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Lorentz violation in a uniform Newtonian gravitational field
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Lorentz invariance is one of the fundamental principles of physics, and, as such, it must be
experimentally tested. The purpose of this work is to obtain, within the Standard-Model Extension, the
dynamics of a Lorentz-violating spinor in a uniform Newtonian gravitational field. This is achieved by
treating the spinor as a test particle and introducing the gravitational field through a uniformly accelerated
observer. The nonrelativistic Hamiltonian is obtained, and some experimental consequences are discussed.
One unexpected outcome of this work is that the gravitational field helps disentangle bounds on

coefficients for Lorentz violation.
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L. INTRODUCTION

Lorentz invariance is part of the foundation of modern
physics rendering its empirical validation extremely
important. The Standard-Model Extension (SME) is a
framework within effective field theory [1] that incorpo-
rates all possible Lorentz- (and CPT [2]) violating exten-
sions to General Relativity and the Standard Model [3,4].
A Lorentz-violating term in the SME is formed by a
Lorenz-violating operator, built from conventional fields,
contracted in a coordinate independent way with a control-
ling coefficient. The SME has been widely used for tests
of Lorentz invariance [5]; a list of experiments and
constraints can be found in Ref. [6].

The SME coefficients may be ‘“explicit,” namely,
objects present in the theory without being dynamical, or
may be “‘spontaneous’ and arise when certain fields attain
its vacuum expectation values. In the latter case, the co-
efficients have fluctuations about its vacuum expectation
value that may have physical implications [7]. As proven
by Kostelecky [4], explicit breaking is incompatible with
the Bianchi identity, which, in turn, lies at the core of
Einstein’s equations. Therefore, Lorentz violation in the
presence of gravity requires spontaneous coefficients.

One of the original motivations for introducing gravity
in the context of Lorentz-violating spinors is that some
SME coefficients can only be empirically accessed through
couplings with gravity [8,9]. In this case, it is necessary to
solve Einstein’s equations and consider dynamical mecha-
nisms for Lorentz violation, making the calculations
extremely challenging. Kostelecky and Tasson [8] were
able to study Lorentz-violating spinors in the presence
of a general gravitational field under the linearized met-
ric approximation, leading to the first bounds on some
coefficients. However, in Ref. [8], the SME coefficients
associated with spin are disregarded.

The goal of the current work is to incorporate gravity
to the analysis of Lorentz-violating spinors without
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neglecting the SME coefficients associated with spin.
There are two reasons that render this work particularly
interesting. First, spin tests of Lorentz invariance are
remarkably sensitive [10], and it is conceivable that,
through gravity couplings, the bounds set with these ex-
periments could be translated into more stringent bounds
on other SME coefficients. Second, the effects of quan-
tum gravity could become manifest when gravity and
an inherit quantum property of matter—like spin—are
simultaneously present.

To include spin with the techniques developed in
Ref. [8] seems daunting. Thus, the challenge is to find
approximations which properly describe the experimental
conditions and, at the same time, allow one to calculate the
Hamiltonian for Lorentz-violating spinors in the presence
of gravity. A method achieving this goal is presented in
Sec. II. Since most experiments testing Lorentz invariance
are properly described in the nonrelativistic regime, the
nonrelativistic Hamiltonian is also obtained. Furthermore,
an analysis of the physical content and several consistency
checks are presented in Sec. II. Section III contains a brief
overview of the experimental consequences of the resulting
Hamiltonian, including a discussion on the possibility
of using gravity to disentangle bounds on linear combina-
tions of SME coefficients. The conclusions are presented
in Sec. IV. Finally, the notation and conventions used
throughout the paper are described in Appendix A, and
an analysis of field redefinitions is given in Appendix B.

II. FORMALISM
A. Starting point

This section is devoted to deriving the Hamiltonian
describing the evolution of a Lorentz-violating spinor in
the gravitational environment of a laboratory. Note that, in
contrast with other research programs [11], in this work,
the spacetime metric is not assumed to be Lorentz-
violating. In addition, the mechanisms that could generate
SME coefficients, which have been studied in contexts
such as string theory [12], noncommutative spacetime
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[13], loop quantum gravity [14], nonminimal gravitational
couplings [15], and through spontaneous symmetry break-
ing of vector and tensor fields [16], are not the concern of
the present work. Here, Lorentz violation occurs in the
spinor field, and its sources are not considered.

Under the test-particle approximation, the contribution
of the spinors to the spacetime curvature is disregarded,
and their energy-momentum tensor does not enter into
Einstein’s equations. Being a good approximation for
most laboratory experiments, this approximation is as-
sumed, and the theorem forcing the SME coefficients to
arise spontaneously can be circumvented. In other words,
under the test-particle approximation, the fluctuations
of the SME coefficients can be consistently neglected,
making the calculations manageable.

Moreover, in this work, the attention is focused on a
free Dirac spinor ¢, and only Lorentz-violating terms of
renormalizable dimensions are considered. This subset of
the SME is called the minimal matter sector, and the spinor
action in a general curved spacetime background is given
by [4]

s = [[atwe Set 419, = k@, 0w — ]

(1)
where I'* and M are defined as
I =y% —c m“eyely’ —d,m*“eyelysy”
— el —ifum*ecys — 58unpm* el ege o,
(2)
. M. a Mm a 1 ah
M=m+imsys+a,eay'+beqysy +2Hw,ea e,
3)

The explicit form of the covariant derivatives V, acting
on ¢ is presented in Appendix A. In this case, the SME
coefficients are a,,, b, ¢, d ~8vups
and H,, = —H,,,, which are assumed to have small com-
ponents in any experimentally relevant coordinate system
[17]. The chiral mass m5 is only included for the purpose of
generality; for simplicity, it is also considered small.

The equation of motion for the spinor obtained from the
action (1) is

s €us fus 8uvp =

= jelT?9 w ¥ + ,ucd< acpd i{r“, a'Cd})lp

eZL(GMF“W - My, “4)

with w,,;, being the spin connection (see Appendix A).
The goal is to find a Hamiltonian for ¢ defined as the time-
evolution operator id,. To do so, it is necessary to restrict
the analysis to a static (and torsion-free) spacetime where

PHYSICAL REVIEW D 88, 105011 (2013)

there is no contribution to the spinor evolution from space-
time. Before doing so, it is important to remark that, from
this point on, ¢ is regarded as a spinorial wave function in
the context of one-particle quantum mechanics and not as a
quantum field.

1. General static spacetime

In any static spacetime, the tetrad can be chosen as [18]

el = 84 ed(x*), (5a)
ejf = 8#e;(xk), (5b)
where (38 # 0. Therefore, the equation of motion (4) can be
brought to the form

0=ieT9oyp + ie'T79, 4
i B
+ 3w 1T+ T 0 )
i
+§€ZL(3;LF“)¢ —My. (6)

Note that, if €3I is inverted, a Hamiltonian can be read
from this equation.

The inner product associated with such a Hamiltonian
can be obtained by inspecting the corresponding continuity
equation [8,19], and, in general, it is not the standard inner
product of nonrelativistic quantum mechanics,

(o h2) = fz vyt ™

where ¢/, and i, are any (square-integrable) spinors and
3, is a Cauchy surface for which the natural volume ele-
ment is dv. Since the goal is to find a Schrodinger-like
equation, it is convenient to use a method yielding to the
inner product (7). It has been shown [8] that this can be
achieved with a field redefinition ¢ = Wy, where W is
chosen so that the factor of idyx becomes eJy°, which, in
addition, can be easily inverted.

Observe that, in contrast to the case where gravity is
disregarded [20], here it is difficult to find a field redefini-
tion valid to all orders in the SME coefficients. However, it
is possible to verify that W = (3 — y°I"%)/2 = W works
to first order in ms and the SME coefficients, which is
an approximation used for the rest of this paper. The
Hamiltonian obtained with this method takes the form

i

e ~ . 1 -
H= —ze—éyorjai—i-gyoM, (8a)
0 0
where
W = y'WTy", (8b)
[ =wrew, (8¢c)
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M= WMW — ielf Wy*(9,W) — —ea EW(a, 9w
i _
- Eeffa)luch<‘r]“Crd + Z{F“, (TCd})W. (8d)

2. Uniform Newtonian gravitational field

The background spacetime has to be chosen to properly
characterize the gravitational environment in laboratory
experiments. This can be achieved by a uniform
Newtonian field, which, in turn, is described by a flat
spacetime as seen by a uniformly accelerated observer
provided that the observer’s acceleration is identified
with the gravitational acceleration. The corresponding
metric can be written [21,22] as

ds® = —(1 + ®)2dr* + dx'dx;, )

where @ is the uniform Newtonian potential satisfying
do® =0 and 9;0;® = 0. That this metric accurately
describes the gravitational environment in laboratory
experiments can be justified from the fact that the
Schwarzschild metric in Fermi-like coordinates associated
with a fixed observer at the Earth’s surface, takes the form
of Eq. (9) plus the curvature tensor contracted with two
powers of a suitably defined distance [23]. These addi-
tional terms generate tidal effects and can be neglected
when the size of the experiment is much smaller than the
spacetime-curvature radius, as in most laboratory experi-
ments. In fact, it has been explicitly shown that the
metric (9) properly represents gravity in certain laboratory
experiments (see Refs. [24,25]).

Moreover, given that the spacetime under consideration
is flat, it can be assumed that the covariant derivatives of
the SME coefficients vanish globally, which is the general-
ization of the condition that, in the absence of gravity, the
partial derivatives of the coefficients with respect to a
Minkowskian reference frame are zero.

For the metric (9), the tetrad can be chosen as

68 =(14+®d)
e;- = 6}.

(10a)
(10b)

In addition, it is possible to check that the nonvanishing
Christoffel symbols are

Iy, =T% =0+ ®)7'(9,;D), (11a)
Ty = (1 + ®)(0;D), (11b)
and thus
(0.9) o ,-
€4 O pea = 7, 0808y — 828y). (12)

Taking this into the account, the Hamiltonian (8) takes the

form
H = —i(1+ ®)y°T9, + (1 + ®)y°M, (13a)

where
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M=+ _}.%[yoyi, 9], (13b)
M=m+M-—— {'y,FO}— yy(aro)—*(ar)
1(8(1>) 0
_ 1+ i 4
21+¢)( I + y0TO). (13¢)

To first order in ms and the SME coefficients, the
relativistic Hamiltonian for a Lorentz-violating spinor in a
uniform Newtonian gravitational field is given in Egs. (13).
Bear in mind that, even though Lorentz invariance is
associated with relativity, the goal of this paper is to set
the framework to look for experimental evidence of
Lorentz violation in the presence of a uniform Newtonian
gravitational field in experiments where the particles have
nonrelativistic velocities, and can thus be described by a
Schrédinger equation. This is why the nonrelativistic limit
is sought, which is done next.

B. Nonrelativistic limit

The standard procedure to calculate the nonrelativistic
Hamiltonian when dealing with spinors in the context
of relativistic quantum mechanics is through a series of
unitary transformations [26]. The idea is to write the
Hamiltonian as

H=my"+&+ 0O, (14)

where £ and O are respectively called the even and odd
parts of the Hamiltonian; O is defined as the part of the
Hamiltonian that couples particle and antiparticle degrees
of freedom. Thus, in the nonrelativistic limit, @ is expected
to vanish. In general, it is extremely hard to find a unitary
transformation that eliminates @. The alternative is to
perform a series of unitary transformations, called Foldy—
Wouthuysen transformations, each of which removes from
O the leading contribution in 9;/m. After three iterations,
the Hamiltonian, containing terms with two or less spatial
derivatives, takes the form

1
pr = m’yo + g + 2—')’0@2

[(9 [0, €]] - [@ 90]. (15)
Note that this approximation properly describes nonrela-
tivistic experiments since d; may act on either the wave
function, in which case it may be regarded as the particle’s
momentum, or on the Newtonian potential, resulting in the
gravitational acceleration. For nonrelativistic experiments,
the momentum of the particle and the gravitational accel-
eration (~10732 GeV) are small with respect to m, and
thus the aforementioned truncation is justified.

To illustrate the method, the nonrelativistic Hamiltonian
is calculated in the absence of Lorentz violations and when
ms = 0. In this case, the relativistic Hamiltonian is
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Hip = —iv%y(1 + ®)d; + my°(1 + &) — —y Oyi(9,D),

(16)

where the subindex LI is a reminder that this quantity is
associated with the Lorentz-invariant and ms = 0 case. To
calculate the nonrelativistic Hamiltonian, the even and odd
parts of the Hamiltonian must be identified. In this case,
these parts are given by

& = my', (17)

) 1
Oy = —iyoy’l:(l + ®)9; + 5(31'@)]- (18)

Inserting these expressions in Eq. (15) leads to

-

+ %(1 +20)(9;D)(9,P)

ty
HFW,LI == m'yo(l + q)) + ;,—m'yo CD)(I + @)28,8]

—(1=3®)(1 + CI))(aiCI))aj:I

el

4m

which is the nonrelativistic Hamiltonian for a Lorentz-
invariant spinor in a uniform gravitational field.

The next step is to include ms and the SME coefficients.
For that purpose, £ and O must be read from the
Hamiltonian (13). Then these parts are substituted into
Eq. (15), retaining only the leading contributions in m;
and the SME coefficients. Since only linear terms in these
quantities are sought, the calculations are done one coef-
ficient at a time. Recall that the covariant derivatives of the
SME coefficients vanish by assumption, which is used to
calculate the partial derivatives of these coefficients.

YOSK(1 = 3D)(1 + P)(9,D)d;, (19)
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The contribution of ms to the nonrelativistic

Hamiltonian is

AHpy = — %Ek(l + @)1 —30)(0,D), (20)

which must be added to the Lorentz-invariant nonrelativ-
istic Hamiltonian (19). The same calculation is repeated

for all the SME coefficients. The correction to the
nonrelativistic Hamiltonian coming from a , is

M
it
AHpy = ag — T 00(1 + D)X(1 — B)a),
it
~ BT 001 + D)1 — 3D)(9;D)
2m

f_';'lekij,y()Ek(l + ®)(1 — 3(1))(8jq)). (21)

Similarly, the contribution of b, to the nonrelativistic
Hamiltonian is

AHFW = —b; (1 + (I))El + l; OE"(Z(I - (I)2)ak
3Etklb
Am 2

+ (1 —3P)(9,P)) — (1 + @)2(9,D)9,

b, . . .
+ z—n,lz(nZZEk _ nklzl)l:(l + (I))33k31
+ (1 + )9, P)(9,P)

+ %(1 + ©)*((9,P)a, + (a,@)ak)]. (22)

When calculating the effects of ¢, it is possible to
study the irreducible components, c(,,) and cf,,], sepa-

rately. For c(,,), the additional piece for the nonrelativistic
Hamiltonian is

_ _ n' 1 1+20
Aty = ~maagy1 + B! =y (1= @000, + 5 g (08,0~ @0
LTSS L PR PR @ @ @
gy CooY 1+<I>(a )a; + 2in eyl + @)~ (1 + )3j+§(3j )
1 . ik il ..
+ 3 eI+ ©)71(0;®) + ww[m — ®)(1 + D)2,9,
m
+ (1 =3D)(1 + D)((9,D)a; + (9,P)d) — (1 +2P)(9,P)(9,P)]
En" N
B — M1+ @)1 = 3P)[(9,P)a; — (9,D)a], (23)
and the contribution of ¢, is
1 i k —1 . emiknjlc[ij] 0

Again, the irreducible components of d,,, d(,,,, and d[,,,, can be independently analyzed. The symmetric components

generate
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AHpy = —idgySi(1 + @)*2[(1 + ®)a; + %(Bl@)] + mdgy Y’ %!

+ Z—;dmwoﬁk[—(l + )3 — 5P)a;0, — —(1 — 15®)((9;@)a; + (9, P)9;) +

and from the d[,uv] components, the contribution to the
nonrelativistic Hamiltonian is

i
AHFW = —md[oi]yoi’ + ;’]—md[oi]’)’ozk[_(l + @)26,8k

=20+ @), @), + (0,9)3)) - (a,@)(akcb)]

®)(0,®)0,

€
l4m
. . 1

The corresponding addition to the Hamiltonian coming
from e, is

AHpy = —meg — ﬁekifeozk(l — 30)(0,8)3),

— (@ )0, )

+ ini/eiyol:(l + D)o, + %(ajcb)], 27)
and f, produces
MMy =3 /'S0 + )1 (0,)

N i%gk(l +®)(1 - 30)[(9,D)a, — (0,3,

3 + SCD(a D)3, CD):I

(1 — B)(a,B)a, — injkd(ij)E"[(l + @), + E(akq))]’ (25)

2
uvp = gg&) Eurp” T 3g(T) 8vlp T ggwm (29a)
where
(A) _ 1 vpo 20b
g,U« 6g1/p(78,u, ’ ( )
g’ = 8" 8upo (29¢)
o L g guB

Eupvp = § Euvp Epuv 8vpu Eup8 " 8vap

— 8p8*P8uap) (29d)

are respectively known as the axial, trace, and mixed-
symmetry parts. The mixed-symmetry part satisfies
g%)ps P = (0 and g%)ggp” = 0, but it cannot be written
in a simple manner in terms of g,,,,, and geometric tensors.
Therefore, even though it is the natural separation from the
point of view of the discussion presented in Appendix B,
the separation in irreducible components is not practical
for the calculation at hand. Instead, the effects of the
components gojo, &oij» &ijo- and g;j; are studied separately.

In the gy, case,
n" 0 -2
AHpy =5 800 (1+®)"*(9;P)

. 1
i€, igoy" S (1 + @)*2[(1 +®)a, +§(ajcb):|.

(28)
(30)
The g,,, coefficient can be irreducibly decomposed
[27] as The presence of g;; generates
nikni! il
AHpw = —i— —g0;(1 = 3®)(3,P)d; + 2 gO,JE’"I: 2(1 = ®2)ad; — (1 = 30)((8,DP)d; + (8,P)d,)
1+2d
+ D)(9,P 1
T (@) | G

The terms produced by g;;, are
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m k!
AHpy = — Eemljgijozm - lwgljo(l +9D)[(9,P)d; — (9,D)d,]
nMle, i
- Vgijozm[(l + @)29,0; + 3(1 + P) (9, D)9, + (9, P)(9,P)]
ke il 1+2d
+ nzm gijozml:_z(l — ®2)9,0; — (1 = 3D)((9,P)3; + (9,P)dy) + W(qu))(élq))]
ijk
+ gfmgijozlp(l + ®)?9,0; + 3(1 + P)((9,P)3; + (3,P)dy) + (9,P)(9,D)], (32)

and the g;;; components produce

| . 1
AHpy = %n"lem’fgijky°2m[(1 + D)o, + E(azcb)]. (33)

Finally, the contribution of H,,, is

Y Y 1 y
AHpy = — -2 Hy(1 — 30)(0;®) + iZLmHOizk[z(l — ®2)9; + (1= 30)(3,0)] + S Hyje /y EH(1 + D)

4dm
. 2mike, it + pHe, i
16m?

ijk

H;iy'2m(1 + @)(0,P)(9,P)

+ iH,-J-«y021[4(1 + ®)39,0, + 6(1 + ®)*((0,P)d, + (9,D)d;) + 3(1 + ®)(9,P)(9,D)]. (34)

16m?>

To first order in ms and the SME coefficients, the non-
relativistic Hamiltonian Hgy is composed of the Lorentz-
invariant Hamiltonian (16) plus the corrections given in
Egs. (20)—-(34). Observe that each SME coefficient cou-
ples with spin and gravity in a particular way, and, in
principle, every term in these expressions can be used to
look for the coefficients’ effects. However, before seeking
these effects, it is convenient to analyze which terms in
Hgy are not physical. This is done next. For simplicity,
for the rest of the manuscript, all the equations are only
valid to linear order in ® and 9,P. Also, the nonrelativ-
istic Hamiltonian Hgy is written in terms of the momen-
tum operator p; = —id;, which is assumed to act on
everything on its right.

C. Physical terms

As discussed in Appendix B, it can be shown that some
combinations of SME coefficients cannot have physical
meaning. This analysis is done by redefining the spinor
field at the level of the action. Nevertheless, to this
point, all the SME coefficients have been preserved to
provide an additional method to check the resulting
Hamiltonian. The idea is that all the unphysical combi-
nations of SME coefficients must cancel through unitary
transformations.

Any unitary transformation U = ¢ has to be even,
to avoid coupling particles and antiparticles, and, to be
compatible with the nonrelativistic approximation, it must
have two or fewer powers of momentum. Under these
conditions, the most general S = stis

[
S=A+ By’ + C;X + D;y'%
[ i~,0 1 j i ~,0 'pi
+(E'+ Fly’ + G+ Iy"%)

Di Pj

m m

. (35)
where it is assumed that A, B, etc., are real, linear in the
SME coefficients, and may depend on ®. Unitary trans-
formations in the Lorentz-invariant case are analyzed in
Ref. [28]. To leading order in the SME coefficients, the
result of this unitary transformation is

Hpy = eSHpwe 5 — ieSdge™ ™S

= Hpw + i[S, Hpw 1] — (905). (36)

At this stage, a generic expression for the terms in S is
needed. At the corresponding order of approximation, such
expressions can be used to check that the first partial
derivatives with respect to the spacetime coordinates are
proportional to the SME coefficient contracted with (9,;P)
and the second derivatives vanish. Therefore, H},, contains
terms like F'(9,®) — (9A), and

[—7Y(8,B) + (KU + K/)(9,®) — (aOE-f)]%. (37)

These terms can be chosen to cancel any real term in the
Hamiltonian containing an SME coefficient, a factor of
either (9;P) or (9;®)p;, and that is proportional to
the identity matrix. Analogous derivations permit the
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conclusion that the same is valid for any even Dirac
matrix. Therefore, any real term in Hpy proportional to
an SME coefficient and either (9;®) or (9,P)p; can be
removed. Observe that the factor —i(9;®) = p;® — ®p;

PHYSICAL REVIEW D 88, 105011 (2013)

is not real, and thus it cannot be removed with these
transformations.

After the unphysical terms are removed, the nonrelativ-
istic Hamiltonian can be brought to the form

Im
€k

Hpy = (my® + ag — mégyy® — még)(1 + ®) + (_bk + mdy® + (=m0 + Hlm?’o))zk(l + P)

il

2

+ ;—m[anf‘) —m(8y + &) — mey° (1 + ®)p; + p;(1 + D)]

1 A a . . 1 . A m .
+ %[_52170’}’0 + mdidy + muyildy + Gk”<_ 570(81q)) — moy° + Hoz) ) U’"Eklmgzmnyo]

X (1 + ®)p; + pi(1 + D) + %(7}”7‘) = 0200Y° = n''n" (¢t + )Y p(1 + P)p;

+
2m?

6ilm 5]

1 . o N m . .
—[n”bk = 0'8b; — mn'&idpy° + Efklm’flugzmo - Tk(mglmO + Hlm‘yo)]zkp(i(l +3®)p;

+ E[ﬁ’l%(dm +dip)Y°’ + €™ (@m0 — o) 12Fpu(1 + ®)p;), (38)

where the coefficients with a caret get a factor 1 — n®, n
being the number of indices that are zero. For example,

ap = (1 — ®)ay, Cro = (1 = @)y,
doo = (1 - 2(I))d00, FI” = H”

Recall that Eq. (38) is only valid to linear order in ®. Also,
observe that in Eq. (38), all the SME coefficients have a
caret.

One advantage of using the caret notation is that the
linear combinations of SME coefficients appearing in the
Hamiltonian (38) coincide with those of Ref. [29] where
gravity is disregarded (up to signs from using different
metric signatures). Therefore, the result of this work is
that the effects of a uniform gravitational field can be
introduced through redshift factors in the rest energy
term, the momentum, and the SME coefficients. It is easy
to verify the SME coefficients get a factor (1 + ®)~! for
each zero index. However, it is not straightforward to
understand the couplings of the gravitational potential
and the momentum. In particular, it would be interesting
to understand the separation of the terms quadratic in
momentum that contain 2* into those where the gravita-
tional factoris 1 + 3® and those where the factoris 1 + ®.
Clearly, to grasp these issues, it is necessary to keep higher
order terms in @, which lies outside the scope of this paper.

D. Consistency checks

In this section, some limits of the Hamiltonian (38) and
consistency checks are considered. First, the Hamiltonian
(38) coincides with the one of Hehl and Ni [21] in the limit
where all the SME coefficients are set to zero (provided
that o in Ref. [21] is identified with y°2). In addition, in
the limit where @ = 0, the Hamiltonian (38) agrees with
the nonrelativistic Hamiltonian of Refs. [29,30]. Moreover,

the calculation of spin-independent SME coefficients in a
general gravitational field [8] is also used to compare, and,
where there is overlap, the nonrelativistic Hamiltonian of
Ref. [8] coincides with the Hamiltonian (38).

Note that y° only appears in the Hamiltonian (38) in
terms having no SME coefficients and an even number of
momentum (and derivatives) or in terms having a coeffi-
cient with an odd (even) number of indices and odd (even)
powers of momentum. This is closely related to the result
[3] that coefficients with an odd (even) number of indices
are CPT odd (even). Also, causality, the loss of unitarity,
and other related issues should not present additional com-
plication than in the nongravitational SME [31] because,
after all, in this work, spacetime is flat.

In the representation of the Dirac matrices that is used,
the particle Hamiltonian corresponds to the 2 X 2 upper-
left block of Eq. (38). In practice, this Hamiltonian is
obtained by replacing the 4 X 4 identity matrix and y°
with the 2 X 2 identity matrix and 3% with the Pauli
matrices oX. Since the coefficient structure is compatible
with that of the gravity-free case, the antiparticle
Hamiltonian can be generated from the particle
Hamiltonian with the same replacements discussed in
Ref. [29].

As mentioned in Appendix B, the observable combina-
tions of coefficients can be obtained from those observable
combinations in the gravity-free case by writing carets over
the coefficients. This automatically guarantees that the
Hamiltonian (38) is compatible with the restrictions com-
ing from the freedom to redefine the fields at the level of
the action.

Note that the Hamiltonian (38) is Hermitian with respect
to the standard inner product of nonrelativistic quantum
mechanics. To check this, it has to be considered that
p; acts on the SME coefficients in the self-adjoint
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Hamiltonian. However, the assumption that the SME
coefficients have vanishing covariant derivatives can be
used to verify that the momentum operator acting on any
coefficient with a caret vanishes.

Moreover, the Hamiltonian (38) is not explicitly invari-
ant under the gauge transformation associated with ®.
Adding a constant to @ amounts to changing the height
where @ = 0, which, in turn, is associated with the posi-
tion of the accelerated observer. Thus, to check that the
physics is invariant, it is necessary to consider that, under
such transformation, the height of the observer changes
and time at this new height gets redshifted. If this effect is
considered, it is possible to verify that the physics is
invariant under such transformation. In the next section,
some comments on the experimental implications of the
Hamiltonian (38) are given.

III. EXPERIMENTAL CONSEQUENCES

To date, there is no compelling experimental evidence of
unconventional effects associated with gravity, even when
spin-polarized matter is used (see, e.g., Ref. [32]).
Nevertheless, empirical tests where gravity plays an im-
portant role, including those associated with Lorentz vio-
lation, may become relevant as they could uncover new
physics. In what follows, some proposals to empirically
look for the effects of the Hamiltonian (38) are briefly
discussed.

Atomic interferometers are a class of experiments that
are sensitive to the gravitational field [33] and which have
been used to set bounds on SME coefficients [34]. In fact,
these experiments offer one of the most compelling tech-
niques to test for spin-insensitive coefficients [35]. One
interesting possibility is to modify these experiments and
make them sensitive to spin. However, it seems unlikely
that these experiments could compete with the experiments
that have set bounds on spin-dependent coefficients [10].

In laboratory experiments, coefficients associated with
higher orders of momentum are typically more difficult to
constrain. The terms in the Hamiltonian (38) with n powers
of momentum have a remaining piece that has n — 1
momentum operators since one of the p; can act on ®. In
principle, this could be used to constrain SME coefficients
associated with certain powers of momentum with experi-
ments sensitive to fewer momentum powers. Nevertheless,
this seems unfeasible since the gradient of the gravitational
field on Earth is incredibly small. In addition, astrophysical
observations [36] can be used to test the regime where the
higher order in momentum terms dominate.

It is noteworthy that the first line in Eq. (38) behaves like
a spin-dependent mass. Therefore, experiments testing the
universality of freefall [37] could become sensitive to the
parameters in those terms, particularly if the experiments
are modified to become sensitive to spin polarization.

An intriguing consequence of the Newtonian gravita-
tional potential is that, in any experiment done on Earth,

PHYSICAL REVIEW D 88, 105011 (2013)

the bounds are actually set on linear combinations of SME
coefficients with carets. Namely, each coefficient in these
linear combinations has a different power of the factor 1 +
®. Since @ depends on the altitude, by doing experiments
at different heights, it should be possible to translate the
constraints from linear combinations into individual
bounds. One of the main advantages is that, to disentangle
the bounds, there is no need to modify the experiments. In
addition, this can be used for all the SME coefficients,
including those that are spin sensitive, since @ affects all
the SME coefficients in the same way.

That gravity allows one to translate bounds on combi-
nations of SME coefficients into individual constraints
resembles the observation [38] that different energies can
also be used to disentangle bounds. This result can be
traced to the fact that the Lorentz factor couples differently
with each SME coefficient [29]. Here the gravitational field
is introduced through a uniformly accelerated observer,
which, in turn, is related to an inertial observer through a
series of boosts, thus, it is not surprising that a similar
result is found.

As mentioned above, some SME coefficients acquire a
sign when changing from particle to antiparticle. This
could be also used to separate bounds [39]. Of course,
experiments with antimatter are daunting. Nevertheless,
freefall tests with antimatter will be performed in the
near future [40]. It is most likely that, to disentangle all
SME bounds, every possible mechanism would be needed,
and gravity could play a highly unanticipated role in the
search for Lorentz violation.

IV. CONCLUSIONS

The nonrelativistic Hamiltonian for the minimal matter
SME sector in the presence of gravity has been derived,
including, for the first time, spin-sensitive SME coeffi-
cients. The basic ideas used throughout the calculation
are that a uniform Newtonian gravitational field is an
accurate description of gravity for most laboratory experi-
ments and that flat spacetime as described by a uniformly
accelerated observer models this gravitational environ-
ment. The spinors are taken as test particles, and in this
approximation, it is consistent to neglect coefficient fluc-
tuations, which simplifies the calculations dramatically.

One of the consequences of this analysis is that, since
gravity couples to each SME coefficient in a different way,
by doing experiments at different altitudes, it could be
possible to separate the bounds from constraints on linear
combinations of coefficients into individual constraints. It
should be mentioned that disentangling these bounds
would exhaust the possibility that some SME coefficients
are nonzero but, for some reason, the effect of these
coefficients cancels. Also, if there is some day a positive
signal for Lorentz violation, when trying to come out with
a fundamental explanation, it would be necessary to know
which coefficients are responsible for such a signal.
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At the classical level, the effects of explicit SME coef-
ficients in the presence of gravity have been incorporated
in the framework of pseudo-Riemann-Finsler geometry
[41,42]. Since there is a considerable overlap in the as-
sumptions of this work and those taken in the pseudo-
Riemann-Finsler treatment, it is tempting to understand
the connections between these approaches. Other exten-
sions to this work are, for instance, generalizing the
method to any static background spacetime. In this case,
it would still be possible to use the test-particle approxi-
mation and consistently neglect the coefficient fluctua-
tions; however, the assumption that the coefficients have
vanishing covariant derivatives would only be valid locally.
Also, it seems interesting to generalize the method pre-
sented here to other SME sectors, including the neutrino
[43] and nonminimal sectors [44], where operators of
arbitrary dimension are considered.
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APPENDIX A: NOTATION AND CONVENTIONS

The notation and conventions used throughout the paper,
which follow closely Ref. [4], are explained here. Greek
letters are used as spacetime indices, and the spacetime
metric, g,,, has signature ( — + + +). As is customary,
the metric and its inverse, g#”, are used to lower and raise
spacetime indices. The covariant derivative and the space-
time volume 4-form associated with g, are respectively
denoted by V,, and €,,,,. Note that V,g,,,, = 0. As
usual, 9, is used to represent the derivative with respect to
the coordinates.

The tetrad is a set of vectors {ef} satisfying g, el e} =
Nap, Where m,, = diag(—1,1,1,1). Note that the
Latin indices from the beginning of the alphabet
(a, b, ¢, d, e, f) can be thought of as tangent-space indices,
making them appropriate for the Dirac matrices. These
indices run from 0 to 3, 0 being the temporal coordinate.
Latin indices of the middle of the alphabet (i, j ..., n) refer
only to the spatial components and run from 1 to 3. Also,
Nap and its inverse, n?, can be used to lower and raise
tangent-space indices. Any n indices inside parentheses
(brackets) denote symmetrization (antisymmetrization)
with a factor 1/(n!).

Given that the tetrad is an orthonormal (and right-
handed) basis, the components of the spacetime volume
form in this basis,

_ p
€abed = Epvpola eZeC eg, (A1)
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may be regarded as the totally antisymmetric tensor with
the convention that €53 = 1. The components €y, are
written as €;;.

The spin connection is defined as

O pah = 8prliV €] = —® ypg (A2)

It is possible to show that V ,elf = n“ef'w,4,. Thus, V,,

is not the same derivative operator as the D, used in
Ref. [4], which annihilates the tetrad. This discrepancy is
compensated by the definition of the spin connection (A2).
In terms of the tetrad, the spacetime volume element is
denoted by e.

The Dirac matrices y“ are taken to satisfy

{ye, vt = —2n. (A3)
The matrices 0*” and vy5 are defined by
i
o = 5[7“, ! (A4)
ys = iv°y' vy, (AS5)
and the spin matrix is
1
=50y = Seylot (A6)

Throughout the paper, the Pauli-Dirac representation for
the Dirac matrices is assumed. It is advantageous to use the
basis of Dirac matrices 1, v°, ¥/, s, Y°¥', ¥0ys, 2%, yO3,
where 1, 90, 37, 937 are even (and Hermitian) and the rest
are odd. Finally, the covariant derivative acting on spinors
takes the form

V., =

i
¥+ wabaabtp, (A7a)

Vb =09,9 — (A7b)

4 ,u,ab lﬂff

APPENDIX B: FIELD REDEFINITIONS

The goal of this Appendix is to identify the combina-
tions of SME coefficients which can have physical con-
sequences since they cannot be canceled with field
redefinitions. Note that the method presented here is
slightly different from the one discussed by other authors
[3,4,8,9,41,45], where spurious SME coefficients are gen-
erated through field redefinitions. The analysis is first done
in a general spacetime, and the specific field redefinitions
relevant for this paper are then presented. The starting
point is the action (1). As is discussed in Ref. [4], the

spinor field can redefined as
p=0+V)y (B1)

where y is a spinor field and
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V= (vﬂ) + ivf))effy“ + (vf) + iv%))egysy“
+ (vﬁfz, + ivff?,)eﬁeZa’“b, (B2)

with vifz, = —v(,,sll and v —u(f,i. If V is linear in the
SME coefficients, the action for y, to first order in the

Lorentz-violating coefficients, takes the form

6 _
y73%

i -y a a
S = jd4xe|:§egx(r + ATV, x

~ eV, + ATy ¥ + MMy | (B3)

where

AT = 4V + V*y4,

= —4v£2/77”"€/lf€57’b - 2v$f3,e““1beé*e§ysy”

— 21/2)77“]765 + ZiUﬁ)n“beZyS

— QuRel 84 + vi)e® el (B4)
and
AM = m(V + V*) + %eﬁf(—ya(aMV) + (0, V)y9)

1 s
L ek, [V, 0<ly" — 41V, 0°0)
= —Vﬂv(z)" — iVMv(3)“75
+ (2 (I)M_zv () ouv P a4 (2 @) u
( muvy’eq ( /LUVp)g eq)y ( muv,’éq
— gbed (6)

Hov P
a€p egedvﬂvVP)YS’yu

1
+ I:—(V[Mv(yl]))eﬁfez — E(Vﬂvg))ec‘iahe{fej

+ 2mv§fle§e§]a’“b. (B5)

The effective coefficients are defined as those in the
action (B3), concretely,
[@+ AL = 5o = ciin“eyely” — dyyn“eyelysy’
_ ei;ffnaceé’« _ iffffnaceé’-,ys

1
— ngff,p nelele) ol (B6)

M+ AM = m" + imSTys + aSfely? + befTelt ysye

1
+ EH;ff,eferU"b. B7)

The idea is to choose V in such a way that most compo-
nents of the effective coefficients cancel. However, to
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eff eff

avoid generating spacetime-dependent m®" and m<", it is

necessary to take

V,vP# =V 8k =0 (B8)

Incidentally, spacetime-dependent masses have been
considered as an alternative explanation for astrophysical
observations [46] and some neutrino anomalies [47].
In addition to Eq. (BS), it is convenient to set

vh = = 5ew (BYa)
= %fﬂ, (BOb)
6 =— ;aﬂyﬂ”d,,m (B9c)
vl = — % Cluv] (B9d)

With these choices, the effective coefficients become

meft = m, (B10a)
mgff = ms, (B10b)
1
al =a, —me, — Zsﬂ”p”v,,dpg, (B10c)
1
bt =b, +2m0) — 28"V por (B10d)
iy = Cluny (B10e)
d‘j{,f, = d(uy) (B10f)
efff =0, (B10g)
et =0, (B10h)
eff _— +4 (2) +2 a,,3) B10i
Suvp 8uvp v[#gv]p Euvp Vo ( i)
. m
H =H,, — 5 e’ dyy + Ve, — 3 Eus” V,fo
(B10j)

In a general case, it is suitable to set vg) = vg) =0,
which leads to results that are in agreement with Ref. [4].
However, in this work, the SME coefficients have vanish-
ing covariant derivatives, and V can be chosen in such way
that parts of g,,,, cancel while, at the same time, Eq. (B8)
is satisfied. In particular, the selection

@ _

1
vy = —ggp”g“p(,, (Blla)
D == g, Bllb
Vu 128,u gvpa' ( )

can be used to cancel the axial and trace components of
8 uvp» defined in Egs. (29). With these elections, m®, m,
i, dft, &S, and o are given as in Eqs. (B10), and the
remaining effective coefficients are
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afff =a, —me,, (B12a)
bt = b, — %eﬂmgm, (B12b)
g, = g, (B12c)
HS = H,, — %swf"’dw, (B12d)

where g\, is defined in Eqgs. (29).

Note that the spacetime metric and volume form enter
in the effective coefficients. This suggests that, by doing
experiments in different gravitational environments, it may
be possible to separate the effects of SME coefficients that
combine into an effective coefficient. In the particular case
of the metric (9), it can be shown that, for all the effective
coefficients, the modification due to gravity is that all the
coefficients have to be replaced by those having a caret as
introduced in Sec. III. As an example, the components of
H¢!, are derived. Using Eq. (A1), it is possible to check that

14

cd ,a B

eteleledg ag,pn™n”. (B13)

po —
S#V Eab

PHYSICAL REVIEW D 88, 105011 (2013)

Taking this into the account, it can be verified that

H' = Hy; — %(1 + ®)edy, (B14a)
H{T = Hyj + me K(1 + ®)"'djgyy,  (B14b)
which, in turn, implies
reff [ m- .
Hy; _HOi_Eei dy, (B15a)
H = H; + me, *djoy, (B15b)

From these expressions, it is possible to verify that the
components of ﬁffﬁ, have the same functional form in
terms of H uv and d uv as the corresponding effective
coefficients have in terms of H,, and d,, when gravity
is disregarded. Analogous conclusions can be reached for
all the effective coefficients by doing the corresponding

calculations.
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