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Point multimonopoles in SU(3) gauge theory
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It is known that the spherically symmetric singular Wu-Yang monopole solution of the SU(2) gauge
field equations is equivalent to the Dirac U(1) monopole (with one gauge group embedded into the other).
We consider a multicenter configuration of £ Dirac monopoles and its embedding into SU(3) gauge theory.
Using this embedding, we construct an explicit multimonopole solution of the SU(3) Yang-Mills
equations which generalizes the SU(2) Wu-Yang solution and the known spherically symmetric point

SU(3) monopole solutions.
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I. INTRODUCTION

Magnetic monopoles [1-5] play an important role in
the (3 + 1)-dimensional Yang-Mills-Higgs theory [6,7].
In particular, it is believed that quark confinement can
be explained by the condensation of monopoles and the
dual Meissner effect [8—10]. This dual superconductor
mechanism of confinement is discussed in terms of the
Dirac monopoles [1], whose embedding into SU(2)
Yang-Mills are point (singular) Wu-Yang monopoles
[2,3]. That is why it is important to understand better
how Abelian monopoles arise in the non-Abelian pure
gauge theory. Construction of spherically symmetric
point monopoles in the SU(3) gauge theory was consid-
ered in [11-15]. In these papers, some Ansdtze for the
gauge potential reducing monopole equations to non-
linear ordinary differential equations were explored.
However, even after this reduction, the construction of
explicit solutions remains problematic. In this paper, we
construct an SU(3) point multimonopole configuration
generalizing the known point monopole solutions for
the SU(2) and SU(3) gauge theories. This explicit
solution to the Yang-Mills equations can also be con-
sidered as an approximation at large distances r — o0
of unknown smooth finite-energy multimonopole
configuration.

II. DIRAC MULTIMONOPOLE

We consider the configuration of k£ Dirac monopoles at
points d; = {a}, a?, a’} with i =1,..., k. We introduce
two regions in R3:

k
RY = Rz\u{<ag, a2, ) = ajl,
i=1

PACS numbers: 11.15.—q, 14.80.Hv

assuming’ that a}’z * a}'z for i # j,

R URS =R3\{a,, ..., a 2)
We consider a principal U(1) bundle L over the topologi-
cally nontrivial space (2) and a connection A on this
bundle. The Dirac monopole located at the point d; is
described by the gauge potentials AY/ and AS/ defined
on R}, and R3, respectively, as

ix?

ANI = ANigxe  with AN =_— 1
“ ! 2r(r; + xj)
ix! )
LA MW
3\’ 3 ]
2rj(rj + .XJ)
s, S, : S, ix}
A = Ag7dx? with A} = — ————,
er(rj - x])
. 1 4
SJ _ X SJ _ @
2 2 3\’ A3 O’
ri(r; = x3)
where
xj=x‘—adj, rf = Sabx;?ij., a,b,c=1,23. (5

On the overlap region R3, N R, the gauge potentials are
related via transition functions fi := (y;/5;)"/:

= \1
ANJ = ASI +dIn (ﬁ)z, ©6)

Vi
where y; = le. + ix? and the bar denotes the complex
conjugation. The configuration of k Dirac monopoles is

(1)  described by the gauge potentials®
k
RS = R3\ {(a}, a7, P)|x* = a}}, —

§ ,L:Jl v ! 'In the case al!'z = a'? for some i # Jj, one has to introduce
more than two open sets covering the space R\ {d,, ..., d}.

For simplicity we will not consider this case.
*Here Ay is the restriction of the connection A to the region

*max.popov@rambler.ru R, and Alg is the restriction of A to R3.
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k ' koo
Aly:=ANK =" ANJ and Alg:=ASk= ASI, (7
j=1 j=1
such that on the intersection R3, N R we have

ANk—A5k+d1n<]'[(yf)) ®)

le

III. SPHERICAL COORDINATES

Let us introduce the following functions of the coordi-
nates:

v; = J s =¢e 9jtan—L and
rj+x] 2
| )]
. Yj io
wj-=—=7] 5 = e'%icot /
Uj rj_xj

Here the angle variables ¢; and ; are introduced via
formulas

1_ .
x; =r;cosg;sind;,

2
J

3=
x; ;cos ;.

=r;sing;sin?;, and
(10)

Note that v; and w; are well defined on R} and R,
respectively. It is not difficult to see that

k
1
Nk — Ao,
A E 30+ ;) (v;dv; — v,dv;), (1D

k
]
AS,k —
Z2(1 ¥ wow ,)(W idwi =

and on the overlap R}, N R3 we have

k 1
ANK = ASK 4 dIn (]‘[(Z—)) (13)

i=1

W,-dvT/,-), (12)

since 3;/y; = wi/w; = v;/7;.
For the gauge field strength describing k£ Dirac mono-
poles, we have

dv; A dv; dw; A dw;
FD,k — dAN,k — —
z"(1+vv)2 Z(l+ww)2
— dASk (14)
It is not difficult to see that FP* = lFD kdxa A dxb

singular® only at points {d,, ..., d}, where monopoles
are located, and satisfies the Maxwell equations

D,k __
8,F2k — 0 (15)
3 = pd — 0
on R*\{dy, ..., d;}. Here we denote 9, := ;%.
*Notice that v; — oo for x'2 — a}'*, x> = a? and w; — oo for
x?— al!’z, = a?.
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IV. SU(2) POINT MONOPOLES

After 't Hooft analysis [4], it was realized that the SU(2)
Wu-Yang singular monopole solution of gauge field equa-
tions is nothing but the Abelian Dirac monopole in disguise
(see e.g., [3,11,14]). One can consider this solution as an
approximation of a nonsingular monopole, since the gauge
potential of the finite-energy spherically symmetric SU(2)
monopole [4,5] approaches the Wu-Yang monopole gauge
potential for large r. A multimonopole generalization of
the SU(2) Wu-Yang solution was described in Ref. [16].
Here we construct the multimonopole generalization of
solutions from [11-15] for the SU(3) gauge theory.

Recall that SU(3) has two U(1) subgroups, generators of
which can be taken as matrices

1 0 O 10 0
Ii=—-il0 -1 0| and I3=—-1] 0 1 O |]. (16)
0 0 O 00 —2

Let us split k = m + n with 0 = m = k and introduce the
gauge potentials

m m
AV =Ly AN AST =Y ASY, (17)

k
AVt =il T AN,

i=m+1

k
ASni=ilg Y ASL (18)

i=m+1
as well as

AN,m,n :=AN,m +AN,n and AS,m,n :=AS,m +AS,n (19)
where AN and A5 are given in (3)—(5).

Let us multiply Eq. (6) by the matrix i/5, sum over j
from 1 till m, and rewrite it as

A (m)AS m(f(m)) 1 + f(m)d(f(m)) 1 (20)

where

(m) _ o\ L
= m (\ . 21
NS 0 j:l(wj)z 0 21
0 0 1
This matrix can be split as

vs = (e 'gs”, (22)

where the 3 X 3 unitary matrices
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) — 1
MO § YAt
?n:l Uj 1 0
x| T I 0 (23)
0 0 <1+n] LY j>
and
. 1
gg)_—_l
(LTI wiw; )2
1 "W 0
x| I 0 (24)

are well defined on R}, and Rg, respectively. Substituting
(9) into (23) and (24), one can write these matrices in x{ for
i=1,...,m,a=1,2, 3. Note that the matrices (21)-(24)
belong to the subgroup SU(2) in SU(3). Substituting (22)
into (20), one obtains

)AN m(g(m))f + g(rrt)d(g(ﬂl))qL

= g{VASM (M + g d(gl")T = AL, @25)
where T denotes the Hermitian conjugation. The su(2)-
valued gauge potential (25) is well defined everywhere
on R¥\{d,,...,d,}. It realizes the embedding of the
solution [16] into the Lie algebra su(3).

V. SU@3) POINT MONOPOLES
Let us now multiply Eq. (6) by the matrix i/g, sum over j
from m + 1 till K = m + n, and rewrite it as

ANn — hg\r,l;AS’"(h(n)) 1 hg\l;;d(h(")) 1 (26)

where
L 0
n w; 1
h;\/; = 0 n§=m+l(\7y_v.j/»>2 0 (27)
0 0 §=m+l :i_j
This matrix can be split as
h(n) (h(")) lh(sn)’ (28)

where the unitary 3 X 3 matrices
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1 —2i —ii?
= | Ve g
MZ _ﬁﬁuz 2+3ui
2+iu 2+uin
u —1 0
X111 u 0 , 29)
0 0 (1+uiy
with
k
u= [T vs (30)
i=m+1
and
2 —\2t -1
(n)_(1+tt \/—t l+if_:r22[g12 1\[221
1 o 2(3+217)
142t 142t
1 —t 0
x| 7 1 0 , 3D
0 0 (1+r1r)2
with
k
t= ] wa (32)
i=m+1

are well defined on R} and Rj, respectively. One
can rewrite these matrices in terms of x{ for i=
m+1,...,k=m+n by using Egs. (9). Substituting
(28) into (26), we obtain the formula
B AN (T + B ()T
— h(")AS,n(h(n))T + h(n)d(h(n)) A(”) (33)
S S S N su(3)’

so-defined
A% is well defined everywhere on R3 \{d, 41, ..., dy}-

where the su(3)-valued gauge potential

Note that the existence of splittings (22) and (28) means
that Dirac’s nontrivial U(1) bundle L over R \ {a, ..., d;}
trivializes after embedding into an SU(3) bundle. The
matrices (23), (24), (29), and (31) define such trivializa-

tions, when f<m)—>g§\',") (m)(g(m)) '=1; and hg’,@—'
) = 1,

VI. GAUGE FIELD STRENGTH

The field strengths for the configurations (25) and (33)
are

F(m) dA(m) +A(m) /\A(m)

sD,m
su(2) su(2) su(2) su(2) =iF Q(m) (34)

and
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(n) _ (n) (n) n) _ ipDnA
Fon) = dAga) T Ags AAgs) = iFP"0,),  (35)

where the matrices

O = 8w I(g) = g™ I (g™)t € su(2) Csu(3), (36)

O = WL (AT = hP I (R")T € su(3) (37)

are well defined on R}, UR3. Here FP™ and FP" are
Abelian multimonopole field strengths from (14). Both
O and Q(n) may be considered as generators of two
groups U(l) embedded into SU(3). This clarifies the
Abelian nature of the configurations (25), (34), (33), and
(35). Furthermore, it is not difficult to show that

3 FM + A, ] = i(0,F2™ Q. (38)

0Fy + AL, FU1=100,F0 00, (39)

and therefore on R*\{d,,..., d;} both multimonopole
fields satisfy the Yang-Mills equations

aaFab + [Aa’ Fab] = 0. (40)

In (38) and (39) we used

1
FO = CFWdxe Adxb,  (41)

Ay = Addxtand F, =2

su(2)

1
=APdx and F"), = _FWdx* Adxt.  (42)

(n)
Ag su(3) 2

su(3)

VII. SUPERPOSITION OF m + r MONOPOLES

We have constructed two explicit multimonopole solu-
tions of the SU(3) gauge theory starting from the Abelian
solutions (17) and (18) embedded into the Lie algebra
su(3). Now we consider the similar construction for their
sum (19) which after non-Abelian “dressing” will not be
the sum of (25) and (33).

Note that the transition matrices (21) and (27) commute
with one another as well as gy and hyg. That is why we
have the equality

WU =108, @

where we used (22) and (28). Thus, introducing

(mn) < ()0
NS NS'°NS’ (44)
g = hygy”, and g™ = hgy”,
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we get
AN,m,n — (my”)AS,m,n (m,n))fl + (Wl,")d( (m,’l))fl 45
Is (fvs s d(fys . (45)

After splitting

(m,n) _

) — (glmmy=1glmm, (46)

following from (43) and (44), we obtain

gy AN (gt + g (gt

=gy Asm (g 4+ g d(e™ ) = AL, @)

where Ai:"(’;)) is the su(3)-valued gauge potential which is

well defined on R3 \ {d,, ..., d,}.
For the field strength we have

(m,n) __ 4 4(m,n) (mn) o A(mn) _ - D, - -D.n A
F su(3)_dAsu(3)+Asu(3) AAsu(3)_1F " Q) T Q ),

(43)
where FP™ and FP" are given in (14) and
Oy 1= &N 3"t = g I3(g§" ™1, (49)

Oty = g " Is(gi™t = g I5(g4™")?

are well defined on R}, U R3. Again one can show that the
gauge field

1
FUn = ~Fndxe Adx? (50)

Al Ag"'”)dx“, su(3) 2

su(3)

of the constructed multimonopole configuration satisfies

the Yang-Mills equations (40) on R*\{d,, ..., d;}. From
(23), (29), and (44) it follows that
g™ = (1 + ui)3(1 + vo) 2
(1 —2a -
2+uii+ (ui)? i2
x| V2u 2+u(12 L - \2/24“12
w2 — 2wl 2+3ui
2+iu 2+ui
(1+iav a—v 0
X| v—u 1+uv 0 , (81
0 0 (14 ui):(l+vi)
where
m k I —ix2
= . = A i J
v lj v, u ._l_[ v, v, p—
j=1 j=m+1 J J (52)

and r? = ()cjl.)2 + (x?)2 + (x?)z.

“*Note also that h;’,’;h(hg’,g)_l = Iy and h%lg(h%’;)_l = I and
similarly for f,(\;"s).
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Equation (51) gives the explicit expression of the matrix

g%’"") via the coordinates x', x?, x* and parameters

a; of location of monopoles. The explicit expression of

the gauge potential Ai:’:(;')) and the field strength F 5':(;1)) via
(m,n)

gy~ are givenin (47)—(49). Further simplification of these
formulas via multiplications of matrices, summations, etc.,
is not possible, since expressions produced in this way are

very cumbersome. Notice that the matrices gg\',") = gg\’,"’o)

and 1% = g®" used in the potentials (25) and (33),

can be obtained from (51) by putting u =0 and
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v = 0, respectively. Note again that our multimonopole
solutions can be considered as guides to the asymptotic
behavior at large radii to be satisfied by smoothed-out
finite-energy solutions. Also, they can be used in construct-
ing monopole wall-type solutions considered e.g., in
Refs. [17,18].
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