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A supersymmetric version of the recently proposed reduced minimal 331 model is considered and its

Higgs sector is investigated. We focus on the mass spectrum of the lightest scalars of the model. We show

that the Higgs mass of 125 GeV requires substantial radiative corrections. However, stops may develop

small mixing and must have a mass around TeV. Moreover, some soft supersymmetry breaking terms may

lie at the electroweak scale, which alleviates some tension concerning the fine-tuning of the related

parameters. The lightest doubly charged scalar may have a mass of around a few hundreds of GeV, which

can be probed at the LHC, while the remaining scalars of the model have masses at the TeV scale.
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I. INTRODUCTION

It seems that the ultimate block of the standard model
(SM) of particle physics was finally detected in the CERN
Large Hadron Collider (LHC) by ATLAS and CMS experi-
ments [1]. Both experiments recently reported the detec-
tion of a new particle with a mass of around 125 GeV.
Fitting to all available collider data suggests that the dis-
covered particle is, indeed, the elusive Higgs boson.

It is well accepted that the SM is not the final answer in
particle physics. A couple of experimental results as, for
example, neutrino oscillation [2], dark matter [3], etc.,
require an extension of the SM. From the theoretical
side, the SM also suffers from incompleteness once it is
not able to explain problems like the hierarchy problem,
family replication, and so on. Thus, we see that at the
moment we have experimental and theoretical reasons to
go beyond the SM.

Among the alternatives to the SM, there is supersym-
metry (SUSY), which has been fascinating physicists for
more than three decades. The reasons behind the great
interest in SUSY lies in the fact that it is an attractive
solution to the hierarchy problem by entangling fermions
and bosons, and then justifying the presence of fundamen-
tal scalars in the spectrum. Besides, it allows unification of
the coupling constants and predicts a light Higgs boson to
engender the electroweak symmetry breaking [4]. In the
most popular low energy SUSY model, the minimal super-
symmetric standard model (MSSM), a 125 GeV Higgs
mass requires substantial loop contributions once a
SM-like Higgs mass is upper bounded by MZ cos 2� at
tree level. A great number of papers analyzing MSSM’s
parameter space to reproduce LHC data were published in
the last year, showing that, although very restrictive, there

is still enough room in the parameter space for a light
Higgs boson [5].
On the other hand, in a class of gauge models based on

the SUð3ÞC � SUð3ÞL �Uð1ÞN (331) gauge symmetry,
anomaly cancellation requires the existence of at least
three families of fermions [6]. Consequently, the super-
symmetric versions of these gauge models would solve the
hierarchy problem and family replication altogether.
Recently it was shown that the so-called minimal 331
models may be implemented with two Higgs triplets only
[7]. The model is very short and predictive in its scalar
spectrum, compared to the original version [6]. It was
called the reduced 331 model and some of its phenome-
nology was developed in Ref. [8]. Curiously, the scalar
content that survives the reduction has the appropriate
quantum numbers to be supersymmetrized, without the
need of extra multiplets employed in the first SUSY ver-
sions of the minimal 331 model [9,10]. Actually, while we
were working on this model, the authors in Ref. [11] also
observed this, although their model, as well as results and
conclusions, differ in some crucial points from ours as we
will remark later. There is an additional issue that moti-
vates the supersymmetrization of this model; namely, the
nonsupersymmetric version of minimal 331 has no natural
candidate for cold dark matter,1 while such a candidate is
natural in its SUSY version once R parity is present.
In this work we develop the SUSY version of the

reduced 331 model. We focus on the scalar spectrum of
the model and give particular emphasis on the Higgs boson
that arises in its spectrum. Our main result is that the
stability of the vacuum imposes a Higgs mass upper
bounded <90 GeV at tree level. We calculated the radia-
tive corrections that lift this mass to 125 GeV. We also
obtained the masses of the lightest charged scalars.
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1Although there is a claim in Ref. [12] that a stable self-
interacting dark matter candidate exists in the minimal 331
model, it is easy to show that the lack of a symmetry to guarantee
its stability allows us to write down effective operators that are
not sufficiently suppressed to avoiding its decay.
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II. THE ESSENCE OF THE REDUCED
SUSY331 MODEL

In order to implement the supersymmetric version of a
certain model, we have to promote its fields to superfields.
In this way, the leptons in the reduced SUSY 331
(RSUSY331) model compose three chiral left-handed lep-
ton superfields denoted by

L̂ L ¼
�̂l

l̂
l̂c

0
@

1
A

L

� ð1; 3; 0Þ; (1)

where l ¼ e, �, �. Notice that the presence of a
right-handed component of the charged lepton field in the
multiplet allows us to dispose of singlet [under SUð3ÞL]
right-handed leptons.

For the chiral left-handed quark superfields, the first
family comes in a triplet representation, while the second
and third families come in antitriplet representations, while
their right-handed partners are arranged in singlets as
denoted below:
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Ĵi

0
BB@

1
CCA

L

�
�
3;3�;�1

3

�
;
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with i ¼ 2, 3. Here, the extra quarks Ji and J1 are exotic
ones with electric charges �4=3 and þ5=3, respectively.

The scalar sector of the reduced 331 model is composed
by two Higgs triplets. Consequently, anomaly cancellation
requires that its supersymmetric version possess four chiral
left-handed Higgs superfields,
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These scalar superfields are not enough to render the
correct mass pattern for all fermion fields through the
superpotential though. Nevertheless, we recall that this
class of 331 models possesses a Landau pole around 4 to
5 TeV [13], becoming strongly interacting before that
point. Throughout this work we assume that the highest
energy scale where the model is found to be perturbatively
reliable is � ¼ 5 TeV. This is welcome information since

it allows us to make use of effective operators to comple-
ment that part of the mass spectrum not obtained from the
renormalizable superpotential. That being said, the super-
potential2 capable of generating the correct masses of the
charged fermions in the RSUSY331 model is composed by
the following terms:

f̂ ¼ f̂0 þ f̂E:O:; (4)

where

f̂ 0 ¼ �J
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and

f̂ E:O: ¼
ku1a
�

"nmpðQ̂1Ln�̂m�̂pÞûcaL
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As before, i, j ¼ 2, 3 and a ¼ 1, 2, 3 are family index
labels.
The soft SUSY breaking terms of the model are

given by
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The parameters in the bilinear terms on scalar fields have
mass dimension two. Trilinear terms in the soft breaking
Lagrangian, bilinear terms in superpotential and gaugino
mass terms all have parameters with a mass dimension of
one. All the other parameters are dimensionless.
Considering the spontaneous breaking of the gauge

symmetries, by supposing that h�i; h�0i � h�i; h�0i, we
get the following breaking sequence:

SUð3ÞL �Uð1ÞX )h�i;h�0i
SUð2ÞL �Uð1ÞY )h�i;h�0i

Uð1ÞQED:

2Our superpotential (and soft SUSY breaking terms) is very
distinct from that in Ref. [11], mainly because we assume the
usual R parity as the MSSM, since lepton and baryon numbers
are conserved in all interactions due to the association of the
leptonic number with some fields, called bileptons. Such bilep-
tons are those scalar and vector fields which connect the first or
second components of lepton fields in the triplets to the third
one.
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This spontaneous symmetry breakdown is appropriate to
give masses to the gauge bosons, V�, U��, W�, Z0, Z,
which are encoded in the following expressions:

M2
W� ¼ g2

4
ðv2

� þ v2
�0 Þ;

M2
Z ¼ g2

4

ð1þ 4t2Þ
ð1þ 3t2Þ ðv

2
� þ v2

�0 Þ;

M2
Z0 ¼ g2

3
ð1þ 3t2Þðv2

� þ v2
�0 Þ;

M2
U�� ¼ g2

4
ðv2

� þ v2
�0 þ v2

� þ v2
�0 Þ;

M2
V� ¼ g2

4
ðv2

� þ v2
�0 Þ;

(8)

where we have denoted h�i ¼ v�, h�0i ¼ v�0 , h�i ¼ v�,

h�0i ¼ v�0 , t ¼ gN
g , with gN being the coupling constant

associated to the gauge group Uð1ÞN and g is the gauge
coupling for the SUð3ÞL gauge group [and also for the SM
SUð2ÞL, which is embedded in it]. As it should be, one of
the gauge bosons remains massless, the photon, A�. It turns

out that in order to recover the correct electromagnetic
coupling in the neutral currents involving the photon, we
get the relation between the electric charge e and the 331
model gauge couplings [6],

e ¼ g
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t2
p 	 g sin 	W; (9)

where 	W is the usual electroweak mixing angle. This
promptly leads to the correct phenomenological observa-
tion concerning the ratio of the massive weak gauge bosons
in Eq. (8),

M2
W�

M2
Z

¼ ð1þ 3t2Þ
ð1þ 4t2Þ ¼ cos 2	W: (10)

The masses of the charged leptons are obtained strictly
from effective operators in the last term of the superpoten-
tial, Eq. (6),

m‘ ¼ kl
2�

v�0v�0 : (11)

Regarding the quark masses, the superpotential in
Eq. (5) along with the first two terms in Eq. (6) provide
the following mass matrices for the up-type quarks in the
basis ðu1; u2; u3Þ:

Mu ¼
� ku11

� v�v� � ku12
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and for the down-type quarks in the basis ðd1; d2; d3Þ,

Md ¼
�0
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13v�0
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0
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1
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We can naturally assign the values of �, v� and v�0

around TeV scale, while v� and v�0 lie in the electroweak

scale and obey the bound v2
� þ v2

�0 ¼ 2462 GeV2. Thus,

for typical values of the Yukawa couplings, we can easily
obtain the observed masses for all standard charged
fermions.

III. SCALAR SECTOR

In supersymmetric models the scalar sector receives
contributions from three different sources that add up to
form the scalar potential. These contributions are

VF ¼ X
i

��������@f̂

@Si

��������
2

Ŝ¼S
; (14)

VD ¼ 1
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X
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�X
i
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�
2
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and
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0y�0 þm2
3�

y�þm2
4�

0y�0

� b�
ab�
a�0b � b�
ab�

a�0b; (16)

where the summation index i runs over all scalars, � runs
through the different symmetry groups, and A through the
group generators.
Working out the indices, we have

VF ¼ �2
�j�j2 þ�2

�j�0j2 þ�2
�j�j2 þ�2

�j�0j2 (17)

and

VD ¼ g2

2
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0 þ �ytA�� �0yt�A�
0Þ2

þ g2N
2
ð�y�� �0y�0 � �y�þ �0y�0Þ2: (18)

The scalar potential is the sum of the above three con-
tributions:

V ¼ VF þ VD þ Vsoft: (19)

By performing the usual shift on the neutral scalars
displaced by their respective vacuum expectation values,

�0; �00; �0; �00 ! 1ffiffiffi
2

p ðv�;�0;�;�0 þ R�;�0;�;�0 þ iI�;�0;�;�0 Þ;
(20)

the set of minimum conditions is given by
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With this set of constraint equations, we are able to
obtain the texture of the scalar mass matrices in the model.

We start with the CP-odd scalars, that lead to two 2� 2
mass matrices. The first one, in the basis ðI�; I�0 ÞT , takes
the form

v�0b�
2v�

b�
2

b�
2

v�b�
2v�0
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CA; (22)

while the second one, in the basis ðI�; I�0 ÞT , takes the form,
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v�b�
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0
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1
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Both matrices in Eqs. (22) and (23) have the same
pattern and are easily diagonalized, providing the follow-
ing eigenvalues:

M2
A ¼ ðv2

�0 þ v2
�Þb�

v�v�0
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M2
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ðv2
�0 þ v2

�Þb�
v�v�0

;

M2
G ¼ M2
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(24)

whose eigenstates are respectively given by

A ¼ v�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�0
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(25)

where A and A0 are the massive CP-odd states and G and
G0 are the Goldstone bosons eaten by the neutral gauge
bosons Z and Z0.

For the singly charged scalars we also have two 2� 2
mass matrix. The first one, in the basis ð�þ; �0þÞT , takes
the form,
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while the second one, in the basis ð�þ; �0þÞT is
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These two matrices have eigenvalues,
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with the respective eigenvectors,
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�0
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(29)

where MV and MW stand for the gauge boson masses in
Eq. (8). As can be seen, there are two Goldstone bosons,
those eaten by the two singly charged gauge bosons.
For the doubly charged scalars, we are going to

have a 4� 4 mass matrix which, in the basis
ð�þþ; �0þþ; �þþ; �0þþÞT , takes the form
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To obtain analytical eigenvalues and eigenstates for this matrix is a somewhat cumbersome task that we will not follow.
However, its determinant is equal to zero, which provides (after a thorough numerical analysis of all the eigenvalues) only
one null eigenvalue that will be the Goldstone eaten by the gauge boson Uþþ. Later, in the next section, when we have
specified some of the model parameters, we will present the range of mass values for the lightest doubly charged scalar,
which will be around some few hundreds of GeV.

Let us finally focus on theCP-even scalars. Considering the basis ðR�; R�0 ; R�; R�0 ÞT , its mass matrix takes the following
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where

tan� ¼ v�

v�0
; (32)

and v is the SM electroweak symmetry breaking scale
given by v2 ¼ v2

� þ v02
� . From this mass matrix we are

going to have four massive scalars, from which the lightest
one reproduces the properties of the SM Higgs, which we
assume as the scalar boson recently found in the LHC. In
order to guarantee that such a scalar plays the role of a
Higgs boson, we are going to demand throughout this work
that its eigenstate is at least 95% composed of the real part
of �0. This is mandatory to certify that such a CP-even
scalar behaves very much like the SM Higgs boson, since
the two first components of the triplet � mimics the SM
Higgs doublet in the context of the minimal 331 model.
Besides, this choice assures us that its branching ratios to
SM particles are basically the same as those computed in
Refs. [14,15], except for some minor corrections coming
from the extra particles in the SUSY spectrum (an analysis
we are going to pursue somewhere else). In the next section
we study the behavior of the lightest scalars of the model.

IV. HIGGS PHENOMENOLOGYAND
SCALAR SECTOR

To assess the capability of this model to reproduce the
results of the ATLAS and CMS Collaborations [1], it will
be necessary to define the parameter space responsible for

the Higgs mass. As can be seen from the mass matrices of
all scalars of the model, there are five free parameters
ð�; v�; v�0 ; b�; b�Þ that define their eigenvalues. Before

proceeding further, it is necessary to call the attention to
some features of the RSUSY331 model: First of all,
charged lepton masses, through Eq. (11), impose restric-
tions to v�0 and v�0 in order to avoid entering some non-

perturbative regimewhere kl >
ffiffiffiffiffiffiffi
4�

p
, a worry only justified

for the case of the tau lepton. Second, we establish that
v2
� þ v2

�0 ¼ v2
331, where v331 is the energy scale character-

istic of the 331 spontaneous symmetry breakdown. It is
important to notice that v331 should not exceed the cutoff
scale (�), otherwise the theory would fall in the nonper-
turbative regime concerning the Uð1ÞN gauge coupling.
Third, the soft SUSY breaking parameters, b� and b�,

have a mass dimension of two and we can think of it as a
product of two mass scales of the order of SUSY breaking,
that is, b�; b� �M2

SUSY. Assuming that the SUSY breaking

scale is, roughly speaking, of the order of a few TeV, the
range of these two parameters can be set, without loss of
generality, to

10 5 GeV2 < b�; b� 
 106 GeV2: (33)

Lastly, we will require that the squared masses of all
scalars of the model be real and positive. This condition
restricts b� and b� in a way that tachyons are not present in

the scalar spectrum, a problem that had to be circumvented
in Ref. [11] at the expense of having two massless doubly
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charged scalars in the spectrum, something we definitely
do not desire to happen in our model.3 The choice of the
range of parameters made in Eq. (33) already satisfies this
condition. For the other parameters of the model, we con-
sider that they vary inside the following range of values:

1000 GeV 
 v331 
 4500 GeV; (34)

0:1 
 k� 
 0:9; (35)

0<�<
�

2
: (36)

In Figs. 1 and 2 we show the behavior of the lightest
scalar mass mh at tree level with the free parameters of the
model.
Perceive that we have the upper bound of mh < 90 GeV

at tree level. This recovers, in part, the behavior of the
Higgs in the MSSM and is consistent with the previous
estimate in an enlarged version of this model [9]. Thus, we
conclude that this scalar should play the role of the Higgs
in the RSUSY331 model. Hence, a Higgs with mass of
125 GeV, as measured by CMS and ATLAS, demands
substantial contribution from radiative corrections, as is
the case for the MSSM. We stress that classical conditions
for the stability of the potential and absence of tachyons in
our model refrain the mass of the Higgs in the RSUSY331
model from going beyond 90 GeV at tree level. In this
sense, it turns imperative to analyze the main loop contri-
butions to the mass of the Higgs in the RSUSY31 model.
As is widely known, the stop gives the main contribution to
the Higgs mass. In our case, the stop loop correction to the
Higgs mass will be calculated using the effective potential
approach [16]. For this we first have to evaluate the mass
matrix of the stops. This is given by

m2
t þm2

Q3
þ 1

3

�
g2

2 þ g2N

�
�v� mtXt

mtXt m2
t þm2

u3 þ 2
3g

2
N�v�

0
B@

1
CA;

(37)

where D-terms which contribute minimally were neglected.
Its eigenvalues are

m2
~t1
¼ m2

t þ 1

2

�
m2

Q3
þ 1

3

�
g2

2
þ g2N

�
�v�

�
þ 1

2

�
m2

u3 þ
2

3
g2N�v�

�

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
m2

Q3
þ 1

3

�
g2

2
þ g2N

�
�v�

�
�

�
m2

u3 þ
2

3
g2N�v�

��
2 þ 4m2

t X
2
t

s
; (38)

m2
~t2
¼ m2

t þ 1

2

�
m2

Q3
þ 1

3

�
g2

2
þ g2N

�
�v�

�
þ 1

2

�
m2

u3 þ
2

3
g2N�v�

�

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
m2

Q3
þ 1

3

�
g2

2
þ g2N

�
�v�

�
�

�
m2

u3 þ
2

3
g2N�v�

��
2 þ 4m2

t X
2
t

s
; (39)

where mQ3
and mu3 are soft SUSY breaking terms given in Eq. (7), �v� ¼ 1

2 ðv2
� � v2

�0 Þ and Xt ¼ At þ�� cot� is the

mixing parameter between ~tL and ~tR [we have identified At 	 Au
33 from Eq. (7)]. It is opportune to remark that Eq. (40)

dictates that the lightest stop is ~t1.

FIG. 1 (color online). Values of tan� compatible with tree-
level Higgs mass mh > 60. As can be seen, there is a maximum
value of mh given the assumptions made, where tan� � 5.

3We guess that such differences between these models may be related to the different R-parity symmetries chosen, besides some
terms in the SUSY soft breaking Lagrangian as well as in the superpotential.
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In a first approximation, the mass matrix of the CP-even scalars given in Eq. (31) gets one-loop corrections only in the
entries 11, 12, and 22, which are


M11 ¼
3GFm

4
t cosec

2�

�
AtðAt þ�� cot�Þ ln

�
m4

~t2

m4
~t1

�
� ðm2

~t2
�m2

~t1
Þ ln

�
m4

t

m2
~t1
m2

~t2

��
2

ffiffiffi
2

p
�2ðm2

~t2
�m2

~t1
Þ

þ
3GFm

4
t A

2
t ðAt þ�� cot�Þ2cosec2�

�
2m2

~t2
� 2m2

~t1
� ðm2

~t2
þm2

~t1
Þ ln

�
m2

~t2

m2
~t1

��
2

ffiffiffi
2

p
�2ðm2

~t2
�m2

~t1
Þ3 ; (40)


M12 ¼
3GFm

4
t �

2
�ðAt þ�� cot�Þ2cosec2� ln

�
m2

~t2

m2
~t1

�
2

ffiffiffi
2

p
�2ðm2

~t2
�m2

~t1
Þ

þ
3GFm

4
t At��ðAt þ�� cot�Þ2cosec2�

�
2m2

~t2
� 2m2

~t1
� ðm2

~t2
þm2

~t1
Þ ln

�
m2

~t2

m2
~t1

��
2

ffiffiffi
2

p
�2ðm2

~t2
�m2

~t1
Þ3 ; (41)


M22 ¼
3GFm

4
t �

2
�ðAt þ�� cot�Þ2cosec2�

�
2m2

~t2
� 2m2

~t1
� ðm2

~t2
þm2

~t1
Þ ln

�
m2

~t2

m2
~t1

��
2

ffiffiffi
2

p
�2ðm2

~t2
�m2

~t1
Þ3 : (42)

FIG. 2 (color online). Behavior of the free parameters compared with the Higgs mass mh. The 331 breaking scale v331 must have the
highest possible value to achieve the highest tree-level mass for the Higgs boson (top left); The � lepton Yukawa coupling k� must be
greater than 0.5 to reach the maximum value of the Higgs mass (top right);. Although b� must be greater than 5� 105 GeV2 to have

the highest Higgs mass (bottom left), b� is insensitive to such mass limit (bottom right).
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We will reanalyze the mass matrix in Eq. (31) but are
now taking into account the above corrections. However,
we select values of the free parameters that maximize the
value ofmh at tree level, as well as impose that the Higgs is
more than 95% composed of �0, meaning that our analysis
is now restricted to a narrower range of values of the
parameters that enter in the calculations, namely,

2500 TeV 
 v331 
 4500 TeV; (43)

1<�< 1:56; (44)

k� ¼ 0:5; (45)

10 5 GeV2 < b�; b� 
 106 GeV2: (46)

We have also chosen the soft breaking stop mass, mQ3
and

mu3 , between 100 GeV and 1.5 TeV, and the trilinear soft
breaking parameter �2 TeV< At < 2 TeV.

On considering all these assumptions, we are able to
present the stop mass and mixing necessary to fit the recent

data reported by the CMS and ATLAS experiments. In
Fig. 3 we present the behavior of the lightest stop in
function of their mixing.
With all the restrictions imposed by the model to deter-

mine the parameter space in Eqs. (43) through (46), the
lightest stop cannot be as light as 1180 GeV and may
explain why no sign of such particles was discovered in
the accelerators so far, differently from the MSSMwhere it
can be as light as a few hundreds of GeV and, therefore,
capable of being detected nowadays. However, the stop
mixing can be small and even negligible if the stop mass is
higher than 1750 GeV. If we focus on Eq. (40), we can see
that, even if the soft breaking parameters were of the order
of hundreds of GeV, we would have a stop mass above TeV
because the�v� term will drive the stop masses to the TeV

scale. Moreover, the stop soft mass parameters can be as
low as 100 GeV. This is interesting because it requires less
fine-tuning compared to the MSSM [17]. For the sake of
completeness, in Fig. 4 we present the behavior of the
lightest stop mass in function of tan� and compare it
with the mass of the heaviest stop.

FIG. 4 (color online). Comparison of the lightest stop mass with tan� and the heaviest stop mass. (left) tan� must lie between 1.5
and 2.5 to be in agreement with the Higgs mass constraint. (right) The heaviest stop must be heavier than m~t2 � 1625 GeV, for the

smallest light stop mass m~t1 � 1180 GeV.

FIG. 3 (color online). Stop mass and mixing necessary to obtain a Higgs mass in the region 124:5 GeV 
 mh 
 126:8 GeV.
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On regarding the other scalars of the model, we present
the behavior of the lightest singly and doubly charged
scalars and the CP-odd one. Figure 5 tells us that these
scalars, with the exception of the doubly charged one, lie at
the TeV scale. As a nice result, observe that the mass
of the doubly charged scalar may be as low as 250 GeV,
which can be probed in the LHC. Such a probe can be
made analyzing its decay, given by last term of Eq. (6),
which contributes with a coupling proportional to
eiRH

��ðecÞiL þ H:c. (i being the family index), therefore

mainly decaying into two same-sign taus as in Ref. [15].4

V. CONCLUSIONS

In this work we have developed the scalar sector of the
recently proposed RSUSY331 model, concentrating on the
mass of the Higgs boson, which we enforced to almost
match the SM one. We have shown that, similarly to the
MSSM case, a Higgs with a mass of 125 GeV requires
robust radiative corrections. However, differently from the
MSSM case, the radiative corrections require stops with
the mass at the TeV scale, but with small mixing.
Moreover, the soft breaking mass terms are free to be as

light as hundreds of GeV. This is nice because we can avoid
substantial fine-tuning, differently from the MSSM.
The model predicts that the lightest doubly charged

scalar has a mass at the electroweak scale which can be
probed at the LHC. The remaining scalars of the model
must have masses at the TeV scale. Most importantly, our
framework naturally avoid tachyons or unwanted massless
charged scalars in its spectrum compared to Ref. [11].
Another interesting phenomenological aspect of this model
not discussed here is the decay of the exotic quarks into SM
quarks and vector bileptons (see Ref. [19]). Finally, this
SUSY version of the minimal 331 has a reduced scalar
sector suitable to perform further phenomenological analy-
sis and the lightest supersymmetric particle can be the dark
matter candidate, not present in the nonsupersymmetric
version, which is an issue to be investigated somewhere
else.
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FIG. 5 (color online). CP-odd, singly and doubly charged scalars masses. (top left) The CP-odd scalar mass must lie between 1125
and 1700 GeV for 1:5< tan�< 2:5. (top right) For tan� in the same range, the doubly charged Higgs mass lies between 25 and
650 GeV. (bottom) As is expected in a decoupled Higgs sector, the singly charged scalar is almost perfectly degenerate with the
CP-odd one as predicted by Eq. (28).

4For more references on bilpetons and their possible cou-
plings, see Ref. [18].
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