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Finite temperature Casimir effect for charged massless scalars in a magnetic field
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The zeta function regularization technique is used to study the finite temperature Casimir effect for a
charged and massless scalar field confined between parallel plates and satisfying Dirichlet boundary
conditions at the plates. A magnetic field perpendicular to the plates is included. Three equivalent
expressions for the zeta function are obtained, which are exact to all orders in the magnetic field strength,
temperature and plate distance. These expressions of the zeta function are used to calculate the Helmholtz
free energy of the scalar field and the pressure on the plates, in the case of high temperature, small plate
distance and strong magnetic field. In all cases, simple analytic expressions are obtained for the free
energy and pressure which are accurate and valid for practically all values of temperature, plate distance

and magnetic field.
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I. INTRODUCTION

The Casimir effect is a quantum phenomenon where
an attractive or repulsive force is observed between
electrically neutral conducting plates in vacuum, and
can be regarded as a quantitative proof of the quantum
fluctuations of the electromagnetic field. Casimir first
predicted theoretically the effect, by calculating the
attractive electromagnetic force between two parallel
conducting plates [1]. The repulsive Casimir effect was
discovered by Boyer some time later, when he showed
that if the electromagnetic field is confined inside a
perfectly conducting sphere, the wall of the sphere is
subject to a repulsive force [2]. The first experimental
evidence of the Casimir force was obtained more than
50 years ago by Sparnaay [3] and, since then, many
greatly improved experimental observations have
been reported. For a comprehensive review of these
experiments, see the review article and the book by
Bordag et al. [4,5].

Since Casimir forces have many applications—f{rom
nanotubes and nanotechnology [6-9], to branes and
compactified extra dimensions [10-31], to string theory
[32-35]—a large effort has gone into studying the
Casimir effect and its generalization to quantum fields
other than the electromagnetic field: fermions were first
considered by Johnson [36] in connection with the bag
model [37], then investigated by many others; for example
[38,39], bosons and other scalar fields have also been
investigated extensively [4].

It is well known that Casimir forces are very sensitive to
the boundary conditions of the involved quantum fields on
the plates. In the case of scalar fields, the most used
boundary conditions are Dirichlet and Neumann; in the
case of fermion fields or fields with spin, in general [40],
bag boundary conditions are used. In this work we will use
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Dirichlet boundary conditions for a scalar field confined
between two parallel plates.

Scalar fields, with or without charge or mass, appear in
many different areas of physics. The Higgs field is respon-
sible for spontaneous symmetry breaking in the Standard
Model and is a charged massless scalar before the SU(2)
gauge symmetry is broken. Once the symmetry is broken,
only a neutral massive scalar field remains in the unitary
gauge. An ultralight or massless scalar is the dilaton field
that breaks the conformal symmetry of strings in super-
string theory [41,42]. Massless scalars called inflatons are
used to solve the problem of a nonvanishing cosmological
constant by causing the accelerated expansion of the
Universe [43-45]. In condensed matter physics, scalar
fields are important to describe spontaneous breaking of
discrete symmetries. The Ginzburg-Landau scalar field is
associated with type II superconductors, and it was shown
that a description of quantum phase excitations in
Ginzburg-Landau superconductors that uses a massless
scalar phase field is equivalent to one that uses an anti-
symmetric Kalb-Ramond field [46]. Scalar fields are also
used to explain Landau diamagnetism [47,48], etc. It is
well known that the Casimir force between perfectly con-
ducting parallel plates due to the electromagnetic field is
obtained by multiplying by a factor of 2 the Casimir force
due to a massless scalar field that satisfies Dirichlet bound-
ary conditions on the plates, where the factor of 2 accounts
for the two polarization states of the photon. Therefore the
Casimir force between perfectly conducting parallel plane
surfaces due to a massless, charged scalar field satisfying
Dirichlet boundary conditions on the plates will be the
same, apart from a multiplicative factor, as the force due
to a massless, charged vector field satisfying bag boundary
conditions on the plates. Vector fields of this type are the W
field before symmetry breaking, or the gluon field in the
presence of a chromomagnetic field [49,50].

The Casimir effect for charged scalar fields in a mag-
netic field has been studied in vacuum [51] and at finite
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temperature [52] using the Schwinger proper time method
to calculate the effective action, but these authors are
only able to obtain the free energy as an infinite sum of
modified Bessel functions. In this paper we use a different
method, the zeta function technique, to study the Casimir
effect for massless scalar fields at finite temperature and
in the presence of a magnetic field. This method allows us
to obtain simple analytic forms for the free energy
and Casimir pressure, valid for practically all values of
the parameters involved. A similar investigation of the
Casimir effect for massive scalar fields at finite tempera-
ture and in the presence of a magnetic field will be
presented elsewhere.

In this paper we will calculate first the Casimir energy
for two parallel plates, and then use it to calculate the
Casimir force between the plates. While the Casimir force
between distinct bodies, such as two parallel plates, is
finite, their Casimir energy often needs to be regularized.
In the simplest case of parallel plates with Dirichlet bound-
ary conditions, the Casimir energy can be extracted with-
out resorting to regularization. However, since in this work
we add the complications of an external magnetic field and
of finite temperature, a regularization technique will sim-
plify our calculations, and we need to choose the most
suitable regularization technique for our goal. Many regu-
larization techniques are available nowadays, and many of
them have been applied successfully to the Casimir effect,
the cutoff method often used in various piston configura-
tions [53,54], the world-line technique [55], the multiple-
scattering method [56,57], the zeta function technique
[58-60], and others. As we stated above, the choice for
this paper is the zeta function technique, a powerful regu-
larization technique used also in the computation of effec-
tive actions [61,62]. While this method is very powerful
and convenient, it should be used with caution since it is
the least physical of all methods, sweeping all but the
logarithmic divergencies under the rug. We apply this
regularization to obtain the free energy and Casimir pres-
sure due to a scalar field confined between two parallel
plates, at a distance a from each other. We assume
Dirichlet boundary conditions on the plates and take our
system to be in thermal equilibrium with a heat reservoir at
finite temperature 7', using the imaginary time formalism
of finite temperature field theory, which is suitable for a
system in thermal equilibrium. A uniform magnetic field B
is present in the region between the plates and is perpen-
dicular to the plates.

In Sec. II, we obtain three equivalent expressions of the
zeta function for this system, exact to all orders in eB, T
and a, where e is the scalar field charge. We also obtain
simple analytic expressions for the zeta function in the case
of high temperature (T > a™ ', JeB), small plate distance
(a'>T, \/e_B), and strong magnetic field (\/e_B > al,
T). In Sec. III, we use the zeta function obtained in the
previous section, to calculate the Helmholtz free energy of
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the scalar field and the pressure on the plates and to obtain
simple analytic expressions for these quantities in the case
of high temperature, small plate distance, and strong mag-
netic field. A discussion of our results is presented in
Sec. IV.

II. ZETA FUNCTION EVALUATION

Using the imaginary time formalism of finite temperature
field theory, we write the partition function Z for a bosonic
system in thermal equilibrium at finite temperature 7,

D¢*D ¢ exp (foﬂ dT[d3x£), (1)

where L is the Lagrangian density for the bosonic system, N
is a constant, and ‘“periodic”’ means that this functional
integral is evaluated over field configurations satisfying

by, 2 1) =y z 7+ p) @)

for any 7, where 8 = 1/T is the periodic length in the
Euclidean time axis. In addition to the finite temperature
boundary conditions given by (2), we impose Dirichlet
boundary conditions for scalar bosons between two square
plates. In three-dimensional space with two large parallel
plates perpendicular to the z axis and located at z = 0 and
z = a, the Dirichlet boundary conditions constrain the
scalar field to vanish at the plates,

¢(x,y,0,7) = ¢(x,y,a,7) =0. 3

In the slab region there is also a uniform magnetic field
pointing in the z direction, B= (0,0, B). The scalar field
has charge e and thus will interact with the magnetic field.

The scalar field Helmholtz free energy F and partition
function Z are related by

F=-B"logZ 4)

Z=N

Periodic

A straightforward evaluation of the functional integral (1)
yields

log Z = —log det(—Dgl|F,), (5)

where the symbol F, indicates the set of functions which
satisfy boundary conditions (2) and (3), and the operator
Dg is defined as

D = 02+ 02 — (p — eA)?, (6)

where A is the electromagnetic vector potential, the sub-
script E indicates Euclidean time, and we use the notation
ﬁl = (px’ py’ O)

The zeta function technique allows us to use the eigen-
values of Dg to evaluate log Z. The Dirichlet boundary
conditions (3) are satisfied only if the allowed values for
the momentum in the z direction are

o
pZ:_n: (7)
a
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where n € {0, 1, 2, 3, .. .}, and therefore the eigenvalues of
— 92 — 92 whose eigenfunctions satisfy (2) and (3) are

)

where n €{0,1,2,3,...} and m € {0, =1, +2, +3,.. }.
The spectrum of the operator (p — eg)i is well known

from one-particle quantum mechanics, and its eigenvalues
are the Landau levels

2eB<l + %) )

with I € {0, 1,2, 3,...}. Using the eigenvalues (8) and (9),
we construct the zeta function {(s), which is given by

() 3 5 ()

XZ[ 2+—2m +eB(2z+1)] . (10)

{(s)

where L? is the area of the plates and the factor eB/2
takes into account the degeneracy per unit area of the
Landau levels. In principle, summation in the index n
should run from 0 to co. However, since n appears only
squared, we run the summation from —oo to o by includ-
ing a factor of 1/2. Note that with this procedure only half
the n = 0 term is taken into account. This does not affect
the physical result because the n = 0 term contributes
to the Casimir energy a uniform energy density term, and
such terms, as we will discuss in Sec. III, do not contribute
to the Casimir pressure.

Once we put { in a suitable closed form, using the zeta
function technique we will immediately obtain the parti-
tion function

log Z = {(0), (1)
and then the free energy using (4),
F=—p71{(0). (12)
With the help of the following identity,
1 ]
78 =—— | dirle ¥, 13
i ), (1

where I'(s) is the Euler gamma function, we rewrite £(s) as

L? o0 eBt - i
=—— | dw? 2" ’)
&) 87I'(s) [0 sinh eBt <n=z:°° ¢

ad —a22,
(3 F) (14)
m=—00
where we also used
— 1
Z e 2i+1)z — X (15)

= nhz
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The derivative of the zeta function is obtained easily by
taking advantage of the useful fact that, for a well-behaved
G(s), the derivative of G(s)/I'(s) at s = 0 is simply G(0),
and therefore, using (12) and (14), we find the free energy

L2 00 eBt s _ a2 2
F=—-——"_ drt™2 ( 2" ’)
87 /o smheBil & ¢

(3

m=—00

(16)

Using the Poisson resummation formula [63], we are able
to obtain three other expressions of the free energy, all
equivalent to (16),

2 o 0
__La dit=5/2 .eB’ ( Z e—#)
8ﬂy2ﬁ 0 sinh eBt o

(£7)

m=—00

F =

7)

best suited for high temperature expansion (27a > 1 and

2T > «JeB/m),
L2 0o eBt e _m2.2
——— | du™? ( " f)
16772 ﬁ) sinh eB1 Z_ ¢

n=—00
ad w252
X ( }E e~ f )

m=—00

F =

(18)

best suited for small plate distance expansion (27a < 1

and a~! > +/eB/), and
L%a 0 eBt had 2,2
F=——— | du ( - )
167 fo sinh eBr\, :Z_OO ¢

( Z e~ ) (19)
best suited for strong magnetic field expansion. The last
equation has been obtained by other authors [52], who used
(19) to write the free energy as an infinite sum of modified
Bessel functions.

It is not possible to evaluate (14) in closed form for
arbitrary values of B, a and 3, but it is possible to find
simple expressions for {(s) when one or some of B, a
and T are small or large. From these simple expressions
of the zeta function, the free energy will be obtained
immediately.

First we evaluate {(s) in the high temperature limit. To
do so, we apply the Poisson resummation formula to the n
sum in (14) and obtain

L(s) = a[Zg(s) + Lga(s) + Ly r(s) + Lgar(s)],  (20)
where
_ © =52 eBt
£s) 873/2I(s) _/;) dit sinh eBt’ @h
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_ L2 N () eBt 2,121/ B2
== dtts ™52 —— 4T/ B
{pr(s) 4732 (s) mzljo sinheBte

(22)
L2 eBt
_ £575/2 *nzaz/t

£h.a(s) 4771 (s) n— 1j sinh e

(23)
Bt
5~ 5/2 ¢
{b.ar(s) = B 3/2F()n - & 1] sinh eBt

X o (nPa@/t+dmimli/ %) (24)

After changing the integration variable from ¢ to
tnaB/27m in (24) we obtain

fldﬁ s—=1/2 fo =52
2 3/2F(s) z Z<27Tm) fo i

n=1m=1

% eBt
. eBtnaf3
sinh (57,°)

When 2aT > 1, only the term with n = m = 1 contrib-
utes significantly to the double sum so, using the saddle
point method, we evaluate the integral for eB < 47T
and obtain

gB,a,T(s)

e 2mnma(t+1/1)/B, (25)

gB,a,T(S) =

L’eB (a,B)s e4malB 26)

27al'(s)\27) sinh (Z48)’

Next we evaluate (22) for eB < 472T?. In this case, we
can set

eBt 1
~ 1 — —(eBt)? 2
sinh eBt 6(6 2 7

and, after substituting (27) into (22), we integrate to find

ZB,T(S) = %(%)2S[2;i/2 F<S - %)ZR(ZS —3)
4;B§ﬁ T(S + %)ZRQS + 1)], (28)

where (3 is the Riemann zeta function of number theory.
For calculating the free energy, we only need to know £(s)
for s — 0. For small s we have

2 Lp(25 = 3) (s(;)z) = g—z +0(s2), (29
and
2R02s + 1) L (S)Z) g + ﬁ<yE + 1n§)s + O(s?),

(30)

where yp = 0.5772 is the Euler Mascheroni constant.
Substituting (29) and (30) into (28), we obtain
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L2[ ? _ezBZB(l
53 4872 \2s

valid for eB < 47>T? and small s. Notice that Eq. (22) is
not valid for s = 0 but, after identifying the presence of
Riemann zeta functions and Euler gamma functions in this
equation, and assuming that an analytical continuation
over the whole complex plane is subtended for these func-
tions, expressions like Eq. (28) are well behaved for s — 0.
The same is true for Egs. (21) and (23): they are not valid
for s = 0 but, once Riemann zeta functions and Euler
gamma functions are identified inside these equations
and analytic continuation is subtended, they will become
well behaved for s — 0.

In the high temperature limit, both eBa?> < 1 and
eBa® > 1 are possible, and therefore we need to evaluate
(23) for both scenarios. When eBa®> < 1 we use (27) in
(23), integrate, and find

_ L%a* [1F<3_
473°T(s)La®  \2

B 6212251 F<_’ _ s){R(—l — 2s)], (32)

Cpr(s) = ve + ln4ﬁ)]s, (31)

Lpals) s)§R<3 ~ 2s)

which, for small s, becomes

5R(3) 232@]
{als) = [ -2 (33)
where {3(3) = 1.2021. When eBa® > 1 we use
1 —eB
= e ¢b! (34

sinh eBt

in (23), change the integration variable from ¢ to \/—t and
find

12¢B © 7 na \s—1/2
{pals) = 2721 (s) ;(@)

X foo d”s—3/2e—\/ﬁna(t+l/t)' (35)
0

Only the term with n = 1 contributes significantly to the
sum when eBa® >> 1 and, using the saddle point method,
we evaluate the integral and find

L%eB a \' 5/
2war<s>(ﬁ)e - 69

Finally, we calculate {3(s), the only piece of the zeta
function that can be evaluated exactly and, after integrat-

gB,a (S) =

ing, we find
_ L*(eB)*¥*s Colaes 1 1
a0 =" Sy 02 )r(s z)z,e(s 5),

(37)
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which, for small s, becomes

_ L*(eB)*? 1
JB(S) = T(\/z - I)ZR(_ E)S

where {z(— 1) = —0.2079.

By adding (26), (31), (33), and (38), we find {(s) in the
high temperature and very weak field limit, 27 > a !,
2T > \/eB/, and eB < a2,

(38)

ma  (eB)*?a 1
=L? + 2- D&l
60) = ] e+ V- 0 —3)
{R(3) eB e 4m/B 2B2g?
87Ta 277 sinh (%) 14447

232 Ba :3
— +yp+In-—)|s, 39
4872 <2s YE n47)]s (39)
where we took the small s limit. By adding (26), (31), (36),
and (38), we find {(s) in the high temperature and very
large plate distance limit, 27 > a b, 2T > JeB/m, and
eB> a2,

3/2
{(s) = L2[47;Ba3 (682)77_ a(\/i - 1)§R<_ %)
eB e 4ma/B

P ﬁ e—2x/eBa
. eBaf
27 sinh (52F) 27

ZBZBa :8
. +yp + L) s,
48772 <2s YET Y )]

where we also took the small s limit.

Next we evaluate (s) in the limit of small plate distance
and apply the Poisson resummation formula to the m sum
in (14) to obtain

(40)

£6) = B1as) + Z0a(5) + nr(6) + L] @D

where (5(s) is the same as in (21), and

5 Bt
5 5/2 e —7?n%t/a*
{Bals) = 4 3/2F(s) j;) sinh eBte '
(42)
LZ 0 0 eBt 2 32
- - dir ™32 ———— ¢~ B/,
{s.1(s) 47T (s) mzlj;) sinh eBte
43)
ZB,a,T(s) f dit’” k&
3/2r(s) n=1m=1
X .eBt e~ (mnit/a*+m* B2 [41) 44)
sinh eBt

It is evident from (41)—(44) that /(s), in the limits 2aT < 1
and eB < m?a 2, is obtained from (20)—(24) by replacing
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a with 8/2 and S with 2a. For eB(£)> < 1 and small s,

we find
L (eB)’B 1
_ 72 _Z
)= [ 2B BB (g ()
LGB) B el 2R
277,82 27T sinh (EB“'B) 5767
e’B?Ba
-4 <2S+7E+ln2—)], (45)
and for eB(ﬁ)2 > 1 and small s, we find
_ (eB)*?p 1
o) = [ T BB (-
eB e Pl eB g
2 sinh(M) 27
e’B*Ba
- +yg +In—1) |s.
4872 <2s Ve lnzw)]s (46)

Last, we evaluate (s) in the strong magnetic field limit,
eB > (g)_2 and eB > a 2. Under these conditions, after
applying the Poisson resummation formula to both the n
and m sums in (14), we find

{(s) = aBlLw(s) + L(s)] (47)

where

_ Lz 0 s—3
&) = Jor [) dit (48)

is the zeta function of the one-loop vacuum effective
Lagrangian for massless scalar QED first calculated by
Weisskopf, and

0 = iy Jy o

foe]

><< S el 1). (49)

n,m=—00

sinh eBt

eBt
s1nh eBt

The integral in (48) can be evaluated exactly, and we find

LZ(eB)2—S
=~ _(1-2"9T(s—1 — 1), 50
an(s) =5 (s = Dégls = 1, (50)
which, for small s, becomes
L?e*B? 1 1
{W(S) = W(ln eB—1In3 — 5 - ;)S, (51)
where we used the interesting numerical fact [64]
6 1
7E+ln7r——2§’(2)=ln6+—. (52)
T 2

We evaluate Z(s) by using (34), which is valid in the
strong magnetic field limit; we then change the integration

variable from ¢ to \[Mt to find
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s . L%eB < (n’a®>+ m?B2/4\7
¢ = 82T () Z ( eB )

n,m=—00

X [oo dtts—Ze—(t-H/t)\/E n2a2+m2,82/4, (53)
0

where the term with m = n = 0 is excluded and only terms
with n = 0, =1 and m = 0, =1 contribute significantly to
the double sum. We integrate using the saddle point
method and, for small s, obtain

Zs) = L2(eB)5/* | p—2aVeB \/Ee—ﬂ\/ﬁ
23/2 2437 R
*2\/_5«/11 +B2/4
C@r g |

(54)

Adding (51) to (54) we find the zeta function in the limit of
the strong magnetic field, eB > a2 and eB > (£)72, and
small s

¢*B? 1 1\ (eBy/*
2 — _ - _ [ C—
{(s)=1L a5|:96 2(lneB In3 5 s) + 5

(e—zaJé'E NP N NI ):|
X +

2613/2 ,83/2 (a2 + ,82/4)3/4
(55)

III. FREE ENERGY AND CASIMIR PRESSURE

It is not possible to evaluate the free energy, (16)—(19),
in closed form for arbitrary values of B, a and 3 but, using
our results from Sec. II, we found simple analytic expres-
sions for the free energy when one or some of those three
quantities are small or large. The free energy in the high
temperature limit, 27 > a ! and 27 > \/E/ 7, differs
from the high temperature limit of the zeta function by a
simple factor only; therefore, we divide (39) by — Bs and
find F in the high temperature limit for eB < a2, and we
divide (40) by the same quantity to find the high tempera-
ture limit of F for eB > a~2. Notice that, once we divide
(39) and (40) by — s, the dominant term is the Stefan-
Boltzmann term — Z—; VT*, where V = L%q is the volume
of the slab. Terms with a linear dependence on the plate
distance, such as this one, are proportional to the volume of
the slab and represent a uniform energy density. If the same
magnetic field is present outside the slab and the medium
outside the slab is also at temperature 7, such terms do not
contribute to the Casimir pressure. If there is vacuum out-
side the slab, i.e. no magnetic field and zero temperature,
uniform energy density terms contribute a constant pres-
sure which is very easily calculated. In this paper we
assume that the same magnetic field is present inside and
outside the slab, and that the medium outside the slab is at
the same temperature as the one inside the slab, so we
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neglect contributions to the Casimir pressure from uniform
energy density terms.
The pressure P on the plates is given by
1 oF

P=—-———, 56
L? da (56)

and therefore, for 27 > a~! > +/eB/m, we find

_ 4(B)  2eB eimlB
4mBa® B sinh (TP)
e2B2e4ma/B coth (%) e’B%a 57)
472 sinh (%) 27

and
263 e—4ma/B e2B2e4ma/B coth (eBaB)
,32 sinh (eB “B) 472 sinh (eB “ﬂ)
. (63)3/2 672\/5[1
B ’

for 2T > +JeB/m > a~'. Since the third term in (57) is
negligible when compared to the other ones in (57) and
(58), we write the high temperature Casimir pressure as

(58)

[r(3) 2eB e tm/B (2B 59)
47Tﬁa ,32 sinh (eB“'g) 27B ’
for 2T > a~! > /eB/m, and
—47a 3/2
p—_ 2¢B e /B _ (eB) / 6*2\/6_311, (60)

B sinh (¢BaB) B

for 27 > JeB/m > a™!

To obtain the free energy in the small plate distance
limit, we divide (45) and (46) by —fs, and find F for
a~!' > 2T > JeB/m and for a~! > /eB/m > 2T, re-
spectively. The dominant term here is — % 2—;, which is
the familiar vacuum Casimir energy for a complex scalar
field and for the photon field [1]. The Casimir pressure for
small plate distance is

2 eB e~ TBla e2B2e~7™B/a coth (EB“B)

pP=— gl —
4 2 - eBap 2 eBap
2404 2a” sinh (535) 4 sinh (5.5)

e’B? a

In—+1 61
TS ( "or ) (1)
in the case of a very weak magnetic field (a~' > 2T >

\/E_E /ar), and it is identical in the case of very low tem-
perature (a~! > JeB /ar > 2T). Since the third term in
(61) is much smaller than the other ones, we can neglect it
and write the pressure in the small plate distance limit as

P:_

7 eB e ™Bla esz< a
In

. - Z41) 62
240a* 247 sinh(2%B) 4877\ 27 ) 62)
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Finally, for a strong magnetic field the free energy is
found using (55),

2g2 1 B5/4
F= —L2a|:e (lneB —In3 ——) 4 (B

9672 2 2732

o~ 2VeB [+ B /4
@+ g/ ) |

6720\/6_3 \/iefﬁx/ﬁ
2a3/2 B3/2

(63)

where the dominant term is the one-loop vacuum effective
potential for massless scalar QED [64], and it is propor-
tional to the volume of the slab, as expected. The effective
potential is a uniform energy density term and therefore,
under our assumptions, does not contribute to the Casimir
pressure. The pressure, for eB > (8)72 and eB > a2, is
given by

5/4
P=- 2(;5)2¢562a@<@ “ 1)
(eB)3/4 e_z‘/ﬁ\/m
277.3/2 (a2 + B2/4)3/4
% <1 _ 2a2\/e_B _i a?
\/m 24>+ B%/4
and, neglecting the smaller terms, we obtain
(eB)'/* ((¢~2aVeF 2o 2B J+ B4
— =y ( 2Ja (a2 + B2/4)/" ) (65)

), (64)

IV. DISCUSSION AND CONCLUSIONS

In this paper we used the zeta function regularization
technique to study the finite temperature Casimir effect of a
massless charged scalar field confined between parallel
plates and in the presence of a magnetic field perpendicular
to the plates. We have obtained three expressions for the
zeta function, (20), (41), and (47), which are exact to all
orders in the magnetic field strength B, plate distance a and
inverse temperature 3, and we have used them to derive
expressions for the Helmholtz free energy and for the
Casimir pressure on the plates in the case of high tempera-
ture (47> > a~ 2%, eB/m?), small plate distance (a~2 >
4T?, eB/m?) and strong magnetic field (eB > a2, 4T?).

We have been able to numerically evaluate the free
energy with very high precision, using the three exact
expressions (17)—-(19), and we compared the values of the
free energy obtained from our simple analytic expressions
to the exact numerical values. In the high temperature case
we found that, for 2aT = 4, the high temperature limit of
{(s) from Eq. (39) gives a value of F that is within 0.7
percent of the exact value of the free energy in the range
0 < eBa® < 1, while {(s) from Eq. (40) gives a value of F
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that is within 0.7 percent of the exact value of the free
energy in the range 1 < eBa? =< oo. For 2aT = 10, {(s)
from Eq. (39) gives a value of F that is within 0.05 percent
of the exact value of the free energy in the range 0 =
eBa®> = 1, while {(s) from Eq. (40) gives a value of F
that is within 0.05 percent of the exact value of the free
energy in the range 1 < eBa? < oo, showing a very rapid
decrease of the small discrepancy between F obtained
from Egs. (39) and (40) and the exact values of the free
energy. We summarize this finding by stating that the free
energy in the high temperature limit as obtained from
Egs. (39) and (40) is a simple analytic expression of F in
the high temperature limit, valid for all values of the
magnetic field B and the plate distance a, and with a
discrepancy of no more than 0.7 percent from the exact
value of F for 2aT = 4. A similarly accurate expression of
the Casimir pressure P, valid for 2aT = 4 and all values of
a and B, is obtained immediately from this simple expres-
sion of F, since P = — ﬁ % To roughly indicate in what
regimes of temperature, magnetic field, and plate separa-
tion our simple expression of F holds, we give two nu-
merical examples for the high temperature limit, one with
T = 10* K and the other with T = 10° K, and we take the
charge e of the scalar field to equal the elementary charge.
For T = 10* K, corresponding to 8.62 X 107! eV, our
simple expression of F is valid for a ! =4.31X
107" eV in natural units, corresponding to a =
4.57 X 1077 m in SI units. Given a value of a within this
range, for example a = 1073 m, the expression of F ob-
tained from (39) should be used when eB = 3.88 X
107* eV? in natural units, which corresponds to B =<
6.55 X 1072 G in cgs units, while the expression of F
from (40) should be used when B = 6.55 X 1072 G. For
T = 10° K, our expression of F is valid when a = 4.57 X
107° m. For a value of a within this range, for example
a = 107°% m, the expression of F from (39) is valid when
B = 6.55 G, and the other one is valid when B = 6.55 G.

In the small plate distance case we found that, for 2a7 =
%, the small plate distance limit of { from Eq. (45) gives a
value of F that is within 0.7 percent of the exact value of
the free energy in the range 0 = eB(g)2 = 1, while ¢ from
Eq. (46) gives a value of F that is within 0.7 percent of the
exact value of the free energy in the range 1 = eB(g)2 =
c0. For 2aT = {5, F from Eq. (45) is within 0.05 percent of
the exact value of the free energy in the range 0 =
eB(g)2 = 1, while F from Eq. (46) is within 0.05 percent
of the exact value of the free energy in the range 1 =
eB(g)2 = oo, showing again a very rapid decrease of the
small discrepancy between our analytical expressions and
the exact values of the free energy. We summarize the
small plate distance limit by stating that the free energy
as obtained from (45) and (46) is a simple analytic ex-
pression of F, valid for all values of B and 7, and with a
discrepancy of no more than 0.7 percent from the exact
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value of F for 2aT = i. The pressure in the case of small
plate distance is obtained immediately from F for 2aT = %
and all values of B and T. We now give two numerical
examples for the small plate distance case, one with T =
100 K and the other with 7 = 300 K. For T = 100 K, our
analytic expression of F is valid for a =< 2.86 X 10™% m.
The form of F obtained from (45) should be used when
B =< 5.01 X 1072 G, while the other form should be used
when B = 5.01 X 1072 G. For T = 300 K, our expression
of F is valid for ¢ = 9.53 X 107° m. F from (45) should
be used when B = 4.50 X 10~! G, while F from (46)
should be used when B = 4.50 X 10~! G. Notice that, if
we set T = 01in (45), we obtain the Casimir energy E for a
massless and charged scalar field in a magnetic field,

Ec_ 7 (2= D&(=HeB)??
L2 72043 47
e?B%a a
+ 22 % (v, + In—), 66
48772 (7’5 n277') (66)

where we see that the magnetic field, as it grows, inhibits
the Casimir energy of the scalar field [51]. Our result, a
simple analytic expression for E., is more explicit than
that of [51], where the magnetic field correction to the
Casimir energy is presented as an infinite sum of integrals.

In the case of a strong magnetic field, the free energy
shown in Eq. (63) is valid for all values of a and T', and so is
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the pressure shown in Eq. (65). If we set T = 0 in (63), we
can neglect the effective potential which is a uniform
energy density term, and obtain E in the strong magnetic
field case,

Ec 1 (eB)5/4e*2“‘/e_E

e N

(67)

which agrees with [51] on the dependence of E. from a
and B, but is in disagreement for the overall sign since we
obtain a negative value for E, not a positive one. We also
obtain the numerical constant present in E., while the
authors of Ref. [51] did not.

We conclude with a brief discussion of how observable
this effect is. For a plate distance ¢ = 1 um and a mag-
netic field B = 100 G, eB is much larger than a2 and, at
low temperature, we use Eq. (67) to calculate the Casimir
energy per unit area to find % = —1.08 X 10 eVm™2. We
obtain the Casimir pressure using Eq. (65) with 7 = 0, and
find P = —1.35 X 10~* Pa. We compare these numbers to
those of the electromagnetic Casimir effect for parallel
plates at the same plate distance a = 1 um, where we
find that the Casimir energy per unit area is % = —270 X
10° eVm™2, and the Casimir pressure is P = —1.30 X
1073 Pa, 1 to 2 orders of magnitude larger than what we
obtain for the charged scalar field using Eqgs. (67) and (65).
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