VðrÞ: (54)

After numerical solution using (54) the constant terms can
be added back in manually in order to obtain the full energy
eigenvalues.

For the charmonium and bottomonium states considered
in this manuscript we use a Cornell potential plus a spin-
spin interaction with a separate spin-spin potential

VðrÞ ¼ � 4

3

�s

r
þ 
rþ ðS1 � S2ÞVsðrÞ: (55)

The expectation value hS1 � S2i reduces to �3=4 for the
singlet state and 1=4 for the triplet states. For the spin
potential VsðrÞ we use a form found from fits to the charm
spin-spin potential in lattice studies [84]

VsðrÞ ¼ �e��r: (56)

For charmonia, the constants � and � above were fit to
lattice data in Ref. [84]. They found � ¼ 0:825 GeV and
� ¼ 1:982 GeV. In this paper we allow for variation of �.
For both charm and bottom states we will hold � fixed to
the value from Ref. [84], but we adjust the amplitude � in
order to reproduce the experimentally measured splittings
using Eq. (55) as the interaction potential. We present
the resulting parameter sets and the corresponding B ¼ 0
spectra of charmonium and bottomonium states in
Appendix A. For the bottom system we present a single
‘‘tuning’’ which reproduces all states through the �ð3sÞ
with a maximum error of 0.22%. In the charm sector, we
consider two different tunings: (a) the bottom-tuned
parameter set just described (see Tables I and II in
Appendix A) and (b) a charm-tuned parameter set which
reproduces the masses of the c �c 1s and 2s states with a
maximum error of 1.3% (see Table III in Appendix A).
We note that the interaction potential and the nonder-

ivative terms in (54) can be combined into a ‘‘pseudo-
potential’’ of the form

VpseudoðrÞ ¼ qB

4mr

Kxyþ q2B2

8mr

�2 � 4

3

�s

r
þ 
r

þ ðS1 � S2Þ�e��r: (57)

In Fig. 1(a) we plot the pseudopotential (57) as a func-
tion of y with x ¼ z ¼ 0 for charmonium states using the
parameters listed in Appendix A Table II. The magnetic
field amplitude is assumed to be eB ¼ 0:3 GeV2 and we
takeKx 2 f0; 2; 4; 6g GeV. As can be seen from this figure,
at large magnetic field magnitude it is possible for the
potential to develop a nontrivial minimum which for
positive Kx is at negative y. This minimum is related to
the so-called motional Stark effect which was originally
discussed in [46] (see [49] for a discussion in the context
of positronium) and recently discussed in the context of
quarkonium in Ref. [62]. As a result of this minimum, for
large eB and Kx the wave function becomes bilocalized.
For large enough Kx the wave function will be dominated
by the leftmost minimum and the state will be ‘‘ionized’’
by magnetic field; however, we note that this state is,
strictly speaking, not a free state since it is still confined
in space by the magnetic field.
We note, for later use, that for large qB, Kx, and r, one

can ignore the third and fifth terms in (57) to good ap-
proximation. Doing this and setting x ¼ z ¼ 0 one obtains

Vpseudo;largeBðx ¼ 0; y; z ¼ 0Þ ’ qB

4mr

Kxyþ q2B2

8mr

y2 þ 
jyj:
(58)

We compare this approximate form to the exact
pseudopotential in Fig. 1(b) for the case of charm quarks
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which have charge q ¼ 2e=3. Based on this expression
we can find the approximate location of the leftmost
minimum

ymin ’ 4
mr � qBKx

q2B2
; (59)

from which we learn that for qBKx * 4
mr there is a
nontrivial minimum at negative y.2 For charmonium (using
the parameters listed in Appendix A Table III), this trans-
lates to the condition eBKx * 0:673 GeV3 and for botto-
monium (using the parameters listed in Appendix A
Table I) eBKx * 5:92 GeV3. For the maximum magnetic
field of eB ¼ 0:3 GeV2 considered herein this translates
into the constraint Kx * 2:24 GeV and Kx * 19:7 GeV
for charmonium and bottomonium, respectively. For Kx

larger than these thresholds, the state becomes bilocalized
and eventually falls into the ‘‘harmonic’’ well. At this
point the state is no longer bound by particle-anti-particle
interactions, but is instead localized in space by the
magnetic field.

In terms of practicalities for the numerics, we note that
we use the approximate value in Eq. (59) to shift the
potential along the y direction for large values Kx in order
to obtain more accurate numerical results without having
to resort to large volumes and/or anisotropic lattices.

VIII. RESULTS

We now present our results using the pseudopotential
(57) for both charmonium and bottomonium states. For the
bottomonium states, the potential parameters and resulting
vacuum spectra are listed in Appendix A Table I. For

charmonium states, the potential parameters and resulting
vacuum spectra are listed in Appendix A Table III. The
numerical algorithm used to find the eigenfunctions and
eigenvalues is described in Appendix B. We note that
we have tested the numerical algorithm using a harmonic
interaction and have found agreement between the
extracted wave functions, energy eigenvalues, etc. and
the analytic formulas presented in previous sections to
within machine precision. This gives us confidence in our
numerical method.

A. Bottomonia

We first consider bottomonium states. In Fig. 2 we plot
the masses of the 2(a) �b, 2(b) �0, and 2(c) �� as a
function of eB for hPkinetici 2 f0; 2; 4; 8g GeV. For
hPkinetici ¼ 0 GeV, we see the pattern expected, namely
that the �b mass is lowered due to spin mixing, the �0

mass increases for the same reason, and the �� states are
very weakly affected (there is a small change in the mass
due to the magnetic potential effects, but it is negligible).
As we increase hPkinetici, we see that the masses of all states
increase. The result is in agreement with what we obtained
analytically for the harmonic interaction [see first term in
Eq. (45)]. For hPkinetici ¼ 0 and eB ¼ 0:3 GeV2 one sees a
0.06% decrease in the mass of the �b. For hPkinetici ¼
8 GeV, one sees an increase of 0.71% in the �b mass.
For the � states, the mass is a monotonically increasing
function of eB and hPkinetici. The maximum mass increase
is on the order of 1.1% for the � states.
Based on the findings above one can estimate the effect

of strong magnetic fields on bottomonium production in
the LHC heavy ion collisions (eB� 0:3 GeV2). The cross
sections for quarkonium production from both gluon-gluon
fusion and quark-antiquark annihilation both scale (to
leading order) as M�2. Assuming that we need only build
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FIG. 1 (color online). (a) The pseudopotential (57) as a function of y with x ¼ z ¼ 0 for charmonium states using the parameters
listed in Appendix A Table II. The magnetic field amplitude is assumed to be eB ¼ 0:3 GeV2 and we take Kx 2 f0; 2; 4; 6g GeV.
(b) Comparison of the exact pseudopotential (57) with the approximate form (58) for eB ¼ 0:3 GeV2 and Kx ¼ 6 GeV.

2If q is negative, the potential minimum appears at positive y
instead.
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in the mass correction in order to account for the magnetic
field, the maximal effect on 1s bottomonium states can be
estimated to be on the order of a 2% effect.
We can extract the energy difference between the singlet

and triplet states to determine the overlap probability for
the j10i (triplet) state with, e.g. the �b state, via Eq. (52).
In vacuum, the �b is a pure singlet state; however, a
background magnetic field causes a mixing of the singlet
and triplet states. In Fig. 3 we plot the �b triplet overlap
probability as a function of eB for hPkinetici2f0;2;4;8gGeV.
As we can see from this figure, at LHC energies one
estimates the overlap probability to be approximately
8.5%. This percentage of �b states would be able to decay
through dilepton decay. Correspondingly, there would be an
8.5% reduction in the dilepton decays from the�0 state. The
�� states do not mix and would not have their dilepton
decay ratemodified. Averaging over the three different types
of � states we would predict an approximately 2.8% sup-
pression of �ð1sÞ decays. The dileptons which failed to
come from the �0 decays, would instead appear at the
mass of the �b state. This would manifest itself through a
peak in the dilepton spectrum at the �b invariant mass. We
note, however, that given finite detector resolution, it may
not be possible to experimentally resolve this feature in the
dilepton invariant mass spectrum. The splitting between the
�b and� vacuummasses is approximately 63 MeVand this
is only weakly dependent on the magnetic field. The CMS
and ALICE experiments have an invariant mass resolution
on the order of 100 MeV [86,87] so they would not be able
to see this effect, instead they would see a slight broadening
of the �ð1sÞ peak.

B. Charmonia

We now turn our attention to the charmonium states.
In Fig. 4 we plot the masses of the 4(a) �c, 4(b) J=c

0,

 9.39

 9.4

 9.41

 9.42

 9.43

 9.44

 9.45

 9.46

 9.47

0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

η b
 m

as
s 

[G
eV

]

eB [GeV2]

(a)

<Pkinetic> = 0 GeV

<Pkinetic> = 2 GeV

<Pkinetic> = 4 GeV

<Pkinetic> = 8 GeV

 9.46

 9.48

 9.5

 9.52

 9.54

 9.56

 9.58

Υ
0
 m

as
s 

[G
eV

]

eB [GeV2]

(b)

<Pkinetic> = 0 GeV

<Pkinetic> = 2 GeV

<Pkinetic> = 4 GeV

<Pkinetic> = 8 GeV

 9.46

 9.47

 9.48

 9.49

 9.5

 9.51

 9.52

 9.53

 9.54

 9.55

 9.56

Υ
±

 m
as

s 
[G

eV
]

eB [GeV2]

(c)

<Pkinetic> = 0 GeV

<Pkinetic> = 2 GeV

<Pkinetic> = 4 GeV

<Pkinetic> = 8 GeV
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and 4(c) J=c� as a function of eB for hPkinetici 2
f0; 0:5; 1; 1:5g GeV using the charmonium-tuned parame-
ters listed in Appendix A Table III.3

For hPkinetici ¼ 0 GeV, we see the pattern expected,
namely that the �c mass is lowered due to spin mixing,
the J=c 0 mass increases for the same reason, and the
J=c� states are weakly affected. For Kx ¼ 0 and eB ¼
0:3 GeV2 one sees a 3.5% decrease in the mass of the �c.
For Kx ¼ 1:5 GeV, one sees an increase of 19% in the �c

mass. For the J=c states, the mass is a monotonically
increasing function of eB and hPkinetici. The maximum
mass increase is on the order of 31% for the J=c states.
Again assuming that to leading order the J=c production
cross section scales like M�2 one can estimate that this
would result in a maximum suppression of J=c by
approximately 42%, with the corresponding nuclear
suppression being RAA � 0:58.
In Fig. 5 we plot the �c triplet overlap probability as a

function of eB for hPkinetici 2 f0; 0:5; 1; 1:5g GeV. As we
can see from this figure, at LHC energies one estimates the
overlap probability to be approximately 32%. This per-
centage of �c states would be able to decay through
dilepton decay. Correspondingly, there would be a 32%
reduction in the dilepton decays from the J=c 0 state. The
J=c� states do not mix and would not have their dilepton
decay rate modified. Averaging over the three different
types of J=c states we would predict an approximately
11% suppression of J=c decays. The dileptons which
failed to come from the J=c 0 decays, would instead appear
at the mass of the �c state. This would manifest itself
through a peak in the dilepton spectrum at the �c invariant
mass. Regarding the feasibility of measuring this effect
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3For a comparison of the results obtained using the bottom-
tuned potential applied to charmonium states, see Fig. 6 in
Appendix A and the surrounding discussion.
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experimentally, the splitting between the �c and J=c
vacuum masses is approximately 113 MeV and the CMS
and ALICE experiments have a invariant mass resolution
on the order of 30 MeV [86,87]. As a result, it may be
possible to see hints of this effect in the charmonium
sector. To truly confirm this effect, however, it would
seem that either the detector resolution or the Crystal
Ball function would need to be improved upon.

IX. CONCLUSIONS

In this paper we have made a first investigation of the
effects of an external magnetic field on charmonium and
bottomonium states. We have taken into account the exter-
nal potential associated with the magnetic field, motional
effects, and the singlet-triplet mixing of states. We solved
the resulting three-dimensional Schrödinger equation
analytically for the case of a harmonic interaction and
numerically for a realistic quarkonium potential consisting
of a Cornell potential plus a spin-spin interaction. We
demonstrated that it is not possible to fully factorize the
Hamiltonian of the two-particle system in the presence of
the magnetic field. Instead, one can introduce a conserved
quantity called the pseudomomentum, K, which allows
one to write a compact ‘‘pseudopotential’’ for the system
which has a nontrivial dependence on the components
of K that are perpendicular to the magnetic field. We
then derived a general relation between the pseudomomen-
tum and the kinetic COM momentum of the system. For
the harmonic interaction, the latter relation could be de-
rived analytically for all states.

Herein we have considered states with COMmomentum
up to 1.5 GeV in the case of 1s J=c and 10 GeV in the case
of the �ð1sÞ. For J=c COM momentum larger than this
threshold we find that the state will dissociate in the
magnetic field (a similar conclusion but with a different
threshold was found in Ref. [62]); however, since our
results were derived in the context of a nonrelativistic
limit, one expects relativistic corrections to become
quantitatively important at large momenta. For this reason,
it seems necessary to reformulate the problem in a relativ-
istic framework if one wants to arrive at more reliable
conclusions about the phenomenological consequences
on J=c production. For � production, the threshold for
magnetic field dissociation is estimated to be on the order
of 20 GeV. At these high momenta, a relativistic treatment
of the COM motion is necessary; however, for the range of
� COM momenta considered herein a nonrelativistic
treatment should be reasonable. Our results indicated that
the maximal effect on � production is on the order of 2%
and, as a result, it is probably safe to ignore this effect on
these states. For both systems, in order to minimize the
effect of magnetic fields in experimental measurements
of quarkonium suppression, one can apply transverse
momentum cuts which eliminate states with high COM
momentum.

As part of the analysis we presented a quantitative
analysis of the effect of singlet-triplet spin mixing for
both charmonium and bottomonium 1s states. The effect
causes an increase in the mass of the j10i triplet state and a
decrease in the mass of the j00i state. In addition, because
of the mixing, some decays of the j10i will appear instead
at the mass of the j00i state; however, given the fact that the
splittings in the charmonium and bottomonium states are
on the order of 113 and 62 MeV, respectively, it does not
seem possible to use existing experimental configurations
to fully resolve this effect. With limited resolution, the
mixing would appear instead as a broadening of the triplet
state peak.
The estimates of the phenomenological effect of static

magnetic fields obtained herein are subject to two impor-
tant caveats: (1) our investigations were restricted to the
vacuum Cornell potential plus a spin-spin interaction and
(2) we did not investigate the effect on excited states.
Regarding caveat (1), in a future study we plan to include
finite-temperature effects on the potential (see e.g.
[88,89]) and to simultaneously include more realistic
vacuum potentials (see e.g. [90–94]). Since finite tem-
perature effects reduce the binding energy and cause the
states to be more extended in space, one can expect
a priori that the magnetic field effect will be larger at
finite temperature. Regarding caveat (2), we also plan a
thorough investigation of magnetic field effects on
excited states using realistic potential models. The effects
on excited states are expected to be more important than
on the ground state for two reasons: (a) excited states are
more extended in space and are therefore more sensitive
to the quadratic magnetic potential and (b) spin-mixing
effects grow larger as the angular momentum representa-
tion of the state increases. Since excited state feed-down
makes up on the order of 50% of both J=c and �
production, one expects this to affect the ground states
themselves.
Based on the two caveats laid out in the preceding

paragraph, we expect that our estimates of the effect of
static magnetic fields on heavy quarkonium production
are a lower bound. That being said, one should also take
into account the fact that the magnetic field generated in
a heavy ion collision is neither static nor constant in
space. One expects very strong magnetic fields only for
the first 1–2 fm=c after the initial nuclear impact and as
a result this would act to reduce the integrated magnetic
field effect. In addition, it will be necessary to make a
detailed investigation of the effect of magnetic field on
the string tension and finite-temperature screened
potential. We plan to investigate these effects in a future
study. In closing, we have demonstrated in this paper
that the effect of magnetic fields on heavy quarkonium,
particularly the J=c , warrants further investigation.
We have laid the ground work for such studies in the
paper.
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APPENDIX A: POTENTIAL TUNING

In this appendix we present comparisons of bottomo-
nium and charmonium state masses computed using the
model potential (55) and experimental data [85]. We
present results from the two different ‘‘tunings’’ which
are used in the body of the manuscript separately.

1. Bottom-tuned potential

In Table I we compare bottomonia experimental data
and the ‘‘bottom-tuned’’ potential model. The model re-
sults were computed on a lattice size of 2563 with lattice
spacing of a¼0:1GeV�1. The parameters used weremb¼
4:7GeV, �¼0:318GeV, �¼1:982GeV, �s¼0:315443,
and 
 ¼ 0:210 GeV2. Note that, since the potential model
used herein does not include spin-orbit or tensor interac-
tions, the model does not predict a splitting between the �
states. For these states, the error reported is computed from
the average of the experimental masses.

In Table II we compare charmonia experimental data
and the ‘‘bottom-tuned’’ potential model. The model
results were computed on a lattice size of 2563 with lattice
spacing of a ¼ 0:2 GeV�1. The parameters used were

mc ¼ 1:29 GeV, � ¼ 0:825 GeV, � ¼ 1:982 GeV,
�s ¼ 0:315443, and 
 ¼ 0:210 GeV2.

2. Charm-tuned potential

In Table II we present a second parameter tuning which
better reproduces the energy levels of low-lying charmo-
nium states. As can be seen from this table, even when
tuned to the charmonium states, the relative errors of the
heavy quark potential model spectra compared to experi-
mental data are larger than those obtained for bottomonium
states. This is to be expected and indicates that it is
necessary to include relativistic corrections to obtain a
more accurate reproduction of the spectrum of charmo-
nium states. Comparing the relative errors of charmonia
masses using the bottom-tuned and charm-tuned potential
we expect that the charm-tuned potential is a better
approximation than the bottom-tuned potential since the
singlet-triplet split is very close to the experimentally
determined splitting. That being said, we can use those
two tunings to assess the dependence of our results on the
assumed quark interaction potential. In Fig. 6 we show
the scaled masses and triplet overlap probabilities using the
two different tunings. In the figure, the bottom-tuned
results are indicated by ‘‘BT’’ and the charm-tuned results
by ‘‘CT.’’ As we can see from this figure, the results
obtained with the two different tunings are in qualitative
agreement; however, we reiterate that we expect the
charm-tuned results to be a better approximation.

TABLE I. Comparison of experimentally measured particle
masses from Ref. [85] for the bottomonium system with
‘‘bottom-tuned’’ model predictions obtained using the potential
model specified in Eq. (55). The parameters used were mb ¼
4:7 GeV, � ¼ 0:318 GeV, � ¼ 1:982 GeV, �s ¼ 0:315443,
and 
 ¼ 0:210 GeV2. In the case that there is no experimental
data, we indicate this with three centered dots. Experiment
(Exp.), Relative Error (Rel. Err.).

State Name Exp. [85] Model Rel. Err.

11S0 �bð1SÞ 9.398 GeV 9.398 GeV 0.001%

13S1 �ð1SÞ 9.461 GeV 9.461 GeV 0.004%

13P0 �b0ð1PÞ 9.859 GeV

9.869 GeV 0.21%
13P1 �b1ð1PÞ 9.893 GeV

13P2 �b2ð1PÞ 9.912 GeV

11P1 hbð1PÞ 9.899 GeV

21S0 �bð2SÞ 9.999 GeV 9.977 GeV 0.22%

23S1 �ð2SÞ 10.002 GeV 9.999 GeV 0.03%

23P0 �b0ð2PÞ 10.232 GeV

10.246 GeV 0.05%
23P1 �b1ð2PÞ 10.255 GeV

23P2 �b2ð2PÞ 10.269 GeV

21P1 hbð2PÞ � � �
31S0 �bð3SÞ � � � 10.344 GeV � � �
33S1 �ð3SÞ 10.355 GeV 10.358 GeV 0.03%

TABLE II. Comparison of experimentally measured particle
masses from Ref. [85] for the charmonium system with ‘‘bottom-
tuned’’ model predictions obtained using the potential model
specified in Eq. (55). The parameters used weremc ¼ 1:29 GeV,
� ¼ 0:825 GeV, � ¼ 1:982 GeV, �s ¼ 0:315443, and 
 ¼
0:210 GeV2. Experiment (Exp.), Relative Error (Rel. Err.).

State Name Exp. [85] Model Rel. Error

11S0 �cð1SÞ 2.984 GeV 3.048 GeV 2.2%

13S1 J=c ð1SÞ 3.097 GeV 3.100 GeV 0.11%

21S0 �cð2SÞ 3.639 GeV 3.721 GeV 2.3%

23S1 J=c ð2SÞ 3.686 GeV 3.748 GeV 1.7%

TABLE III. Comparison of experimentally measured particle
masses from Ref. [85] for the charmonium system with
‘‘charm-tuned’’ model predictions obtained using the potential
model specified in Eq. (55). The parameters used were mc ¼
1:29 GeV, � ¼ 2:06 GeV, � ¼ 1:982 GeV, �s ¼ 0:234, and

 ¼ 0:174 GeV2. Experiment (Exp.), Relative Error (Rel. Err.).

State Name Exp. [85] Model Rel. Error

11S0 �cð1SÞ 2.984 GeV 2.989 GeV 0.16%

13S1 J=c ð1SÞ 3.097 GeV 3.102 GeV 0.17%

21S0 �cð2SÞ 3.639 GeV 3.590 GeV 1.3%

23S1 J=c ð2SÞ 3.686 GeV 3.650 GeV 0.97%
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APPENDIX B: NUMERICAL METHOD

To solve the resulting Schrödinger equation we use the
finite difference time domain method [95–97]. Here we
briefly review the technique. To determine the wave func-
tions of bound quarkonium states, we must solve the time-
independent Schrödinger equation for the relative wave
function

Ĥrel��ðrÞ ¼ E���ðrÞ; (B1)

on a three-dimensional lattice in coordinate space. The
index � on the eigenfunctions, ��, and energies, E�,
represents a list of all relevant quantum numbers. To obtain
the time-independent eigenfunctions we start with the
time-dependent Schrödinger equation

i
@

@t
�ðx; tÞ ¼ Ĥrel�ðx; tÞ; (B2)

which can be solved by expanding in terms of the eigen-
functions, ��ðrÞ:

�ðr; tÞ ¼ X
�

c���ðrÞe�iE�t: (B3)

If one is only interested in the lowest energy states (ground
state and first few excited states) an efficient way to pro-
ceed is to transform (B2) and (B3) to Euclidean time using
a Wick rotation,  � it:

@

@
�ðr; Þ ¼ �Ĥrelc ðr; Þ; (B4)

and
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FIG. 6 (color online). Comparison of (a) �c, (b) J=c
0, and (c) J=c� masses divided by the eB ¼ 0 vacuum masses and (d) triplet

overlap probability as a function of eB for hPkinetici 2 f0; 0:5; 1:5g GeV. BT and CT indicate the results obtained using the bottom-
tuned (Table II) and charm-tuned (Table III) potentials, respectively.
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�ðr; Þ ¼ X
�

c���ðrÞe�E�: (B5)

For details of the discretizations used etc. we refer the
reader to Ref. [96].

1. Finding the ground state

By definition, the ground state is the state with the
lowest-energy eigenvalue, E0. Therefore, at late imaginary
time the sum over eigenfunctions (B5) is dominated by the
ground-state eigenfunction

lim
!1�ðr; Þ ! c0�0ðrÞe�E0: (B6)

Due to this, one can obtain the ground-state wave function,
�0, and energy, E0, by solving Eq. (B4) starting from a
random three-dimensional wave function,�initialðr; 0Þ, and
evolving forward in imaginary time. The initial wave
function should have a nonzero overlap with all eigenfunc-
tions of the Hamiltonian; however, due to the damping of
higher-energy eigenfunctions at sufficiently late imaginary
times we are left with only the ground state, �0ðrÞ. Once
the ground-state wave function (or any other wave func-
tion) is found, we can compute its energy eigenvalue via

E�ð ! 1Þ ¼ h��jĤj��i
h��j��i ¼

R
d3x�	

�Ĥ��R
d3x�	

���

: (B7)

2. Finding the excited states

The basic method for finding excited states is to first
evolve the initially random wave function to large imagi-
nary times, find the ground-state wave function, �0, and
then project this state out from the initial wave function
and reevolve the partial-differential equation in imaginary
time. However, there are (at least) two more efficient
ways to accomplish this. The first is to record snapshots
of the 3D wave function at a specified interval snapshot
during a single evolution in . After having obtained the
ground-state wave function, one can go back and extract
the excited states by projecting out the ground-state wave
function from the recorded snapshots of �ðr; Þ [95,96].

An alternative way to select different excited states is to
impose a symmetry condition on the initially random wave
function which cannot be broken by the Hamiltonian evo-
lution [96]. For example, one can select the first p-wave
excited state by antisymmetrizing the initial wave function
around either the x, y, or z axes. In the nonspherical case
this method can be used to separate the different excited
state polarizations in the quarkonium system and to deter-
mine their energy eigenvalues with high precision.

APPENDIX C: APPLICATION OF THE
SUDDEN APPROXIMATION

In this appendix we explore what happens to a system
which suddenly has a magnetic field turned on. We will

model this as being instantaneous in order to simplify the
treatment and restrict our attention to a linear combination
of 3D harmonic oscillator eigenstates since it is possible to
make much more analytic progress in this case. We start
by positing that for t < 0 there is no magnetic field and
that the system is subject only to an internal harmonic
interaction in which case the full state can be decomposed

in terms of the no-magnetic-field eigenstates �ð0Þ
k

�ðtÞ ¼X
k

ck�
ð0Þ
k e�iEð0Þ

k
t t < 0; (C1)

where k collects all relevant quantum numbers and the sum
represents a sum over discrete quantum numbers and in-
tegral for continuous quantum numbers. For t � 0 we can
expand in terms of the eigenstates in the presence of the

magnetic field �ð1Þ
m

�ðtÞ ¼ X
m

dm�
ð1Þ
m e�iEð1Þ

m t t � 0: (C2)

At t ¼ 0 we match the coefficients which requires

dn ¼
X
k

ckh�ð1Þ
n j �ð0Þ

k i: (C3)

1. Pure state for t < 0

If the state for t < 0 is a pure state with ck ¼ �km we

obtain dn ¼ h�ð1Þ
n j �ð0Þ

m i. We now turn to the computation
of the overlap integrals necessary for the case at hand. The
t < 0 states are

�ð0Þ
P;n0?n

0
z‘

0ðR; rÞ ¼ N ð0Þ�j‘0jei‘0�e�1
2�

2ð�2þz2Þ

�Hn0z
ð�zÞLj‘0j

n0?
ð�2�2ÞeiP�R; (C4)

where

N ð0Þ ¼ �j‘0jþ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

0
z�3=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0?!
n0z!ðj‘0j þ n0?Þ!

s
; (C5)

and the t � 0 states are

�ð1Þ
K;n?nz‘

ðR; rÞ ¼ N ð1Þ ~�j‘jei‘ ~�e�1
2�

2z2e�1
2�

2 ~�2
Hnzð�zÞ

� Lj‘j
n?ð�2 ~�2ÞeiðK�1

2qB�rÞ�R; (C6)

with

!c ¼ qB

mr

; �2 ¼mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ
!2

c

4

s
;

�2 ¼mr!0; ~�2 ¼ ðx��KyÞ2 þ ðyþ�KxÞ2;
~�¼ arctan

�
yþ�Kx

x��Ky

�
; �¼ !c

4mrð!2
0 þ!2

c=4Þ
;

(C7)

and
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N ð1Þ ¼ �j‘jþ1�1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nz�3=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n?!
nz!ðj‘j þ n?Þ!

s
: (C8)

The six-dimensional overlap integral in relative cylindrical
coordinates becomes

dn ¼ N ð0ÞN ð1Þ Z 1

0
�d�

Z 2�

0
d�

Z 1

�1
dz

�
Z

d3R�j‘0j ~�j‘jeið‘0��‘ ~�Þe��2z2e�1
2ð�2�2þ�2 ~�2Þ

�Hnzð�zÞHn0z
ð�zÞLj‘0j

n0?
ð�2�2Þ

� Lj‘j
n?ð�2 ~�2ÞeiðP�Kþ1

2qB�rÞ�R: (C9)

Using 1
2qB�r¼ 1

2qBð�y;x;0Þ¼ 1
2qB�ð�sin�;cos�;0Þ

and the orthonormality of the Hermite polynomials we
can perform the z and Z integrations. Using the exponen-
tial we can further perform the X and Y integrations. The
remaining two integrals are evaluated in Cartesian coordi-
nates. The result is

dn ¼ ~N nm

�
2

jqjB
�
2
�nzn

0
z
�ðPz � KzÞ�j‘0j ~�j‘jeið‘0��‘ ~�Þ

� e�1
2ð�2�2þ�2 ~�2ÞLj‘0j

n0?
ð�2�2ÞLj‘j

n?ð�2 ~�2Þ; (C10)

where

~N nm ¼ ð2�Þ3N ð0ÞN ð1Þ ffiffiffiffi
�

p
2nznz!=�

¼ 2ð2�Þ2�j‘jþ1�j‘0jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0?!n?!

ðj‘0j þ n0?Þ!ðj‘j þ n?Þ!

s
;

�2 ¼ x2 þ y2 ¼
�
2

qB

�
2½ðPx � KxÞ2 þ ðPy � KyÞ2�;

� ¼ arctan

�
y

x

�
¼ arctan

�
Px � Kx

Ky � Py

�
;

~�2 ¼
�
2

qB

�
2½ð�Ky � PyÞ2 þ ðPx � �KxÞ2�;

~� ¼ arctan

�
Px � �Kx

�Ky � Py

�
; (C11)

with � � ð8!2
0 þ!2

cÞ=ð8!2
0 þ 2!2

cÞ, which satisfies 1
2 

�  1. Note that the above definitions only apply for the

probability amplitude dn. For ~� and ~� in the wave func-
tion, we need to use the definitions in Eq. (C7).

2. Gaussian wave packet as initial condition

Let us consider that the initial condition is not a pure
state but instead a Gaussian linear combination

�ðtÞ ¼X
k

ck�
ð0Þ
k e�iEð0Þ

k
t; (C12)

where k ¼ ð‘; kz; k?;PÞ. We will assume that the system is
in a well-defined internal state ð‘0; n0z ; n0?Þ but has a spread
in COM momentum:

ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8�3=2


3

s
�‘0‘�n0zkz

�n0?k?
e�ðP�P0Þ2=ð2
2Þ: (C13)

In this case the coefficient dn is more complicated,

dn ¼ P
mcmh�ð1Þ

n j �ð0Þ
m i; however, we can use the pure

state result obtained previously

h�ð1Þ
n j �ð0Þ

m i ¼ ~N nm

�
2

jqjB
�
2
�nzn

0
z
�ðPz � KzÞ

� �j‘0j ~�j‘jeið‘0��‘ ~�Þe�1
2ð�2�2þ�2 ~�2Þ

� Lj‘0j
n0?

ð�2�2ÞLj‘j
n?ð�2 ~�2Þ; (C14)

with m ¼ ð‘0; n0z ; n0?;PÞ and n ¼ ð‘; nz; n?;KÞ.

3. Time evolution of the center-of-mass
kinetic momentum

We consider next the evolution of the COM kinetic
momentum after the magnetic field is applied. We seek
to evaluate hPkinetici ¼ h�ðtÞjPkineticj�ðtÞi for t > 0,

h�ðtÞjPkineticj�ðtÞi
¼ X

m;n

d	mdnh�ð1Þ
m jPkineticj�ð1Þ

n ie�iðEð1Þ
n �Eð1Þ

m Þt; (C15)

where m ¼ ð‘0; n0z; n0?;K0Þ, n ¼ ð‘; nz; n?;KÞ, and
X
m

� X1
n0z¼0

X1
‘0¼�1

X1
n0?¼0

Z d3K0

ð2�Þ3 ;

X
n

� X1
nz¼0

X1
‘¼�1

X1
n?¼0

Z d3K

ð2�Þ3 ;
(C16)

h�ð1Þ
m jPkineticj�ð1Þ

n i ¼ h�ð1Þ
m jK� qB� rj�ð1Þ

n i
¼ K�mn � qBh�ð1Þ

m

��������
�
�~� sin ~�

þ c

a
; ~� cos ~�þ b

a
; 0

����������ð1Þ
n i; (C17)

where �mn ¼ �‘0‘�n0znz�n0?n?
�K0K, �K0K � ð2�Þ3�3�

ðK0 �KÞ, and we remind the reader that a ¼ mrð!2
0 þ

!2
c=4Þ, b ¼ !cKy=4, c ¼ !cKx=4. Considering the sec-

ond term we have�
�h�ð1Þ

m j~� sin ~�j�ð1Þ
n i

þ c

a
�mn; h�ð1Þ

m j~� cos ~�j�ð1Þ
n i þ b

a
�mn; 0

�
: (C18)

To proceed, we first consider Jþmn � h�ð1Þ
m j~�ei ~�j�ð1Þ

n i and
J�mn � h�ð1Þ

m j~�e�i ~�j�ð1Þ
n i. For ‘ � 0,

Jþmn ¼ �K0K�n0znz�‘0;‘þ1

�

�
h
�n0?n?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ ‘þ 1

p � �n0?;n?�1

ffiffiffiffiffiffiffi
n?

p i
: (C19)
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For ‘  �1,

Jþmn ¼ �K0K�n0znz�‘0;‘þ1

�

�
h
�n0?n?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? � ‘

p � �n0?;n?þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ 1

p i
: (C20)

For ‘ � 1,

J�mn ¼ �K0K�n0znz�‘0;‘�1

�

�
h
�n0?n?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ ‘

p � �n0?;n?þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ 1

p i
: (C21)

For ‘  0,

J�mn ¼ �K0K�n0znz�‘0;‘�1

�

�
h
�n0?n?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? � ‘þ 1

p � �n0?;n?�1

ffiffiffiffiffiffiffi
n?

p i
: (C22)

With these we have determined

h�ð1Þ
m j~� sin ~�j�ð1Þ

n i ¼ 1

2i
ðJþmn � J�mnÞ � Smn;

h�ð1Þ
m j~� cos ~�j�ð1Þ

n i ¼ 1

2
ðJþmn þ J�mnÞ � Cmn:

(C23)

To evaluate h�ðtÞjPkineticj�ðtÞi we will need

X1
‘¼�1

X1
n?¼0

X1
‘0¼�1

X1
n0?¼0

Z
K0

d	mdnJ�mne
�iðEð1Þ

n �Eð1Þ
m Þt

¼ 1

�

X1
‘¼0

X1
n?¼0

h
d	�ð‘þ1Þ;n?d�‘;n?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ ‘þ 1

p
ei�

2t=mr

� d	�ð‘þ1Þ;n?�1d�‘;n?
ffiffiffiffiffiffiffi
n?

p
e�i�2t=mr

i
þ 1

�

X1
‘¼1

X1
n?¼0

h
d	�ð‘�1Þ;n?d�‘;n?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ ‘

p
e�i�2t=mr

� d	�ð‘�1Þ;n?þ1d�‘;n?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ 1

p
ei�

2t=mr

i
; (C24)

where we have used Eq. (38).
To proceed we note that d	‘;n?d‘0;n0? ¼ d	�‘0;n0?

d�‘;n? .

Now we have after some work

X1
‘¼�1

X1
n?¼0

X1
‘0¼�1

X1
n0?¼0

Z
K0

d	mdnðJþmn � J�mnÞe�iðEð1Þ
n �Eð1Þ

m Þt

¼ 2

�

X1
‘¼0

X1
n?¼0

h
ðd	�‘;n?d�‘�1;n? � d	‘;n?d‘þ1;n?Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ ‘þ 1

p � ðd	�‘;n?þ1d�‘�1;n?

� d	‘;n?þ1d‘þ1;n?Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n? þ 1

p i
cos ð�2t=mrÞ: (C25)

Using d‘;n? ¼ R
d2P?m‘;n? with

m‘;n? ¼
~N

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffi
8�3=2


3

s �
2

jqjB
�
2
�n0znz

e�ðKz�P0
z Þ2=ð2
2Þ

� e�ðP?�P0
?Þ2=ð2
2Þ�j‘0j ~�j‘jeið‘0��‘ ~�Þe�1

2ð�2�2þ�2 ~�2Þ

� Lj‘0j
n0?

ð�2�2ÞLj‘j
n?ð�2 ~�2Þ; (C26)

~N ¼2ð2�Þ2�j‘jþ1�j‘0jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0?!n?!

ðj‘0jþn0?Þ!ðj‘jþn?Þ!

s
; (C27)

and a recurrence relation for the Laguerre polynomials one
obtains in the end

hPkinetici ¼
X1
nz¼0

X1
n?¼0

X1
‘¼�1

Z d3K

ð2�Þ3d
	
ndn

�
K�qB

�
c

a
;
b

a
;0

��

�2qBcos ð�2t=mrÞ
X1
nz¼0

X1
n?¼0

X1
‘¼0

Z d3K

ð2�Þ3d
	
‘;n?

�
Z
d2P?m‘;n? ~�ð�sin ~�;cos ~�;0Þ: (C28)

Focusing on the second term, we need to evaluate

X1
nz¼0

X1
n?¼0

X1
‘¼0

Z d3K

ð2�Þ3d
	
‘;n?

Z
d2P?m‘;n? ~�ð�sin ~�;cos ~�;0Þ:

(C29)

The summation over nz and integration over Kz can be
done analytically. Next, we change integration variables

from ðK?;P?Þ to ð�;�; ~�; ~�Þ and use the completeness of
the Laguerre polynomials to eliminate the summation over
n?. Now, one of the integrals over ~� and the summation
over ‘ can be done analytically. The remaining five inte-
grals are evaluated numerically and found to converge to
zero. We now have

hPkinetici ¼
X1
nz¼0

X1
n?¼0

X1
‘¼�1

Z d3K

ð2�Þ3d
	
ndn

�
K�qB

�
c

a
;
b

a
;0

��

¼ 4!2
0

4!2
0þ!2

c

X1
nz¼0

X1
n?¼0

X1
‘¼�1

Z d3K

ð2�Þ3d
	
ndnK?

þ ẑ
X1
nz¼0

X1
n?¼0

X1
‘¼�1

Z d3K

ð2�Þ3d
	
ndnKz: (C30)

Again, the summation over nz and integration over
Kz can be done analytically. We change variables, use the
completeness of the Laguerre polynomials, and do one of
the integrals over ~�. Now, we use the completeness of the

azimuthal modes and do one of the integrals over ~�,
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0
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:

(C31)

Using Px ¼ ��ð�y� ~yÞ, Py ¼ �ð�x� ~xÞ, Kx ¼ ��ðy� ~yÞ, Ky ¼ �ðx� ~xÞ, and the orthogonality of the Laguerre
polynomials, the remaining integrals can be done analytically. The final result is

hPkinetici ¼
�

4!2
0

4!2
0 þ!2

c

P0
x;

4!2
0

4!2
0 þ!2

c

P0
y; P

0
z

�
: (C32)
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